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Abstract

A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow
version of the blow-up lemma of Komlós, Sárközy, and Szemerédi that applies to almost optimally bounded
colourings. A corollary of this is that there exists a rainbow copy of any bounded-degree spanning subgraph H

in a quasirandom host graph G, assuming that the edge-colouring of G fulfills a boundedness condition that is
asymptotically best possible.

This has many applications beyond rainbow colourings: for example, to graph decompositions, orthogonal double
covers, and graph labellings.
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1. Introduction

We study rainbow embeddings of bounded-degree spanning subgraphs into quasirandom graphs with
almost optimally bounded edge-colourings. Moreover, following the recent work of Montgomery,
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Pokrovskiy, and Sudakov [40] on embedding rainbow trees, we present several applications to graph
decompositions, graph labellings, and orthogonal double covers.

Given a (not necessarily proper) edge-colouring of a graph, a subgraph is called rainbow if all its
edges have different colours. Rainbow colourings appear in many different contexts of combinatorics,
and many problems beyond graph colouring can be translated into a rainbow subgraph problem. What
makes this concept so versatile is that it can be used to find ‘conflict-free’ subgraphs. More precisely,
an edge-colouring of a graph � can be interpreted as a system of conflicts on � (�), where two edges
conflict if they have the same colour. A subgraph is then conflict-free if and only if it is rainbow. For
instance, rainbow matchings in  =,= can be used to model transversals in Latin squares. The study of
Latin squares dates back to the work of Euler in the 18th century and has since been a fascinating and
fruitful area of research. The famous Ryser–Brualdi–Stein conjecture asserts that every =×= Latin square
has a partial transversal of size = − 1, which is equivalent to saying that any proper =-edge-colouring of
 =,= admits a rainbow matching of size = − 1.

As a second example, we consider a powerful application of rainbow colourings to graph decompo-
sitions. Graph decomposition problems are central problems in graph theory with a long history, and
many fundamental questions are still unanswered. We say that �1, . . . , �C decompose � if �1, . . . , �C
are edge-disjoint subgraphs of � covering every edge of �. Perhaps one of the oldest decomposition
results is Walecki’s theorem from 1892 saying that  2=+1 can be decomposed into Hamilton cycles. His
construction gives not only any decomposition but also a ‘cyclic’ decomposition based on a rotation
technique, by finding one Hamilton cycle �∗ in  2=+1 and a permutation c on + ( 2=+1) such that the
permuted copies c8 (�∗) of �∗ for 8 = 0, . . . , = − 1 are pairwise edge-disjoint (and thus decompose
 2=+1). The difficulty here is, of course, finding �∗ given c, or vice versa. Unfortunately, for many other
decomposition problems, this is not as easy, or indeed not possible at all. In recent years, some exciting
progress has been made in the area of (hyper-)graph decompositions: for example, Keevash’s proof of
the Existence conjecture [26] and generalizations thereof [19, 27], progress on the Gyárfás–Lehel tree-
packing conjecture [3, 24], and the resolution of the Oberwolfach problem [18]. Those results are based
on very different techniques, such as absorbing-type methods, randomised constructions, and variations
of Szemerédi’s regularity technique. In a recent paper, Montgomery, Pokrovskiy, and Sudakov [40]
brought the use of the rotation technique back into focus when proving an old conjecture of Ringel ap-
proximately, by reducing it to a rainbow embedding problem. A similar approach has previously been
used by Drmota and Lladó [11] in connection with a bipartite version of Ringel’s conjecture posed by
Graham and Häggkvist. Ringel conjectured in 1963 that  2=+1 can be decomposed into 2= + 1 copies of
any given tree with = edges. A strengthening of Ringel’s conjecture is due to Kotzig [34], who conjec-
tured in 1973 that there even exists a cyclic decomposition. This can be phrased as a rainbow embedding
problem as follows: order the vertices of  2=+1 cyclically, and colour each edge {8, 9} ∈ � ( 2=+1) with
its distance (that is, the distance of 8, 9 in the cyclic ordering), which is a number between 1 and =. The
simple but crucial observation is that if ) is a rainbow subtree, then ) can be rotated according to the
cyclic vertex ordering, yielding 2=+1 edge-disjoint copies of) (and thus a cyclic decomposition if) has
= edges). Note that for each vertex E and any given distance, there are only two vertices that have exactly
this distance from E. More generally, an edge-colouring is called locally :-bounded if each colour class
has maximum degree at most : . The following statement thus implies Kotzig’s and Ringel’s conjecture:
any locally 2-bounded edge-colouring of  2=+1 contains a rainbow copy of any tree with = edges. Mont-
gomery, Pokrovskiy, and Sudakov [40] proved the following asymptotic version of this statement, which
in turn yields asymptotic versions of these conjectures (all asymptotic terms are considered as =→ ∞).

Theorem 1.1 ([40]). For fixed : , any locally :-bounded edge-colouring of  = contains a rainbow copy

of any tree with (1 − >(1))=/: edges.

Our main results are very similar in spirit. Roughly speaking, instead of dealing with trees, our
results apply to general graphs �, but we require � to have bounded degree, whereas one of the great
achievements of [40] is that no such requirement is necessary when dealing with trees. The following
is a special case of our main result (Theorem 1.3). An edge-colouring is called (globally) :-bounded if
any colour appears at most : times.
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Theorem 1.2. Suppose � is a graph on at most = vertices with Δ (�) = O(1). Then any locally O(1)-
bounded and globally (1−>(1))

(=
2

)
/4(�)-bounded edge-colouring of  = contains a rainbow copy of �.

It is plain that any locally :-bounded colouring is (globally) :=/2-bounded. Thus, Theorem 1.2
implies Theorem 1.1 for bounded-degree trees. Note that the assumption that the colouring is
(1 − >(1))

(=
2

)
/4(�)-bounded is asymptotically best possible in the sense that if the colouring was not(=

2

)
/4(�)-bounded, there might be fewer than 4(�) colours, making the existence of a rainbow copy

of � impossible.
Beyond the approximate solution of Ringel’s conjecture, Montgomery, Pokrovskiy, and Sudakov also

provide applications of their result to graph labelling and orthogonal double covers. Our applications
are very much inspired by theirs and are essentially proved analogously. We refer the discussion of these
applications to Section 2. We also note that since the initial submission of this manuscript, Montgomery,
Pokrovskiy, and Sudakov [39] have proved Ringel’s and Kotzig’s conjecture exactly for all sufficiently
large =.

Rainbow embedding problems have also been extensively studied for their own sake. For instance,
Erdős and Stein asked for the maximal : such that any :-bounded edge-colouring of  = contains a
rainbow Hamilton cycle (see also [15]). After several subsequent improvements, Albert, Frieze, and
Reed [2] showed that : = Ω(=). Theorem 1.2 implies that under the additional assumption that the
colouring is locally O(1)-bounded, we have : = (1 − >(1))=/2, which is essentially best possible. This
is not a new result but also follows from results in [28, 38]. However, the results in [28, 38] are limited
to finding Hamilton cycles or �-factors (in fact, approximate decompositions into these structures).
Theorem 1.2 allows the same conclusion if we seek a

√
=/2 ×

√
=/2 grid, say, or any other bounded-

degree graph with roughly = edges. For general subgraphs �, the best previous result is due to Böttcher,
Kohayakawa, and Procacci [6], who showed that given any =/(51Δ2)-bounded edge-colouring of = and
any graph� on = vertices withΔ (�) ≤ Δ , one can find a rainbow copy of�. Our Theorem 1.2 improves,
for bounded-degree graphs, the global boundedness condition to an asymptotically best possible one,
under the additional assumption that the colouring is locally O(1)-bounded.

1.1. Main result

We now state a more general version of Theorem 1.2. We say that a graph � on = vertices is (Y, 3)-
quasirandom if for all E ∈ + (�), we have deg� (E) = (3 ± Y)=, and for all disjoint (, ) ⊆ + (�) with
|( |, |) | ≥ Y=, we have 4� ((, )) = (3 ± Y) |( | |) |.

Theorem 1.3. For all 3, W ∈ (0, 1] and Δ ,Λ ∈ N, there exist Y > 0 and =0 ∈ N such that the following

holds for all = ≥ =0. Suppose� and� are graphs on = vertices,� is (Y, 3)-quasirandom, andΔ (�) ≤ Δ .

Then given any locally Λ-bounded and globally (1−W)4(�)/4(�)-bounded edge-colouring of�, there

is a rainbow copy of � in �.

Clearly, Theorem 1.3 implies Theorem 1.2. We derive Theorem 1.3 from an even more general
‘blow-up lemma’ (Lemma 1.4). The original blow-up lemma of Komlós, Sárközy, and Szemerédi [30],
developed roughly 20 years ago, is a powerful tool to find spanning subgraphs and has numerous
important applications in extremal combinatorics [8, 18, 31, 32, 33, 35, 36]. Roughly speaking, it says
that given a :-partite graph � that is ‘super-regular’ between any two vertex classes, and a :-partite
bounded-degree graph � with a matching vertex partition, then � is a subgraph of �. Note that the
conclusion is trivial if � is complete :-partite, so the crux here is that instead of requiring � to be
complete between any two vertex classes, super-regularity suffices. Such a scenario can often be obtained
in conjunction with Szemerédi’s regularity lemma, which makes it widely applicable. Many variations
of the blow-up lemma have been obtained over the years (for example, [4, 7, 10, 25, 29, 42]). Recently,
Joos and Glock [17] proved a rainbow blow-up lemma for >(=)-bounded edge-colourings that allows to
find a rainbow embedding of �. The present paper builds upon this result. The key novelty is that instead
of requiring the colouring to be >(=)-bounded, our new result applies for almost optimally bounded
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colourings. (But we assume here that the colouring is locally O(1)-bounded, which is not necessary
in [17].)

To state our new rainbow blow-up lemma, we need to introduce some terminology. If 2 : � (�) → �

is an edge-colouring of a graph � and U ∈ �, denote by 4U (�) the number of U-coloured edges of �.
Moreover, for disjoint (, ) ⊆ + (�), denote by 4U

�
((, )) the number of U-coloured edges of � with one

endpoint in ( and the other one in ) . Define 3� ((, )) := 4� ((, ))/|( | |) | as the density of the pair (, )
in �. We say that the bipartite graph � with vertex classes (+1, +2) is (Y, 3)-super-regular if

◦ For all ( ⊆ +1 and ) ⊆ +2 with |( | ≥ Y |+1 |, |) | ≥ Y |+2 |, we have 3� ((, )) = 3 ± Y.
◦ For all 8 ∈ [2] and E ∈ +8 , we have deg� (E) = (3 ± Y) |+3−8 |.

We say that (�,�, (-8)8∈[A ] , (+8)8∈[A ]) is an (Y, 3)-super-regular blow-up instance if

◦ � and � are graphs, (-8)8∈[A ] is a partition of + (�) into independent sets, (+8)8∈[A ] is a partition
of + (�), and |-8 | = |+8 | for all 8 ∈ [A], and

◦ For all 8 9 ∈
( [A ]

2

)
, the bipartite graph � [+8 , + 9 ] is (Y, 3)-super-regular.

We say that q : + (�) → + (�) is an embedding of � into � if q is injective and q(G)q(H) ∈ � (�) for
all GH ∈ � (�). We also write q : � → � in this case. We say that q is rainbow if q(�) is rainbow.

We now state our new rainbow blow-up lemma.

Lemma 1.4 (Rainbow blow-up lemma). For all 3, W ∈ (0, 1] and Δ ,Λ, A ∈ N, there exist Y > 0 and

=0 ∈ N such that the following holds for all = ≥ =0. Suppose (�,�, (-8)8∈[A ] , (+8)8∈[A ]) is an (Y, 3)-
super-regular blow-up instance. Assume further that

(i) Δ (�) ≤ Δ .

(ii) |+8 | = (1 ± Y)= for all 8 ∈ [A].
(iii) 2 : � (�) → � is a locally Λ-bounded edge-colouring such that the following holds for all U ∈ �:

∑

8 9∈( [A ]2 )
4U� (+8 , + 9 )4� (-8 , - 9 ) ≤ (1 − W)3=2.

Then there exists a rainbow embedding q of � into � such that q(G) ∈ +8 for all 8 ∈ [A] and G ∈ -8 .

The boundedness condition in (iii) can often be simplified, for instance in the following natural
situations: if 4� (-8 , - 9 ) is the same for all pairs 8, 9 , then 2 needs to be (1− W)4(� [+1, . . . , +A ])/4(�)-
bounded. Similarly, if 2 is ‘colour-split’—that is, 4U

�
(+8 , + 9 ) ∈ {4U (�), 0}—then 2 needs to be

(1 − W)4(� [+8 , + 9 ])/4(� [-8 , - 9 ])-bounded for all 8 9 ∈
( [A ]

2

)
. Both conditions are easily seen to be

asymptotically best possible. Condition (iii) is designed to work in the general setting of Lemma 1.4. In
fact, we will deduce Lemma 1.4 in Section 7 from a reduced instance (Lemma 7.1) where the colouring
2 is colour-split. In the proof of Theorem 1.3, we will randomly partition+ (�) into equal-sized (+8)8∈[A ]
and see that (iii) holds.

