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Abstract. In this paper we investigate the nature of family of pairs of separable
Banach spaces (X, Y ) such that K(X, Y ) is complemented in L(X, Y ). It is proved
that the family of pairs (X, Y ) of separable Banach spaces such that K(X, Y ) is
complemented in L(X, Y ) is not Borel, endowed with the Effros–Borel structure.
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1. Introduction. Let X and Y be two infinite dimensional real Banach spaces.
The following has been a longstanding question (see [18] and [3]):

QUESTION 1.1. Are the following properties equivalent?
(a) There exists a projection from the the space L(X, Y ) of continuous linear

operators onto the space K(X, Y ) of compact linear operators.
(b) L(X, Y ) = K(X, Y ).

Many results have been found about this question. In [19], Tong and Wilken showed
that if X has an unconditional basis, then the equivalence in the above question is true.
Some years later, Kalton [13] extended this result showing the following.

THEOREM 1.2. Let X be a Banach space with an unconditional finite dimensional
expansion of the identity. If Y is any infinite-dimensional Banach space, the following are
equivalent.

(i) K(X, Y ) is complemented in L(X, Y );
(ii) L(X, Y ) = K(X, Y );

(iii) K(X, Y ) contains no copy of c0;
(iv) L(X, Y ) contains no copy of �∞.

In [10] and [11], Emmanuele proved that, without assumption of unconditional
finite dimensional expansion of the identity, we still have some implication of the above
theorem; i.e. if c0 embeds in K(X, Y ), then K(X, Y ) is uncomplemented in L(X, Y ).
Moreover, he also showed that the classical Bourgain–Delbaen space Xa,b (see [6]) is
such that K(Xa,b) contains no copy of c0 despite L(Xa,b) �= K(Xa,b).

Recently, Argyros and Haydon [2], in a truly spectacular way, have solved the
above-mentioned Question 1.1. Indeed, using a mixed Tsirelson trick, they constructed
a space XK in the wake of Bourgain–Delbaen space (see [5, 6]) such that

K(XK ) contains no copy of c0;
L(XK ) = K(XK ) ⊕ �I ,

where I denotes the identity map. In particular, K(XK ) is nontrivially complemented
in L(XK ).
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See also another interesting paper [12], where the authors extend the Argyros–
Haydon construction in terms of totally incomparable spaces.

In what follows, we want to study the descriptive set nature of such spaces: the
family of separable Banach spaces, endowed with the Effros–Borel structure such that
K(X) is nontrivially complemented in L(X). In particular, we are interested to study
the following.

QUESTION 1.3. Let A be the family of all couple of separable Banach spaces (X, Y )
such that K(X, Y ) is complemented in L(X, Y ). Is A Borel?

As a standard notation, we shall consider L(X, Y ) the space of all bounded linear
operators between the Banach spaces X and Y , endowed by the classical norm

‖T‖ = sup
‖x‖≤1

‖Tx‖Y .

We shall denote by K(X, Y ) the closed subspace of L(X, Y ) of all compact operators.
In case X = Y , briefly L(X) and K(X) will stand for L(X, X) and K(X, X) respectively.
We refer the reader to any book on classical functional analysis for any notation (i.e.
see [1, 8, 16]).

Let us recall the following.

DEFINITION 1.4 [14]. Let 1 ≤ p < ∞. A separable Banach space X is said to have
the property (mp) if

lim sup
n→∞

‖x + xn‖p = ‖x‖p + lim sup
n→∞

‖xn‖p

whenever xn → 0 weakly.

Such a property has been intensively studied in [14], where it was proved that a
Banach space X has the property (mp) if and only if X is almost isometric to a subspace
of some �p-sum of finite-dimensional spaces.

2. Preliminaries and notation. Let X be a separable Banach space. We endow the
set F(X) of all closed subsets of X with the Effros–Borel structure, i.e. the structure
generated by the family

{{F ∈ F(X) : F ∩ O �= ∅} : O is an open subset of X}.
We denote by SB(X) the subset of F(X) consisting of all linear closed subspaces of X
endowed with the relative Effros–Borel σ -algebra. If X is C(2ω) (where 2ω = {0, 1}ω is
a compact Polish space endowed with the product topology), we denote briefly SB(X)
by SB. It is well known that if X is a Polish space then F(X) with the Effros–Borel
structure is a standard Borel space. We refer the reader to a recent book by Dodos [9].

