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SOLUTION OF THE CONGRUENCE SUBGROUP PROBLEM
FOR SOLVABLE ALGEBRAIC GROUPS

JASBIR SINGH CHAHAL

1. Statement of the theorem

Let % be an algebraic number field of finite degree over the field @
of rational numbers. We denote by o the ring of integers in 2. In gene-
ral, for a subring A, containing 1, of a universal domain £ we denote by
GL(n, A) the subgroup of GL(n, {2) consisting of matrices x = (x;;) with x,,
€ A and det x ¢ A%, the group of units of A. Now, we consider an algebraic
group G in GL(n, 2) defined over k. For A as above, we put

G(A) = G N GL(n, A)
and for an integral ideal a -+ 0 in o, we put
G(a) = {xe G(v), x =1 (mod. a)} .

A subgroup I" of G(0) is said to be a congruence subgroup for G if I" con-
tains G(a) for some a.

Obviously, a congruence subgroup has a finite index in G(v), but the
converse is, in general, false (cf. [1]). The purpose of this paper is to
establish the following

THEOREM. Suppose G C GL(n, 2) is a solvable algebraic group defined
over a number field k. Then every subgroup I' of G(0) with finite index is
a congruence subgroup.

The results and conjectures in [1] mainly concern simply connected
simple Chevalley groups of rank > 1. To see what happens when the
group is not simply connected, the author first studied the algebraic torus
defined by the Pell’s equation x* — my* = 1. This special case* of our
main theorem was treated by an elementary method the manuscript of
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* See the remark at the end of the paper.
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which was turned down by this Journal some months ago because a part
of the results followed from a theorem of Chevalley (cf. [5]). The author
wishes to thank the referee for drawing his attention to this work of Che-
valley which lead him to generalize the results to the much wider case of
arbitrary solvable groups.**’

2. Reduction of the proof

It is well known that an irreducible solvable algebraic group G defined
over k is a semi-direct product G = TU, where T is a torus and U is an
irreducible normal unipotent subgroup, both defined over k. In this sec-
tion, we shall show that it is enough to prove our theorem when G =T
or G = U. Without loss of generality, we can assume that G is irreducible.
It is clear that G(o) 2 T'(0)U(v). We know that the index [G(0): T(0)U(0)]
is finite (cf. Proposition 13 (8) of [6]). Now, since [G(0): I'] is finite, so is
[T(@)U@): I' N T(o)U(v)]. Therefore, replacing I" by I' N T(o)U(v), we can
assume that I' < T(0)U(v). For each finite prime p of k, denote by o, the
ring of p-adic integers in the local field £, For the ideal p7, r > 0, we
put

G,(») = {xeG(o,), x=1 (mod. p7)} .

For almost all p, we have G(v,) = T(0,)U(v,). Let p,, ---, p, be the primes
for which we have the inequality

G(o,,) ;) T(0,)U(0,), 1<j<s.

The group T'(0,)U(o,) is compact and open in G(o,) and so are the groups
G,y") for all r > 0. For each p, there is an r, such that r, =0 if p + p,
and T(0,)U(o,) @ G,(p™). Let ¢ = p*--. p;. Then we have

T(0)U(o,) 2 Gy(»™) 2 G(r™) 2 G() .

Let x = tu e G(c) with te T(k), ue U(k). Then te T(o,), ue U(o,) for all p
and so t€ T(0), ue U(v). Thus we have shown that

T(@U() = G(c).

Replacing I" again by I' N G(c), we can assume that G(c) = . If we
put 'y, =1 N T@®) and I, = I N U(o), then the indices [T(0): ] and

*4% This paper is based on a part of the author’s Ph.D. thesis, written at the Johns
Hopkins University under the direction of Professor Takashi Ono.
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[U(0): I';] are both finite. Assuming the theorem for G =T and G = U,
we have I', © T(b), I, © U(b) for some b and hence I' 2 T'(6)U(). Let
b=q2 ... q% By the topological argument as above, we have, for large
a'h

T.(aHU, @) 2 G, (a5) .

We finally put a = q% .- - q¥. It can be checked as before that if x
= tu e G(a), then te T(®), ue U®). Therefore, we have I' 2 G(a), which
completes the reduction of the proof.

3. The case of the unipotent group

If dim G = 1, then G = G,, the additive group and G(v) is isomorphic
to o up to finite index by Cor. 6.11 of [3]. If [0: '] = g, let a = go, the
ideal generated by g. Then I' © G(a) = a. If now dim G = r, we write
G = G,U as semi-direct product with dim U = r — 1. Repeating the argu-
ment of the last section for the semi-direct product G = TU, we complete
the proof by induction on r.

4. The case of the algebraic tori
Let T be a torus defined over k. We begin with

ProPOSITION. Let © (resp. 0) be the ring of integers of K (resp. k) where
we assume that K is a finite galois extension of k. Let I' be a subgroup
of finite index in T(v). Then, there exists a subgroup I’ of T(O) of finite
index such that I' N T(o) < I

Proof. By Theorem 4 of [6], T(O) is finitely generated and so we may
assume that T'(D) is free, since we are worried about I" up to finite index
only. Let g be the galois group of K/k. Then we have for any natural
number r, (T(Q)) = (T'(Q)*)", where for a group H we denote by H” the
subgroup consisting of r-th powers and by H* the subgroup of fixed points
under the action of a group g. In fact, the inclusion (T(D)") < (T(Q)Y)"
is less trivial. Take an x = y" e (T(D)")s, with y € T(©). Then, since a(y")
= 3" for all ¢ €g, we have (y'o(y))” = 1. Since, we assumed that T(D) is
free, o(y) = y and so x e (T(D)*)", which proves our assertion. Now put
' = T(Q)y, where r = [T(0): I']. Then obviously [T(D): I'] is finite. Also,
we have I' N T(0) = I'* = (T(Q)) = (T©O))" = T(v), q.e.d.
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Proof of the theorem for tori.

(i) If T= G,, the multiplicative group, then G(k) = &* and G(o) =
0%. The proof now follows from a result of Chevalley (cf. Théoréme 1, [5]).

(ii) If T = (G,)?, the trivial torus over k, and I" < G(o) = (0%)¢, we
put I'; = #,(I"), where =, is the i-th projection. If the index [G(0): I'] is
finite, then so is [0*: ;] and by (i) we have ['; 2 G,(a;) for some ideal a,.
Let a=aq,---a;. If x=(x, --,%,) =1 (mod. a), then x, =1 (mod. a,),
which implies that x, e I'; and xe ', i.e. I' 2 G(a).

(iil) Let T be split by a finite galois extension K/k. Let I" be a sub-
group of finite index in 7T(v). By the proposition, we can find a subgroup
I' of T(D) such that it has finite index in T(0) and I' N T(0) = I'. By
case (ii), we have I" © T(¥) for some ideal ¥ in O. Put a = % N o, then
if xe T(a), we have xe TN N T <I' N Ty < I', q.ed.

Remark. 1In the case of the torus 7' defined by the Pell’s equation
x* — my* =1, one obtains a more precise result than that obtained by
merely applying the Chevalley’s theorem. In fact, given I" of finite index
in T(Z), one can choose a natural number N such that [I": T(IN)] = 1 or
2 (cf. 4]).
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