2. Applications

In this section, we discuss applications of our main result to graph decompositions, graph labelling,
and orthogonal double covers. As mentioned before, these applications are inspired by recent work
of Montgomery, Pokrovskiy, and Sudakov [40] and basically transfer their applications from trees to
general, yet bounded degree, graphs.

Graph decompositions

We briefly explain the general idea of utilizing rainbow edge-colourings to find graph decompositions
and then give two examples.
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Suppose � is a graph and Γ is a subgroup of the automorphism group �DC (�). If for some subgraph
� of�, {q(�)}q∈Γ is a collection of edge-disjoint subgraphs of�, we call this a Γ-generated�-packing

in �; and if every edge of � is covered, then it is a Γ-generated �-decomposition of �. For instance,
in Walecki’s theorem, � is the complete graph and Γ is generated by one permutation c. We say that
a packing/decomposition of  = is cyclic if Γ is isomorphic to Z=. Recall Kotzig’s conjecture that for
any given tree ) with = edges, there exists a cyclic )-decomposition of  2=+1. Note that there are two
natural divisibility conditions for the existence of such a decomposition: one ‘global’ edge divisibility
condition and one ‘local’ degree condition. First, the number of edges of  2=+1 is (2= + 1)=, which is
divisible by =. Second, every vertex of  2=+1 is supposed to play the role of every vertex of ) exactly
once, and thus we need that

∑
E ∈+ () ) 3) (E) = 2=, which is true by the hand-shaking lemma. However,

note that we have not used the fact that ) is a tree. The same divisibility conditions hold for any graph
with = edges. We thus propose the following conjecture as an analogue to Kotzig’s conjecture for general
(bounded degree) graphs.

Conjecture 2.1. For all Δ ∈ N, there exists =0 such that for all = ≥ =0, the following is true. For any

graph � with = edges and Δ (�) ≤ Δ , there exists a cyclic �-decomposition of  2=+1.

We will provide some evidence for this conjecture below (Theorem 2.3). First, we discuss in a general
way how to use rainbow embeddings to find Γ-generated packings and decompositions. Let � and Γ be
as above. Then Γ acts on � as a group action, and every element q ∈ Γ sends vertices onto vertices and
edges onto edges. The orbit Γ · 4 of an edge 4 is defined as Γ · 4 := {q(4) : q ∈ Γ}. It is well known that
two orbits are either disjoint or equal. Hence we may colour the edges of � according to which orbit
they belong to. We refer to the orbit colouring 2Γ> of � induced by Γ and define 2Γ> (4) := Γ · 4 for all
4 ∈ � (�).

The following simple lemma now asserts that if we can find a rainbow copy with respect to the
orbit colouring, and all orbits have maximum size, then the copies of � obtained via Γ are pairwise
edge-disjoint. The proof is immediate and thus omitted.

Lemma 2.2. Let � be a graph, and let Γ be a subgroup of �DC (�) such that |Γ · 4 | = |Γ| for all

4 ∈ � (�). Suppose that � is a rainbow subgraph in � with respect to 2Γ> . Then {q(�)}q∈Γ is a

Γ-generated �-packing in �.

In particular, if |Γ| = 4(�)/4(�), then this yields a Γ-generated �-decomposition of �.

Theorem 2.3. For all Δ ∈ N, there exist Y > 0 and =0 ∈ N such that the following holds for all = ≥ =0.

Suppose � is a graph with |+ (�) | ≤ =, Δ (�) ≤ Δ and at most (1 − Y)=/2 edges. Then  = contains a

cyclic �-packing.

Proof. Let � be the graph on vertex set [=] that is the complete graph if = is odd and is otherwise
obtained from the complete graph by deleting the edges {8, 8 + =/2} for all 8 ∈ [=/2]. Consider the
subgroup Γ of �DC (�) that is generated by the automorphism that sends a vertex 8 to 8 + 1 (modulo =).
Clearly, Γ � Z=, and hence |Γ| = =. In addition, |Γ ·4 | = = for all 4 ∈ � (�), and 2Γ> is locally 2-bounded.
Therefore, Theorem 1.3 yields a rainbow copy of � with respect to 2Γ> in�, which by Lemma 2.2 yields
a cyclic �-packing in � ⊆  =. �

We can also deduce a partite version of this. For simplicity, we consider only the bipartite case.

Theorem 2.4. For all Δ ∈ N, there exist Y > 0 and =0 ∈ N such that the following holds for all = ≥ =0.

Suppose � is a graph with Δ (�) ≤ Δ and at most (1 − Y)= edges, and + (�) is partitioned into 2
independent sets of size =. Then the complete bipartite graph  =,= contains a Z=-generated �-packing.

Proof. We proceed similarly as in Theorem 2.3. Let  =,= have vertex set { (1, 8), (2, 8) } 8 ∈ [=] and edge
set { (1, 8) (2, 9) } 8, 9 ∈ [=]. Consider the subgroup Γ of �DC (�) that is generated by the automorphism
that sends each vertex (ℓ, 8) to (ℓ, 8 + 1) (modulo = in the second coordinate) for ℓ ∈ [2]. Consequently,
Γ � Z=. Moreover, |Γ · 4 | = = for all 4 ∈ � ( =,=), and 2Γ> is proper. Thus, Lemma 1.4 yields a rainbow
copy of � in  =,= with respect to 2Γ>. Then Lemma 2.2 completes the proof. �
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These results demonstrate the usefulness of rainbow embeddings to decomposition problems. Clearly,
the application is limited to decompositions of a host graph into copies of the same graph�. Approximate
decomposition results that do not arise from a group action but from random procedures have been
studied recently in great depth. At the expense that one does not obtain very symmetric (approximate)
decompositions, it is possible to embed different graphs and not only many copies of a single graph. In
particular, the blow-up lemma for approximate decompositions by Kim, Kühn, Osthus, and Tyomkyn [29]
yields approximate decompositions into bounded degree graphs of quasirandom multipartite graphs.
Both this and another recent result of Allen, Böttcher, Hladký, and Piguet [5] imply Conjecture 2.1
asymptotically for non-cyclic decompositions.

Orthogonal double covers

An orthogonal double cover of  = by some graph � is a collection of = copies of � in  = such that every
edge of  = is contained in exactly two copies, and each two copies have exactly one edge in common.
Note that � must have exactly = − 1 edges. For instance, an orthogonal double cover of  (:2)+1 by  :
is equivalent to a biplane, which is, roughly speaking, the orthogonal double cover version of a finite
projective plane. Only a handful of such biplanes are known, and it is a major open question whether
there are infinitely many.

Another natural candidate for � is a spanning tree. Gronau, Mullin, and Rosa conjectured the
following.

Conjecture 2.5 (Gronau, Mullin, Rosa [21]). Let ) be an arbitrary tree with = vertices, = ≥ 2, where

) is not the path of length 3. Then there exists an orthogonal double cover of  = by ) .

Montgomery, Pokrovskiy, and Sudakov [40] proved an asymptotic version of this when = is a power
of 2, using their Theorem 1.1. Similarly, our main theorem yields approximate orthogonal double covers
by copies of any bounded degree graph with (1 − >(1))= edges whenever = is a power of 2. We omit
the proof as it is verbatim the same as in [40].

Theorem 2.6. For all Δ ∈ N, there exist Y > 0 and =0 ∈ N such that the following holds for all = ≥ =0

with = = 2: for some : ∈ N. Suppose � is a graph with |+ (�) | ≤ =, Δ (�) ≤ Δ and at most (1 − Y)=
edges. Then the complete graph  = contains = copies of � such that every edge of  = belongs to at most

two copies, and any two copies have at most one edge in common.

Graph labellings

The study of graph labellings began in the 1960s and has since produced a vast amount of different
concepts, results, and applications (see, for example, the survey [16]). Perhaps the most popular types of
labellings are graceful labellings and harmonious labellings. The former were introduced by Rosa [43]
in 1967. Given a graph � with @ edges, a graceful labelling of � is an injection 5 : + (�) → [@ + 1]
such that the induced edge labels | 5 (G) − 5 (H) |, GH ∈ � (�) are pairwise distinct, and � is graceful if
such a labelling exists. The graceful tree conjecture asserts that all trees are graceful. Rosa [43] showed
that this would imply the aforementioned Ringel–Kotzig conjecture. Despite extensive research, this
conjecture remains wide open. Adamaszek, Allen, Grosu, and Hladký [1] recently proved that almost
all trees are almost graceful.

Harmonious labellings were introduced by Graham and Sloane [20] in 1980. Given a graph � and an
abelian group Γ, a Γ-harmonious labelling of � is an injective map 5 : + (�) → Γ such that the induced
edge labels 5 (G) + 5 (H), GH ∈ � (�) are pairwise distinct, and � is Γ-harmonious if such a labelling
exists. Graham and Sloane asked which graphs � are Z4 (� ) -harmonious. Note that this necessitates
that |+ (�) | ≤ 4(�). In the special case when � is a tree on = vertices, they conjectured that there
exists an injective map 5 : + (�) → [=] such that the induced edge labels 5 (G) + 5 (H), GH ∈ � (�)
are pairwise distinct modulo = − 1. Żak [44] proposed a weakening of this. He conjectured that every
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tree on = − >(=) vertices is Z=-harmonious. Montgomery, Pokrovskiy, and Sudakov [40] proved Żak’s
conjecture as a corollary of Theorem 1.1. Using our Theorem 1.2, we can deduce a similar statement
for general bounded degree graphs.

Theorem 2.7. For all Δ ∈ N, there exist Y > 0 and =0 ∈ N such that the following holds for all = ≥ =0.

Suppose � is a graph with at most = vertices, at most (1 − Y)= edges, and Δ (�) ≤ Δ . Let Γ be an

abelian group of order =. Then � is Γ-harmonious.

Proof. Consider the complete graph  Γ on Γ. Define the edge-colouring 2 : � ( Γ) → Γ by setting
2(8 9) = 8 + 9 , and note that 2 is proper and thus =/2-bounded. Hence, by Theorem 1.2,  Γ contains a
rainbow copy of �, which corresponds to a Γ-harmonious labelling of �. �

3. Proof overview

In the literature, there are two common approaches for proving blow-up lemmas. The original approach
of Komlós, Sárközy, and Szemerédi consists of a randomised sequential embedding algorithm, which
embeds the bulk of the vertices one by one, choosing each time a random image from all available ones.
This strategy has also been used in [4, 7, 10, 25].

Shortly after the appearance of the blow-up lemma, Rödl and Ruciński [42] developed an alternative
proof, where instead of embedding vertices one by one, the algorithm consists of only a constant number
of steps. In the 8th step, the whole cluster -8 is embedded into +8 . The desired bijection is obtained as a
perfect matching within a ‘candidacy graph’ �8 , which is an auxiliary bipartite graph between -8 and+8
where GE ∈ � (�8) only if E is still a suitable image for G. Although these candidacy graphs (of clusters
not yet embedded) become sparser after each step, Rödl and Ruciński were able to show that one can
maintain their super-regularity throughout the procedure. This approach was also employed in [29] to
prove a blow-up lemma for approximate decompositions and in [17] to prove a rainbow blow-up lemma
for >(=)-bounded colourings, and it also underpins our proof here.

For simplicity, we consider here the following setup. Suppose + (�) is partitioned into independent
sets -1, -2, -3 of size =, and � consists of a perfect matching between -1 and -2 and a perfect matching
between -2 and -3.

Suppose that we have already found an embedding q1 : -1 → +1, and next we want to embed -2

into +2. We define the bipartite graph �2 between -2 and +2 by adding the edge GE if q1(H)E ∈ � (�),
where H is the �-neighbour of G in -1. Now, the aim is to find a perfect matching f in �2. Note that any
such perfect matching yields a valid embedding of � [-1, -2] into � [+1, +2]. Moreover, if we aim to
find a rainbow embedding, this can be achieved as follows. For each GE ∈ � (�2), we colour GE with the
colour of q1(H)E. Observe that if f is rainbow, then the embedding of � [-1, -2] into � [+1, +2] will be
rainbow, too. Let us assume that �2 is super-regular. It is well known that �2 then has a perfect matching.
One key ingredient in [17] was to combine this fact with a recent result of Coulson and Perarnau [9],
based on the switching method, to even find a rainbow perfect matching. Unfortunately, the switching
method relies upon the fact that the given colouring is >(=)-bounded and is thus not applicable in the
present setting. Two key insights will allow us to deal with almost optimally bounded colourings.

First, note that given a proper colouring of a graph�, if we take a random subset* of size ` |� |, then
with high probability, the colouring induced on* will be (1+>(1))` |* |-bounded, and thus the rainbow
blow-up lemma from [17] is applicable (on *). This gives hope to combine this with an ‘approximate
result’ on + (�) \ * to obtain the desired embedding. Such a combination of techniques has already
been successfully used in [28]. In our simplified discussion, let us thus assume we do not need to find a
perfect rainbow matching f but would be content if f is almost perfect.

This leads us to the second main ingredient of our proof — matchings in hypergraphs. Given our
candidacy graph �2 and its (auxiliary) colouring 22 : � (�2) → �2, we define a hypergraph H on
-2 ∪ +2 ∪ �2 where for every edge 4 ∈ � (�2), we add the hyperedge 4 ∪ {2(4)} to H. A simple but
crucial observation is that there is a one-to-one correspondence between matchings in H and rainbow
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matchings in �2. In particular, a matching M in H that covers almost all vertices of -2 ∪ +2 would
translate into our desired almost-perfect rainbow matching f in �2. Here, we can make use of the
rich theory of matchings in hypergraphs with small codegrees, which we will discuss in more detail
in Section 4.3. At this point, we remark that since �2 is super-regular, all vertices of -2 ∪ +2 have
roughly the same degree in H; and if the degrees of the colours are not larger (that is, the colouring is
appropriately bounded), this will suffice to find the desired matching in H.