We denote by ω = {0, 1, . . .} the first infinite ordinal, and let ω<ω be the tree of all
finite sequences in ω. Let T be the set of all trees on ω. If s = (s(0), . . . , s(n − 1)) is a
sequence of ω, we denote its length n by |s|. In particular, the empty sequence ∅ has
length 0.

For s = (s(0), . . . , s(n − 1)) and t = (t(0), . . . , t(k − 1)), the concatenation s � t is
defined by

s � t = (s(0), . . . , s(n − 1), t(0), . . . , t(k − 1)).
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For a tree θ , a branch through θ is an ε ∈ ωω such that for all n ∈ ω,

ε|n = (ε(0), . . . , ε(n − 1)) ∈ θ.

We denote by

[θ ] = {ε ∈ ωω : ε is a branch through θ}

the body of θ .
We call θ well founded if [θ ] = ∅, i.e. θ has no branches. Otherwise, we will call

θ ill founded. We will denote by WF (resp. IF) the set of well-founded trees (resp.
ill-founded trees) on ω.

For a tree θ ∈ T , roughly speaking the high of θ (denoted by ht(θ )) is the supremum
of the lengths of its elements (see [13] for the definition).

We refer the reader to Kechri’s book [15] for all notion and notation of Descriptive
Set theory.

Let us recall the constructive space of [17, Theorem 1] with normalized
unconditional basis, which is universal for all spaces with unconditional basis (some
time called Pelczynski’s space U).

THEOREM 2.1. There exists a space U with a normalized unconditional basis (un)n

such that for every semi-normalized unconditional basic sequence (xn)n in a Banach space
X there exists L = {l0 < l1 < · · · } ∈ [ω] such that (xn)n is equivalent to (uln )n and the
natural projection PL onto span{un : n ∈ L} has norm one. Moreover, if U ′ is another
space with the above properties, then U ′ is isomorphic to U .

3. Proof of the main result. For s ∈ ω<ω, we denote by χs : ω<ω −→ {0, 1} the
characteristic function of {s}. For a tree θ ∈ T , let Up(θ ) (1 < p < ∞) be the completion
of the span{χs : s ∈ θ} under the norm

‖y‖p = sup

⎡⎣ k∑
j=0

∥∥∥∥∥∥
∑
s∈Ij

y(s) u|s|

∥∥∥∥∥∥
p

U

⎤⎦
1
p

,

where the supremum is taken over k ∈ ω and over all admissible choice of intervals
{Ij : 0 ≤ j ≤ k} (an admissible choice of intervals is a finite set {Ij : 0 ≤ j ≤ k} of
intervals of θ such that every branch of θ meets at most one of these intervals).

Both of the below-mentioned Lemmas are essentially included in [4].

LEMMA 3.1. For any θ tree on ω, the sequence {χsi : si ∈ θ} determines an
unconditional basis for Up(θ ).

Proof. Let (λi)i∈ω be a sequence in �, I be an interval of θ and n and m ∈ ω. Let
us denote by cu the basis constant for the universal basis u = (un)n of U .

Let K : ω −→ ω<ω be an enumeration of ω<ω such that if s � t then s < t, where
s = K−1(s).
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For s ∈ T , (
∑n

i=0 λiχsi )(s) is equal to λs if s ≤ n, and 0 if not. Therefore,

∥∥∥∥∥∑
s∈I

(
n∑

i=0

λiχsi

)
(s) u|s|

∥∥∥∥∥
U

=

∥∥∥∥∥∥∥
∑
s∈I
s≤n

λsu|s|

∥∥∥∥∥∥∥
U

≤ cu

∥∥∥∥∥∥∥
∑
s∈I

s≤n+m

λsu|s|

∥∥∥∥∥∥∥
U

= cu

∥∥∥∥∥∑
s∈I

(
n+m∑
i=0

λiχsi

)
(s) u|s|

∥∥∥∥∥
U

since for s, t ∈ I , then t � s if and only if t ≥ s.
Let {Ij : 0 ≤ j ≤ k} be an admissible choice of intervals. We have

k∑
j=0

∥∥∥∥∥∥
∑
s∈Ij

(
n∑

i=0

λiχsi

)
(s) u|s|

∥∥∥∥∥∥
p

U

≤ cp
u

k∑
j=0

∥∥∥∥∥∑
s∈I

(
n+m∑
i=0

λiχsi

)
(s) u|s|

∥∥∥∥∥
p

U

.