Moreover, note that we assumed that �2 is super-regular and its colouring is appropriately bounded.
After embedding -2 according to f, we have to update the candidacy graph �3 as we updated �2 after
embedding -1. Of course, whether �3 will be super-regular and its colouring appropriately bounded
depends heavily on f. For the embedding not to get stuck, we need to find in �2 not just any f, but a
good one. To achieve this, we make use of a general hypergraph matching theorem (Theorem 4.3) proved
recently by the authors in [13], which guarantees a matching M in H that is in many ways ‘random-like’.
This will allow us to find an almost-perfect rainbow matching f for which the updated candidacy graph
�3 will have the desired properties. In more detail, the conclusion of Theorem 4.3 allows to put weight
functions on the edges of the hypergraph H and guarantees a matching M in H such that the weight
covered by M is what we would expect from an idealized random matching (see Section 4.3 for more
details). We employ such weight functions to provide that �3 will still be super-regular and its colouring
appropriately bounded. This is done in Section 6, where we prove an ‘Approximate Embedding Lemma’
(Lemma 6.3). As discussed, in the end, we will make use of the rainbow blow-up lemma for >(=)-
bounded edge-colourings from [17] to turn an approximate embedding into a complete one.

This simplified setup already presents the main ingredients for the proof of our rainbow blow-up
lemma (Lemma 1.4). An important step in the approach of Rödl and Ruciński [42] is to refine the
partition of � such that � only induces matchings between its refined partition classes using the
Hajnal–Szemerédi theorem. We follow the same strategy and additionally find a subgraph � ′ of � such
that the edge-colouring of � ′ is colour-split: that is, each colour only appears between one bipartite pair
of the refined partition classes of � ′. This enables us to deduce Lemma 1.4 from a reduced instance
(Lemma 7.1) where we impose that � only induces matchings between its partition classes, and the
edge-colouring of � is colour-split. The main tools to perform these reductions are given in Section 5.

4. Preliminaries

4.1. Notation

For : ∈ N, we write [:]0 := [:] ∪ {0} = {0, 1, . . . , :}, where [0] = ∅. For a finite set ( and 8 ∈ N,
we write

((
8

)
for the set of all subsets of ( of size 8 and 2( for the powerset of (. For a set {8, 9},

we sometimes simply write 8 9 . For 0, 1, 2 ∈ R, we write 0 = 1 ± 2 whenever 0 ∈ [1 − 2, 1 + 2].
For 0, 1, 2 ∈ (0, 1], we sometimes write 0 ≪ 1 ≪ 2 in our statements, meaning there are increasing
functions 5 , 6 : (0, 1] → (0, 1] such that whenever 0 ≤ 5 (1) and 1 ≤ 6(2), then the subsequent result
holds.

We only consider finite, simple, and undirected graphs. For a graph�, we let+ (�) and � (�) denote
the vertex set and edge set, respectively. We say D ∈ + (�) is a �-neighbour of E ∈ + (�) if DE ∈ � (�).
As usual, Δ (�) denotes the maximum degree of �. For D, E ∈ + (�), let #� (D, E) := #� (D) ∩ #� (E)
denote the common neighbourhood of D and E. For a set ( ⊆ + (�), let # (() :=

⋃
E ∈( #� (E). For

disjoint subsets �, � ⊆ + (�), let � [�, �] denote the bipartite subgraph of � between � and � and
� [�], the subgraph in � induced by �. Let 4(�) be the number of edges of �, and let 4� (�, �)
denote the number of edges of � [�, �]. We let �2 denote the square of �: that is, the graph obtained
from � by adding edges between vertices that have a common neighbour in �. A subset - ⊆ + (�) is
2-independent if it is independent in �2.

Let � be a graph. Given a set �, a function 2 : � (�) → 2� is called an edge set colouring of �. A
colour U ∈ � appears on an edge 4 if U ∈ 2(4). We define the codegree of 2 as the maximum number
of edges on which any two fixed colours appear together. For a colour U ∈ �, a vertex E ∈ + (�), and
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disjoint sets �, � ⊆ + (�), we define

◦ degU� (E) := |{D ∈ #� (E) : U appears on DE}|
◦ 4U

�
(�, �) := |{01 ∈ � (�) : 0 ∈ �, 1 ∈ �, and U appears on 01}|

◦ 4U (�) := |{4 ∈ � (�) : U appears on 4}|

We say that

◦ 2 is (globally) :-bounded if each colour appears on at most : edges.
◦ 2 is locally Λ-bounded if each colour class has maximum degree at most Λ.

Given a partition (+8)8∈[A ] of + (�), we say that 2 is colour-split with respect to (+8)8∈[A ] if for all
4, 5 ∈ � (�) we have 2(4) ∩ 2( 5 ) = ∅ whenever 4 ∈ � (� [+8 , + 9 ]) and 5 ∉ � (� [+8 , + 9 ]). If the
partition is clear from the context, we just say that 2 is colour-split. We call a subgraph � ′ of � rainbow

if all the edges in � ′ have pairwise disjoint colour sets.

4.2. Probabilistic tools

In this section, we state a well-known Chernoff-type bound and McDiarmid’s inequality. These will be
the main tools to establish concentration of a random variable for the large deviation results we need.

Theorem 4.1 (Chernoff’s bound; see [23]). Suppose -1, . . . , -< are independent Bernoulli random

variables. Let - :=
∑<
8=1 -8 . Then for all C ≥ 0,

P [|- − E [-] | ≥ C] ≤ 2 exp

(
− C2

2(E [-] + C/3)

)
.

Theorem 4.2 (McDiarmid’s inequality; see [37, Lemma 1.2]). Suppose -1, . . . , -< are independent

random variables, and suppose 11, . . . , 1< ∈ [0, �]. Suppose - is a real-valued random variable

determined by -1, . . . , -< such that changing the outcome of -8 changes - by at most 18 for all 8 ∈ [<].
Then for all C > 0, we have

P [|- − E [-] | ≥ C] ≤ 2 exp

(
− 2C2
∑<
8=1 1

2
8

)
≤ 2 exp

(
− 2C2

�
∑<
8=1 18

)
.

4.3. Pseudorandom hypergraph matchings

As sketched in Section 3, we use hypergraph matchings to model rainbow embeddings. In this section,
we introduce a theorem from [13] on ‘pseudorandom’ hypergraph matchings (Theorem 4.3), which will
play an important role in Section 6.

Following the seminal result of Rödl [41] on approximate Steiner systems, Pippenger observed
that any almost regular uniform hypergraph with small codegrees has an almost perfect matching.
In [13], the authors proved a tool that allows to obtain ‘pseudorandom’ matchings in this setting.
To make this more precise, we define for a hypergraph H and vertices D, E ∈ + (H) the degree
degH (E) := |{4 ∈ � (H) : E ∈ 4}| and codegree degH (DE) := |{4 ∈ � (H) : {D, E} ⊆ 4}|. We define

Δ (H) := max
E ∈+ (H)

degH (E) and Δ
2 (H) := max

D≠E ∈+ (H)
degH (DE)

to be the maximum degree and maximum codegree of H, respectively. A matching in H is a collection
of disjoint edges.

Suppose for simplicity that we are given a �-regular hypergraph and want to find an (almost)
perfect matching M. Moreover, we wish M to be ‘pseudorandom’: that is, to have certain properties
that we expect from an idealized random matching. Heuristically, we may expect that every edge of
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H is in a random perfect matching with probability 1/�. Thus, given a subset * ⊆ + (H), we expect
|� (H[*]) |/� matching edges inside *, and we may require similar statistics for matching edges
crossing certain vertex sets. This can be formalized in a quite general way. Given a set - , a weight

function on - is a function l : - → R≥0. For a subset - ′ ⊆ - , we define l(- ′) :=
∑
G∈- ′ l(G). If l is

a weight function on � (H), the above heuristic would imply that we expect l(M) ≈ l(� (H))/�. The
following theorem asserts that a hypergraph with small codegrees has a matching that is pseudorandom
in this sense.

Theorem 4.3 ([13]). Suppose 1/Δ ≪ X, 1/A , and A ∈ N with A ≥ 2, and let Y := X/50A2. Let H be an

A-uniform hypergraph with Δ (H) ≤ Δ and Δ2 (H) ≤ Δ1−X as well as 4(H) ≤ exp(Δ Y2 ). Suppose that

W is a set of at most exp(Δ Y2) weight functions on � (H). Then there exists a matching M in H such

that l(M) = (1 ± Δ−Y)l(� (H))/Δ for all l ∈ W with l(� (H)) ≥ max4∈� (H) l(4)Δ1+X .

We refer the interested reader to [13] for more information on the preceding results and further
variants and applications of Theorem 4.3. In particular, Ehard and Joos recently used a more general
version of Theorem 4.3 to give a short proof of the blow-up lemma for approximate decompositions [14].

4.4. Regularity

Given Y > 0 and 3 ∈ [0, 1], a bipartite graph � with vertex classes (+1, +2) is called (Y, 3)-regular if
for all pairs ( ⊆ +1 and ) ⊆ +2 with |( | ≥ Y |+1 |, |) | ≥ Y |+2 |, we have 3� ((, )) = 3 ± Y. The following
is one of the fundamental properties of Y-regularity.

Fact 4.4. Let� be an (Y, 3)-regular bipartite graph with partition (�, �), and let. ⊆ �with |. | ≥ Y |� |.
Then all but at most 2Y |�| vertices of � have (3 ± Y) |. | neighbours in . .

We will also often use the fact that super-regularity is robust with respect to small vertex and edge
deletions.

Fact 4.5. Suppose 1/= ≪ Y ≪ 3. Let� be an (Y, 3)-super-regular bipartite graph with partition (�, �),
where Y1/6= ≤ |�|, |� | ≤ =. If Δ (�) ≤ Y= and - ⊆ �∪ � with |- | ≤ Y=, then � [� \ -, � \ -] − � (�)
is (Y1/3, 3)-super-regular.

The following is essentially a result from [12]. (In [12], it is proved in the case when |�| = |� | with
16n1/5 instead of n1/6. The version stated below can be easily derived from this.)

Theorem 4.6. Suppose 1/= ≪ Y ≪ W, 3. Suppose � is a bipartite graph with vertex partition (�, �)
such that |�| = =, W= ≤ |� | ≤ W−1= and at least (1−5Y)=2/2 pairs D, E ∈ � satisfy deg� (D), deg� (E) ≥
(3 − Y) |� |, and |#� (D, E) | ≤ (3 + Y)2 |� |. Then � is (Y1/6, 3)-regular.

4.5. Another rainbow blow-up lemma

Our final tool is the following special case of the rainbow blow-up lemma from [17] for >(=)-bounded
colourings. Even though the global boundedness condition is more restrictive there, it is still applicable
on a random subset of vertices (see the discussion in Section 3). As such, it is the main tool in our proof
to turn a partial rainbow embedding into a complete one.

We say that (�,�, (-8)8∈[A ]0 , (+8)8∈[A ]0) is an (Y, 3)-super-regular blow-up instance with exceptional

sets (-0, +0) if -0 is an independent set in �, |+0 | = |-0 | and (� − -0, � − +0, (-8)8∈[A ] , (+8)8∈[A ]) is
an (Y, 3)-super-regular blow-up instance. We call graphs (�8)8∈[A ] candidacy graphs if �8 is a bipartite
graph with partition (-8 , +8) for all 8 ∈ [A].

Lemma 4.7 ([17, Lemma 5.2]). Suppose 1/= ≪ Y, ` ≪ 3, 1/A, 1/Δ . Let B =(�,�, (-8)8∈[A ]0 ,
(+8)8∈[A ]0) be an (Y, 3�)-super-regular blow-up instance with exceptional sets (-0, +0) and (Y, 3�)-
super-regular candidacy graphs (�8)8∈[A ] , where 3� , 3� ≥ 3. Assume further that
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(i) Δ (�) ≤ Δ .

(ii) |+8 | = = for all 8 ∈ [A].
(iii) � [-8 , - 9 ] is a matching for all 8 9 ∈

( [A ]
2

)
.

Let 2 : � (�) → � be a `=-bounded edge-colouring of �. Suppose a bijection k0 : -0 → +0 is given

such that

(iv) For all G ∈ -0, 8 ∈ [A] and G8 ∈ #� (G) ∩ -8 , we have #�8
(G8) ⊆ #� (k0(G)).

(v) For all 8 ∈ [A], G ∈ -8 , E ∈ #�8
(G) and distinct G0, G

′
0 ∈ #� (G) ∩ -0, we have 2(k0 (G0)E) ≠

2(k0 (G ′0)E).

Then there exists a rainbow embedding k of � into � that extends k0 such that k(G) ∈ #�8
(G) for all

8 ∈ [A] and G ∈ -8 .

5. Colour splitting

The goal of this section is to provide some useful lemmas to refine the partitions of a blow-up instance
and split the colours into groups to obtain better control for the rainbow embedding. In particular, we
will refine the partition of � using the Hajnal–Szemerédi theorem (Theorem 5.3), and we will refine
the partition of � accordingly by a random procedure. This reduction is performed in Lemma 5.4.
Additionally, we group the edges of � such that the edge-colouring of � is colour-split, which is based
on a random procedure given in Lemma 5.1. To obtain better control on the boundedness condition of
the edge-colouring of a blow-up instance when performing these reductions, we first group the edges of
� such that � is colour-split (Lemma 5.2) and afterward refine the partitions of � and � (Lemma 5.4).

The first lemma will guarantee that with high probability, the resulting graph is still super-regular
when we randomly split colours to obtain a colour-split colouring.

Lemma 5.1. Let 1/= ≪ Y ≪ Y′ ≪ W, 3, 1/Λ. Suppose � is an (Y, 3)-super-regular graph with vertex

partition (�, �) such that |�|, |� | = (1±Y)=, and 2 : � (�) → � is a locally Λ-bounded edge-colouring

of �. Suppose {.U : U ∈ �} ∪ {/4 : 4 ∈ � (�)} is a set of mutually independent Bernoulli random

variables such that P
[
.2 (4) + /4 = 2

]
= W for every 4 ∈ � (�). Suppose � ′ is the random spanning

subgraph of � where 4 ∈ � (�) belongs to � (� ′) whenever .2 (4) + /4 = 2. Then � ′ is (Y′, W3)-super-

regular with probability at least 1 − 1/=10.

Proof. We call a pair of distinct vertices D, E ∈ � good if |#� (D, E) | = (3 ± Y)2 |� | and |{F ∈
#� (D, E) : 2(DF) = 2(EF)}| ≤ Y |� |. We first claim that almost all pairs are good.

Claim 1. There are at least (1 − 7Y) |�|2/2 good pairs D, E ∈ �.

Proof of claim: Since� is (Y, 3)-super-regular, at most 2Y |�|2 pairs D, E ∈ � do not satisfy |#� (D, E) | =
(3 ± Y)2 |� | by Fact 4.4.

We claim that the number of pairs D, E ∈ � with |{F ∈ #� (D, E) : 2(DF) = 2(EF)}| ≥ Y |� | is at
most Y |�|2. For this, we first count the number of monochromatic paths of length 2 in � with both

ends in �. Each vertex F ∈ � is contained in
∑
U∈�

(degU
�
(F)

2

)
monochromatic paths DFE in �. Since

degU� (F) ≤ Λ for every colour U ∈ � and
∑
U∈� degU� (F) ≤ |�|, we have

∑

U∈�

(
degU� (F)

2

)
≤

∑

U∈�
degU� (F)

2 ≤ Λ|�|.

Hence, there are at most Λ|�| |� | monochromatic paths of length 2 in � with both ends in �. This
implies that the number of pairs D, E ∈ � with |{F ∈ #� (D, E) : 2(DF) = 2(EF)}| ≥ Y |� | is at most

Λ|�| |� |
Y |� | ≤ Y |�|2.
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Thus, there are at least
( |� |

2

)
− 3Y |�|2 ≥ (1 − 7Y) |�|2/2 good pairs D, E ∈ �. �

We fix a vertex G ∈ � ∪ � and a good pair of vertices D, E ∈ �. Let -G := deg�′ (G) and -D,E :=
|#�′ (D, E) |. Clearly, -G and -D,E are determined by {.U : U ∈ �} ∪ {/4 : 4 ∈ � (�)}. Note that if
F ∈ #� (D, E) satisfies 2(DF) ≠ 2(EF), then P [F ∈ #�′ (D, E)] = W2. Thus, we have

E [-G] = W deg� (G) = W3= ± 3Y= and E
[
-D,E

]
= W232= ± 10Y=. (5.1)

For all U ∈ � and 4 ∈ � (�), let 1U and 14 be minimally chosen such that changing the outcome of .U
changes -G by at most 1U, and changing the outcome of /4 changes -G by at most 14. Note that

∑

U∈�
1U +

∑

4∈� (�)
14 ≤ 2 deg� (G) ≤ 3=.

Moreover, we clearly have 14 ≤ 1, and since the colouring 2 is locally Λ-bounded, 1U ≤ Λ. Using
McDiarmid’s inequality (Theorem 4.2), we obtain that

P [|-G − E [-G] | > Y=] ≤ 2 exp

(
− Y2=2

Λ · 3=

)
<

1

=20
. (5.2)

With similar arguments, one can show that

P
[��-D,E − E

[
-D,E

] �� > Y=
]
<

1

=20
. (5.3)

A union bound over all G ∈ � ∪ � and all good pairs D, E ∈ � yields together with (5.1), (5.2),
and (5.3) that with probability at least 1 − 1/=10, we have deg�′ (G) = W3= ± 4Y= for all G ∈ � ∪ �,
and |#�′ (D, E) | = W232= ± 11Y= for all good pairs D, E ∈ �. Given that, Theorem 4.6 implies that � ′ is
(Y′, W3)-super-regular. �

The next lemma states that we can split the colours of the host graph � into groups and obtain a
subgraph � ′ that is still super-regular, and whose colouring is colour-split and appropriately bounded.

Lemma 5.2. Let 1/= ≪ Y ≪ Y′ ≪ 3 ′ ≪ W ≪ 3, 1/Λ, 1/A, 1/Δ . Suppose (�,�, (-8)8∈[A ] , (+8)8∈[A ]) is

an (Y, 3)-super-regular blow-up instance. Assume further that

(i) Δ (�) ≤ Δ and 4� (-8 , - 9 ) ≥ W2= for all 8 9 ∈
( [A ]

2

)
.

(ii) |+8 | = (1 ± Y)= for all 8 ∈ [A].
(iii) 2 : � (�) → � is locally Λ-bounded and the following holds for all U ∈ �:

∑

8 9∈( [A ]2 )
4U� (+8 , + 9 )4� (-8 , - 9 ) ≤ (1 − W)3=2.

Then there exists a spanning subgraph � ′ of � such that

(a) (�,� ′, (-8)8∈[A ] , (+8)8∈[A ]) is an (Y′, 3 ′)-super-regular blow-up instance.

(b) 2 restricted to � ′ is colour-split.

(c) 2 restricted to � ′[+8 , + 9 ] is (1 − W

2 )
4�′ (+8 ,+9 )
4� (-8 ,- 9 ) -bounded for all 8 9 ∈

( [A ]
2

)
.

Proof. Let Ŷ be such that Y ≪ Ŷ ≪ Y′. The proof proceeds in three steps, where we iteratively define
spanning subgraphs �3 ⊆ �2 ⊆ �1 ⊆ � such that �3 satisfies the required properties of � ′ in the
statement.

In the first step, we suitably sparsify each bipartite subgraph � [+8 , + 9 ]. For every 8 9 ∈
( [A ]

2

)
, let

?8 9 :=
4� (-8 , - 9 )

2Δ=
. (5.4)
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Note that W2/(2Δ) ≤ ?8 9 ≤ 1 since W2= ≤ 4� (-8 , - 9 ) ≤ Δ |-8 | ≤ 2Δ=. For every 8 9 ∈
( [A ]

2

)
, we keep

each edge of � [+8 , + 9 ] independently at random with probability ?8 9 and denote the resulting graph
by �1 [+8 , + 9 ]. A simple application of Chernoff’s inequality together with a union bound yields the
following claim.

Claim 1. The following properties hold simultaneously with probability at least 1 − 1/= for every
8 9 ∈

( [A ]
2

)
.

(C1.1) �1 [+8 , + 9 ] is (2Y, ?8 93)-super-regular;
(C1.2) 4U

�1
(+8 , + 9 ) ≤ 4U

�
(+8 , + 9 )?8 9 + Y= for every colour U ∈ �.

Hence, by Claim 1, we may assume that�1 is a spanning subgraph of� such that properties (C1.1)–
(C1.2) hold. For every colour U ∈ �, we obtain that

∑

8 9∈( [A ]2 )
4U�1

(+8 , + 9 )
4� (-8 , - 9 )
4�1 (+8 , + 9 )

(C1.1) ,(C1.2)
≤

∑

8 9∈( [A ]2 )
(4U� (+8 , + 9 )?8 9 + Y=)

4� (-8 , - 9 )
(1 − Y1/2)?8 93=2

≤ (1 + 2Y1/2)
∑

8 9∈( [A ]2 )
4U� (+8 , + 9 )

4� (-8 , - 9 )
3=2

+ Y=
∑

8 9∈( [A ]2 )

24� (-8 , - 9 )
?8 93=2

(iii) ,(5.4)
≤ (1 + 2Y1/2) (1 − W) + Y=

(
A

2

)
4Δ=

3=2
≤ 1 − W + 3Y1/2 ≤ 1 − 3W

4
. (5.5)

Note that (5.4) and (C1.1) imply that

4�1 (+8 , + 9 )
4� (-8 , - 9 )

=
(3 ± Y1/2)=

2Δ
. (5.6)

Hence, for every colour U ∈ �, we obtain

4U (�1) =
∑

8 9∈( [A ]2 )
4U�1

(+8 , + 9 )
(5.6)
≤ (3 + Y1/2)=

2Δ

∑

8 9∈( [A ]2 )
4U�1

(+8 , + 9 )
4� (-8 , - 9 )
4�1 (+8 , + 9 )

(5.5)
≤

(
1 − 3W

4

)
(3 + Y1/2)=

2Δ
. (5.7)

In the next step, we define a random subgraph �2 ⊆ �1. This will ensure that the final colouring is
colour-split. We choose g : � →

( [A ]
2

)
, where each g(U) is chosen independently at random according

to some probability distribution (@U
8 9
)
8 9∈( [A ]2 ) ; and for each 8 9 ∈

( [A ]
2

)
and each edge 4 of �1 [+8 , + 9 ], let

/4 be a Bernoulli random variable with parameter W2/@2 (4)
8 9

, all independent and independent of the
choice of g. Define �2 by keeping each edge 4 ∈ ��1 (+8 , + 9 ) if g(2(4)) = 8 9 and /4 = 1. Hence,

for all 4 ∈ � (�1), we have P [4 ∈ � (�2)] = W2. (5.8)

We define @U
8 9

as follows. For all U ∈ �, let

I
U :=

{
8 9 ∈

(
[A]
2

)
: 4U�1

(+8 , + 9 ) >
W24U (�1)
1 −

(A
2

)
W2

}
and IU :=

(
[A]
2

)
\ IU . (5.9)
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For 8 9 ∈ IU, we set @U
8 9

:= W2. For 8 9 ∈ IU, we set

@U8 9 :=
(
1 −

��IU
��W2

) 4U
�1

(+8 , + 9 )
∑
8′ 9′∈IU 4U

�1
(+8′ , + 9′)

. (5.10)

Note that W2 ≤ @U
8 9
≤ 1 for all 8 9 ∈

( [A ]
2

)
, and

∑
8 9∈( [A ]2 ) @

U
8 9
= 1.

Claim 2. The following properties hold simultaneously with probability at least 1 − 1/= for every
8 9 ∈

( [A ]
2

)
and every colour U ∈ �.

(C2.1) �2 [+8 , + 9 ] is (Ŷ, W2?8 93)-super-regular.

(C2.2) 4U
�2

(+8 , + 9 ) ≤ W2

@U
8 9
4U
�1

(+8 , + 9 ) + Y=.

Proof of claim: For every 8 9 ∈
( [A ]

2

)
, by (5.8) and (C1.1), Lemma 5.1 with .U = 1g (U)=8 9 and /4 as

defined above implies that (C2.1) holds with probability at least 1 − 1/=5.
To verify (C2.2), note that for 8 9 ∈

( [A ]
2

)
, the colour U appears in �2 [+8 , + 9 ] only if g(U) = 8 9 . Since

we keep each U-coloured edge independently at random with probability W2/@U
8 9

, a simple application

of Chernoff’s inequality yields that (C2.2) holds with probability at least 1 − 1/=5. �

Hence, by Claim 2, we may assume that �2 is a spanning subgraph of �1 such that properties (C2.1)
and (C2.2) hold. By the construction of �2, the restricted colouring 2 |� (�2) is colour-split.