Thus, ‖∑n
i=0 λiχsi‖p ≤ cu ‖∑n+m

i=0 λiχsi‖p and {χsi : i ∈ ω} is a basic sequence.
Using the unconditionality of (un)n, the same argument as above shows that {χsi :

si ∈ θ} is actually an unconditional basis for Up(θ ). �
LEMMA 3.2. Let (Ai)i∈ω be a sequence of subsets of θ such that every branch meets

at most one of these subsets. Then the spaces

Up

(⋃
i∈ω

Ai

)
and

(⊕
i∈ω

Up(Ai)

)
�p

are isometric.

Proof. Pick y ∈ span
{
χs : s ∈⋃i∈ω Ai

}
. We let yi =∑s∈Ai

y(s)χs. Since the set
{yi : i ∈ ω and yi �= 0} is finite, there is m ∈ ω such that y =∑m

i=0 yi. To finish the
proof, it is enough to show the following:

Claim ‖y‖p
p =∑m

i=0 ‖yi‖p
p.

Indeed, let {Ij : 0 ≤ j ≤ k} be an admissible choice of intervals. We set, for 0 ≤
j ≤ k and 0 ≤ i ≤ m, Ij(y) =∑s∈Ij

y(s)u|S| and Mi = {j ∈ ω : 0 ≤ j ≤ k, Ij ∩ Ai �= ∅}.
The largest interval with ends in Ij ∩ Ai is denoted by Ji

j . For any i ∈ ω, {Ji
j : j ∈ Mi} is

an admissible choice of intervals, thus

k∑
j=0

‖Ij(y)‖p =
m∑

i=0

∑
j∈Mi

‖Ji
j (yi)‖p ≤

m∑
i=0

‖yi‖p
p.

It follows by taking the supremum over admissible choices of intervals that

‖y‖p
p ≤

m∑
i=0

‖yi‖p
p.

Now for any 0 ≤ i ≤ m, let {Ii
j : 0 ≤ j ≤i} be an admissible choice of intervals. We

denote by Ĩ i
j the largest interval with ends in Ii

j ∩ Ai. Then {̃Ii
j : 0 ≤ i ≤ m, 0 ≤ j ≤ ki}

is an admissible choice of intervals because every branch of T meets at most one of the
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Ai’s. For any i,

ki∑
j=0

∥∥∥Ii
j (yi)
∥∥∥p

=
ki∑

j=0

∥∥∥̃Ii
j (yi)
∥∥∥p

=
ki∑

j=0

∥∥∥Ii
j (y)
∥∥∥p

,

m∑
i=0

ki∑
j=0

∥∥∥Ii
j (yi)
∥∥∥p

=
m∑

i=0

ki∑
j=0

∥∥∥̃Ii
j (y)
∥∥∥p

≤ ‖y‖p
p,

thus,

m∑
i=0

‖yi‖p
p ≤ ‖y‖p

p.

�

THEOREM 3.3. Let θ ∈ T , and let 1 < q < p < ∞.

(i) If θ is ill founded, then K(Up(θ ), Uq(θ )) is uncomplemented in L(Up(θ ), Uq(θ )).
(ii) If θ is well founded, then K(Up(θ ), Uq(θ )) is complemented in L(Up(θ ), Uq(θ )).

Proof. (i) We actually show that if θ is ill founded, then Up(θ ) is isomorphic
to U . Since both spaces Up(θ ) and Uq(θ ) are isomorphic, we get that K(Up(θ ),
Uq(θ )) �= L(Up(θ ), Uq(θ )). Since U has an unconditional basis, the thesis follows
[19, Theorem 6].

Suppose θ is ill founded, and let b ∈ [θ ] a branch of θ . Let

Up(b) = Up({s ∈ θ : s ⊆ b}).

We show that actually Up(b) is isomorphic to U .
Indeed, it is enough to show that the elements {χb|j : j ∈ ω} are equivalent to the

basis of U .
Note that if λ ∈ �∞ then∥∥∥∥∥∥

n∑
j=0

λjχb|j

∥∥∥∥∥∥
p

= sup

⎧⎨⎩
∥∥∥∥∥∥
∑
s∈I

⎛⎝ n∑
j=0

λjχb|j

⎞⎠ (s) u|s|

∥∥∥∥∥∥ : I interval, I ⊆ {s : s � b}
⎫⎬⎭

= sup

⎧⎨⎩
∥∥∥∥∥∥

m∑
j=l

λjuj

∥∥∥∥∥∥ : 0 ≤ l ≤ m ≤ n

⎫⎬⎭ .