We also show that the required boundedness condition is satisfied; see (5.14) below. For 8 9 ∈
( [A ]

2

)
,

we deduce from (5.4) and (C2.1) that

4�2 (+8 , + 9 ) = W2?8 9 (3 ± Ŷ1/2)=2 (5.4)
=

(
3 ± Ŷ1/2) W2=

2Δ
4� (-8 , - 9 ). (5.11)

For a colour U ∈ � and 8 9 ∈ IU, as �2 ⊆ �1, we obtain that

4U�2
(+8 , + 9 ) ≤ 4U�1

(+8 , + 9 )
(5.9)
≤ W2

1 −
(A
2

)
W2
4U (�1). (5.12)

For a colour U ∈ � and 8 9 ∈ IU, we obtain with (C2.2) that

4U�2
(+8 , + 9 )

(5.10)
≤ W2

1 − |IU |W2
· 4U�1

(+8 , + 9 )
∑
8′ 9′∈IU 4U

�1
(+8′ , + 9′)

4U
�1

(+8 , + 9 )
+ Y=

≤ W2

1 −
(A
2

)
W2

∑

8′ 9′∈( [A ]2 )
4U�1

(+8′ , + 9′) + Y= =
W2

1 −
(A
2

)
W2
4U (�1) + Y=. (5.13)

Moreover, for every colour U ∈ � and every 8 9 ∈
( [A ]

2

)
, we conclude that

W2

1 −
(A
2

)
W2
4U (�1) + Y=

(5.7)
≤ 1 − 3W/4

1 −
(A
2

)
W2

· W
2=

2Δ
(3 + Y1/2) + Y=

(5.11)
≤ 1 − 3W/4

1 −
(A
2

)
W2

·
4�2 (+8 , + 9 )
4� (-8 , - 9 )

· 3 + Y
1/2

3 − Ŷ1/2 + Y= ≤
(
1 − 2W

3

)
4�2 (+8 , + 9 )
4� (-8 , - 9 )

,

which implies together with (5.12) and (5.13) that for every colour U ∈ � and every 8 9 ∈
( [A ]

2

)
,

4U�2
(+8 , + 9 ) ≤

(
1 − 2W

3

)
4�2 (+8 , + 9 )
4� (-8 , - 9 )

. (5.14)
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Let �3 be a spanning subgraph of �2 where, for each bipartite pair �2 [+8 , + 9 ], we keep each edge
independently at random with probability 3 ′/(W2?8 93). As �2 [+8 , + 9 ] is (Ŷ, W2?8 93)-super-regular, we
may conclude by simple applications of Chernoff’s inequality that with probability at least 1 − 1/= for
all 8 9 ∈

( [A ]
2

)
, the graph �3 [+8 , + 9 ] is (Y′, 3 ′)-super-regular, and for every colour U ∈ �, we have

4U�3
(+8 , + 9 ) ≤

(
1 − W

2

) 4�3 (+8 , + 9 )
4� (-8 , - 9 )

due to (5.14). Clearly, also 2 restricted to �3 is colour-split. Hence, we conclude that there is a spanning
subgraph �3 of �2 satisfying properties (a)–(c), which implies the statement with �3 playing the role
of � ′. �

The next lemma states that we can refine the partitions of a blow-up instance (�,�, (-8)8∈[A ] ,
(+8)8∈[A ]) where the edge-colouring of � is colour-split such that � only induces matchings between
its refined partition classes, and the bipartite pairs of � are still super-regular and colour-split. Similar
as in the reduction in [42], we first apply the Hajnal–Szemerédi theorem to �2 [-8] for each cluster
-8 to obtain a refined partition of � where every cluster is now 2-independent. Accordingly, we refine
the partition of � randomly to preserve the super-regularity. Additionally, we partition the colours into
disjoint colour sets such that the colouring between the refined partitions of � is still colour-split.

We first state the classical Hajnal–Szemerédi theorem.

Theorem 5.3 ([22]). Let � be a graph on = vertices with Δ (�) < : ≤ =. Then+ (�) can be partitioned

into : independent sets of size ⌊ =
:
⌋ or ⌈ =

:
⌉.

Lemma 5.4. Let 1/= ≪ Y ≪ Y′ ≪ 3 ′ ≪ W ≪ 3, 1/Λ, 1/A, 1/Δ . Suppose (�,�, (-8)8∈[A ] , (+8)8∈[A ]) is

an (Y, 3)-super-regular blow-up instance. Assume further that

(i) Δ (�) ≤ Δ and 4� (-8 , - 9 ) ≥ W2= for all 8 9 ∈
( [A ]

2

)
.

(ii) |+8 | = (1 ± Y)= for all 8 ∈ [A].
(iii) 2 : � (�) → � is a colour-split edge-colouring such that 2 is locally Λ-bounded and 2 restricted

to � [+8 , + 9 ] is (1 − W)4� (+8 , + 9 )/4� (-8 , - 9 )-bounded for all 8 9 ∈
( [A ]

2

)
.

Then there exists an (Y′, 3 ′)-super-regular blow-up instance

(� ′, � ′, (-8, 9 )8∈[A ], 9∈[Δ2 ] , (+8, 9 )8∈[A ], 9∈[Δ2 ]) such that

(a) (-8, 9 ) 9∈[Δ2 ] is partition of -8 and (+8, 9 ) 9∈[Δ2 ] is partition of +8 for every 8 ∈ [A], and |-8, 9 | =
|+8, 9 | = (1 ± Y′)=/Δ2 for all 8 ∈ [A], 9 ∈ [Δ2].

(b) � ′ is a supergraph of � on + (�) such that � ′[-81 , 91 , -82 , 92 ] is a matching of size at least W4=/Δ2

for all 81, 82 ∈ [A], 91, 92 ∈ [Δ2], (81, 91) ≠ (82, 92).
(c) � ′ is a graph on + (�) such that � ′[+81 , 91 , +82 , 92] ⊆ � [+81 , +82] for all distinct 81, 82 ∈ [A] and all

91, 92 ∈ [Δ2].
(d) 2′ : � (� ′) → � ′ is an edge-colouring of � ′ such that 2′ |� (�)∩� (�′) = 2 |� (�)∩� (�′) , and 2′ is

colour-split with respect to the partition (+8, 9 )8∈[A ], 9∈[Δ2 ] , and 2′ is locally Λ-bounded, and 2′

restricted to � ′[+81 , 91 , +82 , 92 ] is

(
1 − W

2

) 4�′ (+81 , 91 , +82 , 92 )
4� ′ (-81 , 91 , -82 , 92)

-bounded

for all 81, 82 ∈ [A], 91, 92 ∈ [Δ2], (81, 91) ≠ (82, 92).

Proof. Since 2 : � (�) → � is colour-split, we may assume that 2 is the union of edge-colourings
28182 : � (� [+81 , +82 ]) → �8182 for 8182 ∈

( [A ]
2

)
, where �8182 ∩ �8′18′2 = ∅ for distinct 8182, 8′18

′
2 ∈

( [A ]
2

)
.

First, we apply Theorem 5.3 to �2 [-8] for every 8 ∈ [A]. Since Δ (�2 [-8]) ≤ Δ2 − 1, there exists a
partition of -8 into 2-independent sets -8,1, . . . , -8,Δ2 in �, each of size |-8 |/Δ2±1 = (1±2Y)=′, where
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=′ := =/Δ2. Hence for all 81, 82 ∈ [A], 91, 92 ∈ [Δ2], the bipartite graph � [-81 , 91 , -82 , 92 ] is a (possibly
empty) matching. Clearly, we can add a minimal number of edges to� to obtain a supergraph� ′ such that
� ′[-81 , 91 , -82 , 92 ] is a matching of size at least W4=′ for all 81, 82 ∈ [A], 91, 92 ∈ [Δ2], (81, 91) ≠ (82, 92),
which yields (b).

To obtain (a), we refine the partition of + (�) accordingly. We claim that the following partitions
exist. For every 8 ∈ [A], let (+8, 9 ) 9∈[Δ2 ] be a partition of +8 such that |+8, 9 | = |-8, 9 | for every 9 ∈ [Δ2],
and such that for all distinct 81, 82 ∈ [A], all 91, 92 ∈ [Δ2], and E ∈ +81 , 91 ∪+82 , 92 , we have

deg� [+81 , 91 ,+82 , 92 ]
(E) = (3 ± 3Y)=′ (5.15)

and

2 |� (� [+81 , 91 ,+82 , 92 ]) is (1 − W + Y) (3 + 3Y)=′2
4� (-81 , -82 )

-bounded. (5.16)

That such a partition exists can be seen by a probabilistic argument as follows: For each 8 ∈ [A], let
g8 : +8 → [Δ2], where g8 (E) is chosen uniformly at random for every E ∈ +8 , all independently, and let
+8, 9 := {E ∈ +8 : g8 (E) = 9} for every 9 ∈ [Δ2]. McDiarmid’s inequality together with a union bound

implies that (5.15) and (5.16) hold with probability at least 1 − e−
√
=. Moreover, standard properties of

the multinomial distribution yield that |+8, 9 | = |-8, 9 | for all 8 ∈ [A], 9 ∈ [Δ2] with probability at least

Ω(=−Δ2A ).
Thus, for every 8 ∈ [A], there exists a partition (+8, 9 ) 9∈[Δ2 ] of +8 with the required properties.
Since � [+81 , +82 ] is (Y, 3)-super-regular and due to (5.15), it follows that for all distinct 81, 82 ∈ [A]

and all 91, 92 ∈ [Δ2], the graph � [+81 , 91 , +82 , 92 ] is (2Δ2Y, 3)-super-regular. By the construction of the
supergraph � ′, we have added at most W4Δ2= edges to each pair (-81 , -82 ) in �. Hence for all distinct
81, 82 ∈ [A],

4� (-81 , -82) ≥ 4� ′ (-81 , -82) − W4
Δ

2= ≥ 4� ′ (-81 , -82 ) (1 − W2
Δ

2), (5.17)

where the last inequality holds since 4� ′ (-81 , -82) ≥ 4� (-81 , -82) ≥ W2=. Now (5.16) and (5.17) imply
that for all distinct 81, 82 ∈ [A] and all 91, 92 ∈ [Δ2], the colouring

2 |� (� [+81 , 91 ,+82 , 92 ]) is

(
1 − 3W

4

)
(3 + 3Y)=′2
4� ′ (-81 , -82)

-bounded. (5.18)

Next, we iteratively define spanning subgraphs �2 ⊆ �1 ⊆ � and a supergraph � ′ ⊇ �2 that
satisfies the required properties in the statement.

First, we claim that there exists a spanning subgraph �1 ⊆ � that is colour-split with respect to
the partition (+8, 9 )8∈[A ], 9∈[Δ2 ] and still super-regular. To see that such a subgraph exists, we use a

probabilistic argument. For all distinct 81, 82 ∈ [A], let g8182 : �8182 → [Δ2] × [Δ2], where each g8182 (U) is
chosen independently at random according to the probability distribution (? (81 , 91) , (82 , 92) ) 91 , 92∈[Δ2 ] with

? (81 , 91) , (82 , 92) :=
4� ′ (-81 , 91 , -82 , 92 )
4� ′ (-81 , -82)

≥ W4=′

2Δ4=′
≥ W5. (5.19)

Define �1 by keeping each edge 4 ∈ � (� [+81 , 91 , +82 , 92 ]) if g8182 (2(4)) = ( 91, 92). By Lemma 5.1, and
since � [+81 , 91 , +82 , 92 ] is (2Δ2Y, 3)-super-regular, there exists �1 ⊆ � such that the colouring of �1 is
colour-split and �1 [+81 , 91 , +82 , 92 ] is (Y′/2, ? (81 , 91) , (82 , 92)3)-super-regular for all distinct 81, 82 ∈ [A] and
all 91, 92 ∈ [Δ2].
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For all distinct 81, 82 ∈ [A], all 91, 92 ∈ [Δ2], and every colour U ∈ �8182 , we obtain

4U�1
(+81 , 91 , +82 , 92) ≤ 4U� (+81 , 91 , +82 , 92)

(5.18)
≤

(
1 − 3W

4

)
(3 + 3Y)=′2
4� ′ (-81 , -82)

=

(
1 − 3W

4

)
? (81 , 91) , (82 , 92) (3 + 3Y)=′2

4� ′ (-81 , 91 , -82 , 92 )
,

and thus, since �1 [+81 , 91 , +82 , 92 ] is (Y′/2, ? (81 , 91) , (82 , 92)3)-super-regular, we conclude that

4U�1
(+81 , 91 , +82 , 92 ) ≤

(
1 − 2W

3

)
4�1 (+81 , 91 , +82 , 92)
4� ′ (-81 , 91 , -82 , 92 )

. (5.20)

Let �2 be the spanning subgraph of �1 where for each bipartite pair �1 [+81 , 91 , +82 , 92 ], we keep
each edge independently at random with probability 3 ′/(? (81 , 91) , (82 , 92)3). As �1 [+81 , 91 , +82 , 92 ] is
(Y′/2, ? (81 , 91) , (82 , 92)3)-super-regular, we may conclude by simple applications of Chernoff’s inequal-
ity that with probability at least 1 − 1/= for all distinct 81, 82 ∈ [A] and all 91, 92 ∈ [Δ2], the graph
�2 [+81 , 91 , +82 , 92 ] is (Y′, 3 ′)-super-regular, and by (5.20) for every colour U ∈ �, we have

4U�2
(+81 , 91 , +82 , 92 ) ≤

(
1 − W

2

) 4�2 (+81 , 91 , +82 , 92 )
4� ′ (-81 , 91 , -82 , 92 )

. (5.21)

Finally, we may add edges in the empty bipartite graphs �2 [+8, 9 , +8, 9′] for all 8 ∈ [A] and all dis-
tinct 9 , 9 ′ ∈ [Δ2] in such a way that we obtain a supergraph � ′ ⊇ �2 where � ′[+81 , 91 , +82 , 92 ] is
(Y′, 3 ′)-super-regular for all 81, 82 ∈ [A] and 91, 92 ∈ [Δ2], (81, 91) ≠ (82, 92). Hence, we conclude
that (� ′, � ′, (-8, 9 )8∈[A ], 9∈[Δ2 ] , (+8, 9 )8∈[A ], 9∈[Δ2 ]) is an (Y′, 3 ′)-super-regular blow-up instance that sat-
isfies (c).

Let 20AC :
(+ (�)

2

)
→ �0AC be a rainbow edge-colouring of all possible edges

(+ (�)
2

)
such that

�0AC ∩ � = ∅. By colouring the edges � (� ′) \ � (�2) using 20AC , we may obtain an edge-colouring
2′ : � (� ′) → �∪�0AC that extends 2 and is clearlyΛ-bounded. By the construction of�2, the colouring
2′ is colour-split, and

(
1 − W

2

) 4�′ (+81 , 91 , +82 , 92 )
4� ′ (-81 , 91 , -82 , 92 )

-bounded

for each bipartite subgraph � ′[+81 , 91 , +82 , 92 ] with 81, 82 ∈ [A], 91, 92 ∈ [Δ2], (81, 91) ≠ (82, 92) due
to (5.21). This yields (d) and completes the proof. �

6. Approximate Embedding Lemma

In this section, we prove the ‘Approximate Embedding Lemma’ (Lemma 6.3), which allows us to
embed a cluster -8 into +8 (here -0, +0) almost completely while maintaining crucial properties of
other clusters for future embedding rounds. As outlined in Section 3, we track these properties using
‘candidacy graphs’ �8 , which are auxiliary bipartite graphs between -8 and +8 where GE ∈ � (�8) only
if E is still a suitable image for G given previous embedding rounds.

We say that (�,�, (�8)8∈[A ]0 , 2) is an embedding-instance if

◦ �,� are graphs and �8 is a bipartite graph with vertex partition (-8 , +8) for every 8 ∈ [A]0 such
that (-8)8∈[A ]0 is a partition of + (�) into independent sets, (+8)8∈[A ]0 is a partition of + (�), and
|-8 | = |+8 | for all 8 ∈ [A]0.

◦ For all 8 ∈ [A], the graph � [-0, -8] is a matching.
◦ 2 : � (�∪⋃

8∈[A ]0 �8) → 2� is an edge set colouring that is colour-split with respect to the partition
(-0, . . . , -A , +0, . . . , +A ) and satisfies |2(4) | = 1 for all 4 ∈ � (�).
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Figure 1. If G0 is mapped to E0 by f, then only those candidates of G8 remain that are neighbours of E0.

Moreover, colour U of the edge E0E 9 is added to the candidate edge G 9E 9 , which captures the information

that if G 9 is later embedded at E 9 , then this embedding uses U.

We say that (�,�, (�8)8∈[A ]0 , 2) is an (Y, (3�
8
)8∈[A ] , (38)8∈[A ]0 , C,Λ)-embedding-instance if, in addi-

tion, we have that

◦ � [+0, +8] is (Y, 3�
8
)-super-regular and 2 restricted to � [+0, +8] is (1 + Y)4� (+0, +8)/4� (-0, -8)-

bounded for all 8 ∈ [A].
◦ �8 is (Y, 38)-super-regular and 2 restricted to �8 is (1 + Y)38 |-8 |-bounded for all 8 ∈ [A]0.
◦ 2 is locally Λ-bounded and |2(4) | ≤ C for all 4 ∈ ⋃

8∈[A ]0 � (�8).

Here, -0 is the cluster we want to embed into +0 by finding an almost perfect rainbow matching f
in �0, and C can be thought of as the number of clusters we have previously embedded. For a matching f,
we denote by + (f) the vertices contained in f, and for convenience, we identify matchings f between
-0 and +0 with functions f : -f0 → +f0 , where -f0 = + (f) ∩ -0 and +f0 = + (f) ∩ +0. Whenever we
write GE ∈ � (�8), we tacitly assume that G ∈ -8 and E ∈ +8 .

The following two definitions encapsulate how the choice of f affects the candidacy graphs (�8)8∈[A ]
and their colouring for the next step (see Figure 1). Let (�,�, (�8)8∈[A ]0 , 2) be an embedding-instance.

Definition 6.1 (Updated candidacy graphs). For a matching f : -f0 → +f0 in �0, we define (�f
8
)8∈[A ]

as the updated candidacy graphs (with respect to f) as follows: for every 8 ∈ [A], let �f
8

be the spanning
subgraph of �8 containing precisely those edges GE ∈ � (�8) for which the following holds: if G has an
�-neighbour G0 ∈ -f0 (which would be unique), then f(G0)E ∈ � (� [+0, +8]).

This definition ensures that when we embed G in a future round, we are guaranteed that the �-edge
G0G is mapped to a�-edge. Note that this definition does not depend at all on the colouring 2. Moreover,
we also define updated colourings for the updated candidacy graphs, where we add up to one additional
colour to the edges in the new candidacy graphs according to f.

Definition 6.2 (Updated colouring). For a matching f : -f0 → +f0 in �0, we define the updated edge

set colouring 2f of the updated candidacy graphs as follows: for each 8 ∈ [A] and GE ∈ � (�f
8
), when G

has an�-neighbour G0 ∈ -f0 , then set 2f (GE) := 2(GE)∪2(f(G0)E), and otherwise set 2f (GE) := 2(GE).

We now state and prove our Approximate Embedding Lemma.

Lemma 6.3 (Approximate Embedding Lemma). Let

1/= ≪ Y ≪ Y′ ≪ (3�8 )8∈[A ] , (38)8∈[A ]0 , 1/Λ, 1/A, 1/(C + 1).
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Suppose (�,�, (�8)8∈[A ]0 , 2) is an (Y, (3�
8
)8∈[A ] , (38)8∈[A ]0 , C,Λ)-embedding-instance with |+0 | = =,

|+8 | = (1 ± Y)=, and 4� (-0, -8) ≥ Y′= for all 8 ∈ [A]. Suppose the codegree of 2 is  ≤
√
=.

Then there is a rainbow matching f : -f0 → +f0 in �0 of size at least (1 − Y′)= such that for all

8 ∈ [A], there exists a spanning subgraph �=4F
8

of the updated candidacy graph �f
8

and

(I)6.3 �=4F
8

is (Y′, 3�
8
38)-super-regular.

(II)6.3 The updated colouring 2f restricted to �=4F
8

is (1 + Y′)3�
8
38 |-8 |-bounded.

(III)6.3 2f restricted to �=4F
8

has codegree at most max{ , =Y}.

We split the proof into three steps. In Step 1, we remove non-typical vertices and edges to guarantee
that certain neighbourhoods intersect appropriately. In Step 2, we use a suitable hypergraph construction
together with Theorem 4.3 to obtain the required rainbow matching f. By defining certain weight
functions in Step 3, we utilise the conclusions of Theorem 4.3 to show that f can be chosen such
that (I)6.3–(III)6.3 hold.

Proof. Without loss of generality, we may assume that |2(4) | = C for all 4 ∈ � (�0). (Otherwise, we may
simply add new ‘dummy’ colours in such a way that the obtained colouring still satisfies the conditions
of the lemma, and these colours can simply be deleted afterward.)

We also choose a new constant Ŷ such that Y ≪ Ŷ ≪ Y′.

Step 1. Removing non-typical vertices and edges

In this step, we define subgraphs of� and (�8)8∈[A ]0 to achieve that certain neighbourhoods intersect
appropriately (see properties (6.4)–(6.6)). Let �+ be an auxiliary supergraph of � that is obtained by
adding a maximal number of edges between -0 and -8 for every 8 ∈ [A] subject to �+ [-0, -8] being a
matching (note that 4�+ (-0, -8) ≥ (1 − Y)=).

Let �1030 be the spanning subgraph of �0 such that an edge G0E0 ∈ � (�0) belongs to �1030 if there
is some 8 ∈ [A] with {G8} = #�+ (G0) ∩ -8 and

|#�8
(G8) ∩ #� (E0) | ≠ (3�8 38 ± 3Y) |+8 |. (6.1)

For 8 ∈ [A], let �103
8

be the spanning subgraph of �8 such that an edge G8E8 ∈ � (�8) belongs to �103
8

if {G0} = #�+ (G8) ∩ -0 and

|#�0 (G0) ∩ #� (E8) | ≠ (3�8 30 ± 3Y) |+0 |. (6.2)

Let�103 be the spanning subgraph of� such that an edge E0E8 ∈ � (� [+0, +8]) belongs to�103 [+0, +8]
for 8 ∈ [A] whenever

4� (#�0 (E0), #�8
(E8)) ≠ (3038 ± 3Y)4� (-0, -8). (6.3)

Using Fact 4.4, it is easy to see that Δ (�1030 ) ≤ 3AY= and Δ (�103
8

) ≤ 3Y |+8 | for each 8 ∈ [A]. We

also claim that for each 8 ∈ [A]0, there exists +103
8

⊆ +8 with |+103
8

| ≤ 3AY= such that all vertices not

in +1030 ∪ · · · ∪ +103A have degree at most 3AY= in �103 . Indeed, fix 8 ∈ [A] and let -̃0 := #� (-8) and

-̃8 := #� (-0). Recall that | -̃0 | = | -̃8 | = 4� (-0, -8) ≥ Y′=. Using Fact 4.4, there exists +103
8

⊆ +8

with |+103
8

| ≤ 3Y |+8 | such that all E8 ∈ +8 \ +1038
satisfy |#�8

(E8) ∩ -̃8 | = (38 ± Y) | -̃8 |. Now, fix such
a vertex E8 . Let * := #� (#�8

(E8)). Using Fact 4.4 again, we can see that all but at most 3Y= vertices
E0 ∈ +0 satisfy |#�0 (E0) ∩* | = (30 ± Y) |* | = (30 ± Y) (38 ± Y)4� (-0, -8). Hence, deg�103 (E8) ≤ 3Y=.
Similarly, one can see that there exists+1030,8 ⊆ +0 with |+1030,8 | ≤ 3Y= such that all E0 ∈ +0 \+1030,8 satisfy

|#�103 (E0) ∩+8 | ≤ 3Y=. Let +1030 :=
⋃A
8=1+

103
0,8 . Then +1030 , . . . , +103A are as desired.

https://doi.org/10.1017/fms.2020.38 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.38


20 Stefan Ehard et al.

Now, let

�′
0 := �0 [-0, +0 \+1030 ] − � (�1030 ), �′

8 := �8 − � (�1038 ),
� ′

08 := � [+0 \+1030 , +8] − � (�103 [+0, +8 \+1038 ]), for all 8 ∈ [A] .

Since we only seek an almost perfect rainbow matching f in �0, we can remove the vertices +1030

from �0 and find f in �′
0. By keeping the vertices +103

8
for 8 ∈ [A] and the corresponding edges

� (� [+0, +
103
8

]) in � ′
08 , we can guarantee that the candidacy graphs �′

8 are still spanning subgraphs
of �8 .

By Fact 4.5, we have that � ′
08 is (Ŷ, 3�

8
)-super-regular, that �′

0 is (Ŷ, 30)-super-regular, and that �′
8

is (Ŷ, 38)-super-regular. Crucially, we now have the following properties:

|#�′
8
(G8) ∩ #�′

08
(E0) | = (3�8 38 ± Ŷ) |+8 |,

for all G0E0 ∈ � (�′
0) whenever {G8} = #�+ (G0) ∩ -8 , 8 ∈ [A];

(6.4)

|#�′0 (G0) ∩ #�′
08
(E8) | = (3�8 30 ± Ŷ) |+0 |,

for all G8E8 ∈ � (�′
8), 8 ∈ [A], whenever {G0} = #�+ (G8) ∩ -0;

(6.5)

4� (#�′0 (E0), #�′
8
(E8)) = (3038 ± Ŷ)4� (-0, -8),

for all E0E8 ∈ � (� ′
08 −+1038 ) and 8 ∈ [A].

(6.6)

Indeed, consider G0E0 ∈ � (�′
0) with {G8} = #�+ (G0) ∩ -8 . By (6.1), we have |#�8

(G8) ∩ #� (E0) | =
(3�
8
38 ± 3Y) |+8 |. Moreover, E0 ∉ +1030 . Hence, deg�103

8
(G8), deg�103 (E0) ≤ 3AY=, which implies (6.4).

Similar arguments hold for (6.5) and (6.6).

Step 2. Constructing an auxiliary hypergraph

We aim to apply Theorem 4.3 to find the required rainbow matching f. To this end, let 54 := 4∪ 2(4)
for 4 ∈ � (�′

0) and let H be the (C + 2)-uniform hypergraph H with vertex set -0 ∪+0 ∪� and edge set
{ 54 : 4 ∈ � (�′

0)}. A key property of the construction of H is a bijection between rainbow matchings "
in �′

0 and matchings M in H by assigning " to M = { 54 : 4 ∈ "}.
To apply Theorem 4.3, we first establish upper bounds on Δ (H) and Δ2 (H). Since �′

0 is (Ŷ, 30)-
super-regular, |-0 | = =, and 2 restricted to �′

0 is (1 + Y)30=-bounded, we conclude that

Δ (H) ≤ (30 + Ŷ)=. (6.7)

Let Δ := (30 + Ŷ)=. Since 2 is locally Λ-bounded, the codegree in H of a vertex in -0 ∪ +0 and a
colour in � is at most Λ. By assumption, the codegree in H of two colours in � is at most  . For two
vertices in -0 ∪+0, the codegree in H is at most 1. Altogether, this implies that

Δ
2 (H) ≤

√
= ≤ Δ

1−Y2
. (6.8)

Suppose W is a set of given weight functions l : � (�′
0) → [Λ]0 with |W| ≤ =5 (which we will

explicitly specify in Step 3 to establish (I)6.3–(III)6.3). Note that every weight functionl : � (�′
0) → [Λ]0

naturally corresponds to a weight function lH : � (H) → [Λ]0 by defining lH ( 54) := l(4). If
l(� (�′

0)) ≥ =1+Y/2, define l̃ := l. Otherwise, arbitrarily choose l̃ : � (�′
0) → [Λ]0 such that

l ≤ l̃ and l̃(� (�′
0)) = =1+Y/2. By (6.7) and (6.8), we can apply Theorem 4.3 (with (30 + Ŷ)=, Y2,

C + 2, { l̃H }l ∈ W playing the roles of Δ , X, A,W) to obtain a matching M in H that corresponds to a
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rainbow matching " in �′
0 that satisfies the following property by the conclusion of Theorem 4.3:

l(") = (1 ± Ŷ1/2)
l(� (�′

0))
30=

, for all l ∈ W with l(� (�′
0)) ≥ =1+Y/2; (6.9)

l(") ≤ max

{
(1 + Ŷ1/2)

l(� (�′
0))

30=
, =Y

}
for all l ∈ W. (6.10)

Let f : -f0 → +f0 be the function given by the matching " , where -f0 = -0 ∩ + (") and +f0 =

+0 ∩+ (").
One way to exploit (6.9) is to control the number of edges in " between sufficiently large sets of

vertices. To this end, for subsets ( ⊆ -0 and) ⊆ +0 such that |( |, |) | ≥ 2Ŷ=, we define a weight function
l(,) : � (�′

0) → [Λ]0 with

l(,) (4) :=

{
1 if 4 ∈ � (�′

0 [(, ) \+1030 ]),
0 otherwise.