Thus, ∥∥∥∥∥∥
n∑

j=0

λjuj

∥∥∥∥∥∥
U

≤
∥∥∥∥∥∥

n∑
j=0

λjχb|j

∥∥∥∥∥∥
p

≤ 2cu

∥∥∥∥∥∥
n∑

j=0

λjuj

∥∥∥∥∥∥
U

,

where cu is the unconditional basis constant of the basis of U .
Thus, Up(b) is isomorphic to U .
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Let y =∑i∈ω y(si)χsi be an element of Up(θ ). We have∥∥∥∥∥∥∥
∑
i∈ω
si∈b

y(si)χsi

∥∥∥∥∥∥∥
p

= sup

{∥∥∥∥∥∑
s∈I

y(s) u|s|

∥∥∥∥∥ : I interval, I ⊆ {s : s � b}
}

≤ ‖y||p.
That means Up(b) ∼= U is complemented in Up(θ ). By properties of U , we get that

Up(θ ) ∼= U .
(ii) Suppose that θ is well founded. Since Up(θ ) has an unconditional basis, by [19,

Theorem 6], it is equivalent to show that

K(Up(θ ), Uq(θ )) = L(Up(θ ), Uq(θ )).

For s ∈ T and i ∈ ω, we define

s � θ = {s � t : t ∈ θ}, θi = {t ∈ T : (i) � t ∈ θ}.
Since Up(θ ) = Up(∅ � θ ), to prove the theorem, it is enough to show the following.
Claim. If θ is well founded, then for any s ∈ T ,

K(Up(s � θ ), Uq(s � θ )) = L(Up(s � θ ), Uq(s � θ )).

Since θ is well founded, and since the map ht : WF −→ ω1 is a 
1
1-rank on WF

(see [15]), we will show the Claim using transfinite induction on ht(θ ).
We assume that for every tree τ ∈ T such that ht(τ ) < α < ω1,

K(Up(s � τ ), Uq(s � τ )) = L(Up(s � τ ), Uq(s � τ ))

for any s ∈ T .
Let us take θ such that ht(θ ) = α, and for s ∈ T, let

Ns = {i ∈ ω : s � (i) ∈ θ}.
We let Ai = s � (i) � θi for i ∈ Ns so that

∪i∈Ns Ai = s � (θ \ {s})
and every branch of T meets at most one of the Ai’s. If i ∈ Ns, then ht(Ai) < α, thus

K(Up(Ai), Uq(Ai)) = L(Up(Ai), Uq(Ai)).

By Lemma 3.2, we have

Ur(s � (θ \ {s})) = Ur

(⋃
i∈Ns

Ai

)
=
(⊕

i∈Ns

Ur(Ai)

)
�r

,

for r = p, q respectively.
Since {χsj : j ∈ ω, sj ∈ s � θ} is a basis of Ur(s � θ ) with the first element χs and

the other element generate Ur(s � (θ \ {s})). Then, we have Ur(s � θ ) ∼= � × Ur(s �
(θ \ {s})). Thus, the theorem will be complete once we prove the next two Lemmas. �
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LEMMA 3.4. Let 1 < p < ∞. For every θ ∈ WF , Up(θ ) is reflexive and it has the
property (mp).

Proof. Since θ is well founded, one can use transfinite induction on ht(θ ). As before,
we can write

Up(θ ) =
(⊕

n∈ω

Up(An)

)
�p

,

with ht(An) < ht(θ ). By induction, since Up(An) has (mp), whenever we fix x and a
weakly null sequence (wn)n in Up(θ ) we get

lim sup
n→∞

‖x + wn‖p
Up(θ) = lim sup

n→∞

∑
i∈ω

∥∥xi + wi
n

∥∥p
Up(Ai)

=
∑
i∈ω

lim sup
n→∞

∥∥xi + wi
n

∥∥p
Up(Ai)

=
∑
i∈ω

∥∥xi
∥∥p

Up(Ai)
+ lim sup

n→∞

∑
i∈ω

∥∥wi
n

∥∥p
Up(Ai)

= ‖x‖p
Up(θ) + lim sup

n→∞
‖wn‖p

Up(θ) .