(6.11)

That is, l(,) (") counts the number of edges between ( and ) that lie in " . Since �′
0 is (Ŷ, 30)-super-

regular, (6.9) implies (whenever l(,) ∈ W) that

|f
(
( ∩ -f0

)
∩ ) | = l(,) (") (6.9)

= (1 ± Ŷ1/2)
4(�′

0 [(, ) \+1030 ])
30=

= (1 ± 2Ŷ1/2) |( | |) |
=

. (6.12)

Step 3. Employing weight functions to conclude (I)6.3–(III)6.3

By Step 2, we may assume that (6.9) holds for a set of weight functions W that we will define
during this step. We will show that for this choice of W, the matching f : -f0 → +f0 as obtained
in Step 1 satisfies (I)6.3–(III)6.3. Similar as in Definition 6.1 (here with � replaced by �+), we define
subgraphs (�∗

8 )8∈[A ] of (�′
8)8∈[A ] as follows. For every 8 ∈ [A], let �∗

8 be the spanning subgraph of �′
8

containing precisely those edges GE ∈ � (�′
8) for which the following holds: if {G0} = #�+ (G)∩-f0 , then

f(G0)E ∈ � (� ′
08). Since �′

8 ⊆ �8 , and due to the construction of �∗
8 , we conclude that �∗

8 is a spanning
subgraph of the updated candidacy graph �f

8
(with respect to f) for every 8 ∈ [A] (see Definition 6.1).

By taking a suitable subgraph of �∗
8 , we will later obtain the required candidacy graph �=4F

8
.

First, we show that the matching " has size at least (1− 2Ŷ1/2)=. Adding l-0 ,+0 as defined in (6.11)
to W and using (6.12) yields

|" | ≥ (1 − 2Ŷ1/2)=. (6.13)

For every 8 ∈ [A], define -�8 := #�+ (-f0 ) ∩ -8 . Note that |-�8 | = (1 ± 3Ŷ1/2) |-8 | = (1 ± 4Ŷ1/2)=.

Step 3.1. Checking (I)6.3

To prove (I)6.3, we first show that �∗
8 [-�8 , +8] is super-regular for every 8 ∈ [A]. We will show that

every vertex in -�8 ∪+8 has the appropriate degree and that the common neighbourhood of most pairs of
vertices in+8 has the correct size, such that we can employ Theorem 4.6 to guarantee the super-regularity
of �∗

8 [-�8 , +8].
For all 8 ∈ [A] and for every vertex G ∈ -�8 with {G0} = #�+ (G) ∩ -f0 , we have deg�∗

8
[-�

8
,+8 ] (G) =

|#�′
8
(G) ∩ #�′

08
(f(G0)) |. Hence, (6.4) implies that

deg�∗
8
[-�

8
,+8 ] (G) = (3�8 38 ± Ŷ) |+8 |.
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For E ∈ +8 , let*E := #�′
8
(E) ⊆ -8 . Observe that

deg�∗
8
[-�

8
,+8 ] (E) = |f(#�+ (*E ) ∩ -f0 ) ∩ #�′

08
(E) |, (6.14)

and |#�+ (*E ) ∩ -0 | = |#�′
8
(E) | ± Y= = (38 ± 2Ŷ)=, and |#�′

08
(E) | = (3�

8
± 2Ŷ)=. Adding for every

8 ∈ [A] and every vertex E ∈ +8 , the weight function l(,) as defined in (6.11) for ( := #�+ (*E ) ∩ -0

and ) := #�′
08
(E) to W, we obtain that

deg�∗
8
[-�

8
,+8 ] (E)

(6.12),(6.14)
= (1 ± 2Ŷ1/2) |#�+ (*E ) ∩ -0 | |#�′

08
(E) |=−1

= (3�8 38 ± Ŷ1/3) |-�8 |. (6.15)

Note that these are at most 2A= weight functions l(,) that we added to W.
We will use Theorem 4.6 to show that �∗

8 [-�8 , +8] is super-regular. We call a pair of vertices D, E ∈ +8
good if |#�′

8
(D, E) | = (38 ± Ŷ)2 |-8 | and |#�′

08
(D, E) | = (3�

8
± Ŷ)2=. By the Ŷ-regularity of �′

8 and � ′
08 ,

using Fact 4.4, there are at most 2Ŷ |+8 |2 pairs D, E ∈ +8 that are not good. For every 8 ∈ [A] and all
good pairs D, E ∈ +8 , let (D,E := #�+ (#�′

8
(D, E)) ∩ -0 and )D,E := #�′

08
(D, E). We add the weight

function l(D,E ,)D,E as defined in (6.11) to W. Observe that |(D,E | = |#�′
8
(D, E) | ± Y= = (38 ± 2Ŷ)2 |-8 |

and |)D,E | = (3�
8
± Ŷ)2=. Note that these are at most A=2 functions l(D,E ,)D,E that we add to W in this

way. By (6.12), we obtain for all good pairs D, E ∈ +8 that

|#�∗
8
[-�

8
,+8 ] (D, E) | = |f((D,E ∩ -f0 ) ∩ )D,E | = (1 ± 2Ŷ1/2) |(D,E | |)D,E |=−1

≤ (3�8 38 + Ŷ1/3)2 |-�8 |.

Together with (6.15), we can apply Theorem 4.6 and obtain that

�∗
8 [-�8 , +8] is

(
Ŷ1/18, 3�8 38

)
-super-regular for every 8 ∈ [A]. (6.16)

To complete the proof of (I)6.3, for every 8 ∈ [A], since |-8 \ -�8 | ≤ 3Ŷ1/2 |-8 |, we can easily
find a spanning subgraph �=4F

8
of �∗

8 that is (Y′, 3�
8
38)-super-regular by deleting from every vertex

G ∈ -8 \ -�8 a suitable number of edges. This establishes (I)6.3.

Step 3.2. Checking (II)6.3

Next, we show that for every 8 ∈ [A], the edge set colouring 2f restricted to �∗
8 is (1 + Y′)3�

8
38 |-8 |-

bounded, which implies (II)6.3 because �=4F
8

⊆ �∗
8 . Recall that we defined 2f (in Definition 6.2) such

that for GE ∈ � (�∗
8 ), we have 2f (GE) = 2(GE) ∪ 2(f(G0)E) if G has an �-neighbour G0 ∈ -f0 , and

otherwise 2f (GE) = 2(GE). Since 2 is colour-split, we may assume that 2�′
8
: � (�′

8) → 2
��′

8 is the edge
set colouring 2 restricted to �′

8 and 2�′
08

: � (� ′
08) → ��′

08
is the edge-colouring 2 restricted to � ′

08 such
that ��′

8
∩��′

08
= ∅ for all 8 ∈ [A]. Fix 8 ∈ [A]. We have to show that for all U ∈ ��8

∪��′
08

, there are at

most (1 + Y′)3�
8
38 |-8 | edges of �∗

8 on which U appears.
First, consider U ∈ ��′

8
. Let �U ⊆ � (�′

8) be the edges of �′
8 on which U appears. By assumption,

|�U | ≤ (1 + Y)38 |-8 |. We need to show that |�U ∩ � (�∗
8 ) | ≤ (1 + Y′)3�

8
38 |-8 |. To this end, we define a

weight function lU : � (�′
0) → [Λ]0 by setting

lU (GE) :=
��{E8 ∈ #�′

08
(E) : G8E8 ∈ �U, GG8 ∈ � (�+ [-0, -8])}

��

https://doi.org/10.1017/fms.2020.38 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.38


Forum of Mathematics, Sigma 23

for every GE ∈ � (�′
0), and we add lU to W. Note that

|�U ∩ � (�∗
8 ) | ≤

∑

G8 ∈-�
8

���{ E8 ∈ #�′
08
(f(G)) } G8E8 ∈ �U, GG8 ∈ � (�+ [-0, -8])

��� + Λ|-8 \ -�8 |

≤ lU (") + 3Ŷ1/2
Λ|-8 |.

We now obtain an upper bound for lU (") using (6.10). For every edge G8E8 ∈ �U with GG8 ∈
� (�+ [-0, -8]), condition (6.5) states that

|#�′0 (G) ∩ #�′
08
(E8) | = (3�8 30 ± Ŷ)=.

Hence, every such edge contributes weight (3�
8
30 ± Ŷ)= to lU (� (�′

0)). We obtain

lU (� (�′
0)) ≤ (1 + Y)38 |-8 | · (3�8 30 + Ŷ)= ≤ (30383

�
8 + 2Ŷ) |-8 |=.

Now (6.10) implies that lU (") ≤ (1 + 2Ŷ1/2)3�
8
38 |-8 |, and hence |�U ∩ � (�∗

8 ) | ≤ (1 + Y′)3�
8
38 |-8 |.

Now, consider U ∈ ��′
08

. Let �U ⊆ � (� ′
08) be the set of edges of � ′

08 on which U appears. We define
a weight function lU : � (�′

0) → [Λ]0 by setting

lU (GE) :=
��{E8 ∈ #�′

08
(E) : EE8 ∈ �U, GG8 ∈ � (� [-0, -8]), G8E8 ∈ � (�′

8)}
��

for every GE ∈ � (�′
0), and we add lU to W. Note that the number of edges of �∗

8 on which U appears
is at most lU (").

To bound lU ("), we again use (6.10) and seek an upper bound for lU (� (�′
0)). Since 2 is

(1 + Y)4� (+0, +8)/4� (-0, -8)-bounded on � [+0, +8] by assumption, we have |�U | ≤ (1 + Y1/2)
3�
8
|-8 |=/4� (-0, -8).
For every edge EE8 ∈ �U with E8 ∈ +8 \+1038

, condition (6.6) implies that

4� (#�′0 (E), #�′8 (E8)) = (3038 ± Ŷ)4� (-0, -8).

Hence, every edge EE8 ∈ �U with E8 ∈ +8\+1038
contributes weight (3038±Ŷ)4� (-0, -8) tolU (� (�′

0)).
Since Δ (�U) ≤ Λ and |+103

8
| ≤ 3AY=, there are at most 3AΛY= edges EE8 ∈ �U with E8 ∈ +1038

, each
of which contributes weight at most =. We conclude that

lU (� (�′
0)) ≤

(1 + Y1/2)3�
8
|-8 |=

4� (-0, -8)
· (3038 + Ŷ)4� (-0, -8) + 3AΛY=2

≤ (30383
�
8 + 2Ŷ) |-8 |=.

Now (6.10) implies that lU (") ≤ (1 + Y′)3�
8
38 |-8 |, completing the proof of (II)6.3.

Step 3.3. Checking (III)6.3

Finally, we show that for all 8 ∈ [A], U ∈ ��′
08

, and V ∈ ��′
8
, the pair {U, V} appears on at most =Y

edges of �∗
8 . This implies (III)6.3, as the codegree of a pair in ��′

8
is at most  by assumption, and the

codegree of a pair in ��′
08

is 0. Fix 8 ∈ [A], U ∈ ��′
08

, and V ∈ ��′
8
. Let

�U,V := {E0E8G8 : E0E8 ∈ � (� ′
08), G8E8 ∈ � (�

′
8), 2(E0E8) = {U}, V ∈ 2(G8E8)}

and define the weight function lU,V : � (�′
0) → [Λ]0 by setting

lU,V (GE) :=
��{EE8G8 ∈ �U,V : GG8 ∈ � (�+ [-0, -8])}

��.
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Note that the number of edges of �∗
8 on which {U, V} appears is at most lU,V ("). To bound lU,V ("),

note that every triple EE8G8 ∈ �U,V contributes weight at most 1 to lU,V (� (�′
0)). By assumption, 2

is locally Λ-bounded and (globally) (1 + Y)38 |-8 |-bounded on �8 , which implies that lU,V (� (�′
0)) ≤

|�U,V | ≤ (1 + Y)38Λ|-8 | ≤ 2Λ=. Now, (6.10) implies that lU,V (") ≤ =Y . Hence, for all 8 ∈ [A],
U ∈ ��′

08
and V ∈ ��′

8
, we add the corresponding weight function lU,V to W, which implies (III)6.3.