The reflexivity of Up(θ ) follows by a standard argument. �
The following Lemma slightly extends a classical Pitt’s compactness theorem.

LEMMA 3.5. Let 1 ≤ q < p < ∞ and let (Xn)n and (Yn)n two sequences of Banach
spaces, with Xn to be reflexive for all n ∈ �, such that
� Xn has the property (mp), for each n ∈ �,
� Yn has the property (mq), for each n ∈ �.
Then

K

⎛⎝(⊕
n

Xn

)
�p

,

(⊕
n

Yn

)
�q

⎞⎠ = L

⎛⎝(⊕
n

Xn

)
�p

,

(⊕
n

Yn

)
�q

⎞⎠ .

Proof. The proof is similar to that of [7]. We give a sketch for sake of completeness.
Let

T :

(⊕
n

Xn

)
�p

−→
(⊕

n

Yn

)
�q

be a norm one operator. Since (
⊕

n Xn)�p is reflexive, any bounded sequence has a weak
convergent subsequence. Thus, it is enough to show that T is weak-norm continuous.

Let (hn) ⊆ (
⊕

n Xn)�p be a weakly null sequence.
By hypothesis, since (

⊕
n Zn)�r has the property (mr), where Zn = Xn (resp. Zn =

Yn) if r = p (resp. r = q), for every x ∈ (
⊕

n Zn)�r and every weakly null sequence (wn)n

in (
⊕

n Zn)�r ,

lim sup
n→∞

‖x + wn‖r = ‖x‖r + lim sup
n→∞

‖wn‖r. (3.1)
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For every ε > 0, let xε be of norm one such that

1 − ε ≤ ‖T(xε)‖ ≤ 1.

For all n ∈ ω and t > 0

‖T(xε) + T(thn)‖ ≤ ‖xε + thn‖. (3.2)

Now applying (3.1) to the left-hand side of (3.2) inequality for r = q and to the right-
hand side for r = p we get

lim sup
n→∞

‖T(hn)‖q ≤ 1
tq

[(1 + tpMp)
q
p − (1 − ε)q],

where M > 0 is an upper bound for (‖hn‖)n.
Taking t = ε

1
p , we get

lim sup
n→∞

‖T(hn)‖q ≤ 1

ε
q
p

[
1 + q

p
Mpε − (1 − qε) + o(ε)

]
.

Letting ε → 0 we get that (T(hn))n norm converges to zero. �
THEOREM 3.6. For 1 < q < p < ∞, the map ϕp,q : T −→ SB × SB defined by

ϕp,q(θ ) = Up(θ ) × Uq(θ )

tis Borel.

Proof. It is enough to show that the map

θ �−→ Up(θ )

is Borel.
Let O be open subsets of C(2ω). It is enough to show that � = {θ ∈ T : Up(θ ) ∩

O �= ∅} is Borel.
Since {χsi : i ∈ ω, si ∈ θ} defines a basis of Up(θ ), we have

Up(θ ) ∩ O �= ∅ ⇔ ∃λ ∈ �<ω such that
n∑

i=0

λiχsi ∈ O and if λi �= 0 then si ∈ θ.

Let � = {λ ∈ �<ω :
∑n

i=0 λiχsi ∈ O}. Then

� =
⋃
λ∈�

⋂
i∈supp(λ)

{θ ∈ T : si ∈ θ},

thus � is Borel since {θ ∈ T : si ∈ θ} is an open and closed subset. �
THEOREM 3.7. The family A of all couple of separable Banach spaces (X, Y ) such

that

K(X, Y ) is complemented in L(X, Y )

is not Borel in SB × SB.
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Proof. Suppose A is even analytic. For 1 < q < p < ∞, let ϕp,q be the map defined
in Theorem 3.6. Then ϕ−1

p,q(A) is analytic containing WF . Since WF is not analytical,
there is some θ0 in ϕ−1

p,q(A) which is ill founded. Therefore, by Theorem 3.3, ϕp,q(θ0)
does not lie in A. A contradiction. �

We would like to finish this paper with the following.

QUESTION 3.8. Let B be the family of all separable Banach space X such that
K(X) �= L(X), and K(X) is complemented in L(X). Is it B Borel? Is it coanalytical?

ACKNOWLEDGEMENT. The author wishes to thank G. Emmanuele for useful
discussions.
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