This completes the proof. �

7. Proof of Lemma 1.4

In this section, we prove our rainbow blow-up lemma (Lemma 1.4). First, we will deduce Lemma 1.4
from a similar statement (Lemma 7.1), where we impose stronger conditions on� and �. This reduction
utilises the results of Section 5. We will conclude with the proof of Lemma 7.1.

Lemma 7.1. Let 1/= ≪ Y ≪ W, 3, 1/A, 1/Λ. Let (�,�, (-8)8∈[A ] , (+8)8∈[A ]) be an (Y, 3)-super-regular

blow-up instance. Assume further that

(i) |+8 | = (1 ± Y)= for all 8 ∈ [A].
(ii) For all 8 9 ∈

( [A ]
2

)
, the graph � [-8 , - 9 ] is a matching of size at least W2=.

(iii) 2 : � (�) → � is a colour-split edge-colouring of � such that 2 is locally Λ-bounded and 2

restricted to � [+8 , + 9 ] is (1 − W)4� (+8 , + 9 )/4� (-8 , - 9 )-bounded for all 8 9 ∈
( [A ]

2

)
.

Then there exists a rainbow embedding q of � into � such that q(G) ∈ +8 for all 8 ∈ [A] and G ∈ -8 .

Proof of Lemma 1.4. We split the proof into three steps. In Step 1, we apply Lemma 5.2 to obtain
a spanning subgraph �1 ⊆ � such that the restricted edge-colouring is colour-split. In Step 2, we
apply Lemma 5.4 to refine the partitions of �1 and � in such a way that the vertex classes of � are
2-independent. Then, in Step 3, we can apply Lemma 7.1 to complete the proof.

In view of the statement, we may assume that

1/= ≪ Y ≪ W ≪ 3, 1/A, 1/Δ , 1/Λ.

Choose new constants Y1, Y2, W
′, 31, 32 with Y ≪ Y1 ≪ Y2 ≪ 32 ≪ W′ ≪ 31 ≪ W.

Step 1. Colour-splitting

First, let �1 be a supergraph of � on + (�) such that 4�1−� (-8 , - 9 ) ≤ W2= ≤ 4�1 (-8 , - 9 ) for all

8 9 ∈
( [A ]

2

)
and Δ (�1) ≤ Δ ′ := Δ + A . We claim that for all U ∈ �, we have

∑

8 9∈( [A ]2 )
4U� (+8 , + 9 )4�1 (-8 , - 9 ) ≤

(
1 − W

2

)
3=2.

Indeed, since 2 is locallyΛ-bounded, we obtain that 4U
�
(+8 , + 9 )4�1−� (-8 , - 9 ) ≤ 2Λ=·W2= ≤ A−2·W3=2/2

for each 8 9 ∈
( [A ]

2

)
. Hence, we can apply Lemma 5.2 to (�1, �, (-8)8∈[A ] , (+8)8∈[A ]) (with W/2,Δ ′ playing

the roles of W,Δ) and obtain a spanning subgraph �1 of � such that (�1, �1, (-8)8∈[A ] , (+8)8∈[A ]) is an
(Y1, 31)-super-regular blow-up instance and the colouring 21 := 2 |� (�1) is colour-split, and

(
1 − W

4

) 4�1 (+8 , + 9 )
4�1 (-8 , - 9 )

-bounded

for each bipartite subgraph�1 [+8 , + 9 ]. Clearly, a rainbow embedding of�1 into�1 also yields a rainbow
embedding of � into �.

Step 2. Refining the vertex partitions
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We can now apply Lemma 5.4 to the (Y1, 31)-super-regular blow-up instance (�1, �1, (-8)8∈[A ] ,
(+8)8∈[A ]) with edge-colouring 21 and W′,Δ ′ playing the roles of W,Δ . Hence, we obtain an (Y2, 32)-
super-regular blow-up instance

(
�2, �2, (-8, 9 )8∈[A ], 9∈[Δ′2 ] , (+8, 9 )8∈[A ], 9∈[Δ′2 ]

)

such that for =′ := =/Δ ′2, we have that

(a) (-8, 9 ) 9∈[Δ′2 ] is partition of -8 and (+8, 9 ) 9∈[Δ′2 ] is partition of +8 for every 8 ∈ [A], and |-8, 9 | =
|+8, 9 | = (1 ± Y2)=′ for all 8 ∈ [A], 9 ∈ [Δ ′2].

(b) �2 is a supergraph of �1 on + (�) such that �2 [-81 , 91 , -82 , 92 ] is a matching of size at least W′4=′

for all 81, 82 ∈ [A], 91, 92 ∈ [Δ ′2], (81, 91) ≠ (82, 92).
(c) �2 is a graph on + (�) such that �2 [+81 , 91 , +82 , 92 ] ⊆ �1 [+81 , +82] for all distinct 81, 82 ∈ [A] and all

91, 92 ∈ [Δ ′2].
(d) 22 is an edge-colouring of �2 such that 22 |� (�1)∩� (�2) = 21 |� (�1)∩� (�2) , and 22 is colour-split

with respect to the partition (+8, 9 )8∈[A ], 9∈[Δ′2 ] , and 22 is locally Λ-bounded, and 22 restricted to
�2 [+81 , 91 , +82 , 92 ] is

(
1 − W′

2

)
4�2 (+81 , 91 , +82 , 92 )
4�2 (-81 , 91 , -82 , 92 )

-bounded

for all 81, 82 ∈ [A], 91, 92 ∈ [Δ ′2], (81, 91) ≠ (82, 92).

Again, a 22-rainbow embedding of �2 into �2 also yields a 21-rainbow embedding of �1 into �1.

Step 3. Applying Lemma 7.1

We can now complete the proof by applying Lemma 7.1 as follows:

Parameter =′ Y2 W′2 32 AΔ ′2 Λ

Plays the role of = Y W 3 A Λ

Object �2 �2 (-8, 9 )8∈[A ], 9∈[Δ′2 ] (+8, 9 )8∈[A ], 9∈[Δ′2 ]

Plays the role of � � (-8)8∈[A ] (+8)8∈[A ]

This yields a rainbow embedding of �2 into �2, and hence of � in �. �

We now deduce Theorem 1.3 from Lemma 1.4 by partitioning� using the Hajnal–Szemerédi theorem
(Theorem 5.3) and � randomly.

Proof of Theorem 1.3. Let A := Δ + 1. We may assume that Y is sufficiently small and = is sufficiently
large. By applying Theorem 5.3 to �, we obtain a partition (-8)8∈[A ] of+ (�) into independent sets with
|-8 | ∈ {⌊ =

A
⌋, ⌈ =

A
⌉}. We claim that there exists a partition (+8)8∈[A ] of + (�) such that

(i) � [+8 , + 9 ] is (2AY, 3)-super-regular for all 8 9 ∈
( [A ]

2

)
.

(ii) For all U ∈ � with 4U (�) ≥ =3/4, we have 4U
�
(+8 , + 9 ) = (1 ± Y)24U (�)/A2 for all 8 9 ∈

( [A ]
2

)
.

(iii) |+8 | = |-8 | for all 8 ∈ [A].

That such a partition exists can be seen using a probabilistic argument: For each E ∈ + (�) independently,
choose a label 8 ∈ [A] uniformly at random, and put E into+8 . Using Chernoff’s inequality (Theorem 4.1)
for (i) and McDiarmid’s inequality (Theorem 4.2) for (ii), it is easy to check that (i) and (ii) are satisfied

with probability at least 1 − e−=
1/3

. Moreover, (iii) holds with probability Ω(=−A/2). Hence, such a
partition exists.

Therefore, we conclude that (�,�, (-8)8∈[A ] , (+8)8∈[A ]) is a (2AY, 3)-super-regular blow-up instance.
Consider U ∈ �. If 4U (�) ≤ =3/4, then condition (iii) in Lemma 1.4 clearly holds. If 4U (�) ≥ =3/4, we

https://doi.org/10.1017/fms.2020.38 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.38


26 Stefan Ehard et al.

use (ii) to see that
∑

8 9∈( [A ]2 )
4U� (+8 , + 9 )4� (-8 , - 9 ) = (1 ± Y)24U (�)4(�)/A2 ≤ (1 + Y) (1 − W)24(�)/A2

≤ (1 − W/2)3 (=/A)2.

Thus, we can apply Lemma 1.4 and obtain a rainbow copy of � in �. �

It remains to prove Lemma 7.1. The proof splits into four steps as follows. In Step 1, we split �
into two spanning subgraphs �� and �� with disjoint colour sets. In Step 2, we define the necessary
‘candidacy graphs’ that we track during the approximate embedding in Step 3. We then iteratively apply
Lemma 6.3 in Step 3 to find approximate rainbow embeddings of -8 into+8 using only the edges of ��.
All those steps have to be performed carefully such that we can employ Lemma 4.7 in Step 4 and use
the reserved set of colours of �� to turn the approximate rainbow embedding into a complete one.

Proof of Lemma 7.1. In view of the statement, we may assume that W ≪ 3, 1/A, 1/Λ. Choose new
constants Y0, Y1, . . . , YA+1, ` with Y ≪ Y0 ≪ Y1 ≪ · · · ≪ YA+1 ≪ ` ≪ W. For 8 ∈ [A], let

X8 :=
⋃
9∈[8 ] - 9 , V8 :=

⋃
9∈[8 ] + 9 .

Step 1. Colour splitting

To reserve an exclusive set of colours for the application of Lemma 4.7, we randomly partition the
edges of� into two spanning subgraphs�� and�� as follows. For each colour class of� independently,
we add its edges to �� with probability 1 − W and otherwise to ��. Let 3� := (1 − W)3 and 3� := W3.
By Lemma 5.1, we conclude that with probability at least 1 − 1/=,

�/ [+8 , + 9 ] is (Y2
0, 3/ )-super-regular for all 8 9 ∈

( [A ]
2

)
, / ∈ {�, �}. (7.1)

Hence, we may assume that � is partitioned into �� and �� such that (7.1) holds.

Step 2. Candidacy graphs

We want to show that there is a partial rainbow embedding of � [XA ] into ��[VA ] that maps almost
all vertices of -8 into +8 for every 8 ∈ [A]. Moreover, we need to ensure certain conditions for the
remaining unembedded vertices in order to finally apply Lemma 4.7. We will achieve this by iteratively
applying the Approximate Embedding Lemma (Lemma 6.3) in Step 3. To formally state the induction
hypothesis, we need some preliminary definitions.

For C ∈ [A]0, we call qC : -
qC
1 ∪ . . . ∪ - qCC → +

qC
1 ∪ . . . ∪ + qCC a C-partial embedding if - qC

8
⊆ -8 ,

+
qC
8

⊆ +8 , and qC (- qC8 ) = + qC
8

for every 8 ∈ [C], such that qC is an embedding of � [- qC1 ∪ . . . ∪ - qCC ]
into ��[+ qC1 ∪ . . . ∪+ qCC ]. For brevity, define

X
qC
C :=

⋃
8∈[C ] -

qC
8
, V

qC
C :=

⋃
8∈[C ] +

qC
8
.

Given a C-partial embedding qC , we define two kinds of bipartite auxiliary graphs: for each 8 ∈ [A]\[C],
we define a graph �8 (qC ) with bipartition (-8 , +8) that tracks the still-available images of a vertex G ∈ -8
in ��, which will be used to extend the C-partial rainbow embedding qC to a (C + 1)-partial rainbow
embedding qC+1 via Lemma 6.3 in Step 3. Moreover, for each 8 ∈ [A], we define a bipartite graph
�8 (qC ) that tracks the potential images of a vertex G ∈ -8 in ��, which will be used for the completion
via Lemma 4.7 in Step 4. Here, we keep tracking potential images of vertices even if they have been
embedded, since in Step 4, we will actually ‘unembed’ a few vertices.

When extending qC to qC+1, we intend to update the graphs �8 (qC ) and �8 (qC ) simultaneously using
Lemma 6.3. To facilitate this, we define �8 (qC ) on a copy (-�8 , +�8 ) of the bipartition (-8 , +8). For every
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8 ∈ [A], let -�8 and +�8 be disjoint copies of -8 and +8 , respectively. Let c be the bijection that maps a
vertex in

⋃
8∈[A ] (-8 ∪+8) to its copy in

⋃
8∈[A ] (-�8 ∪+�8 ). Let �+ and �+ be supergraphs of �� and �

with vertex partitions (+1, . . . , +A , +
�
1 , . . . , +

�
A ) and (-1, . . . , -A , -

�
1 , . . . , -

�
A ), respectively, and edge

sets

� (�+) := � (��) ∪ {Dc(E), Ec(D) : DE ∈ � (��)} ∪ �∗
� ,

� (�+) := � (�) ∪ {Gc(H), Hc(G) : GH ∈ � (�)} ∪ �∗
� ,

where we added for convenience a suitable set �∗
�
⊆ ⋃

8∈[A ]{DE : D ∈ +8 , E ∈ +�8 } such that �+ [+8 , +�8 ]
is (Y0, 3�)-super-regular for all 8 ∈ [A], and the set �∗

�
:= {Gc(G) : G ∈ + (�)} so that �+ [-8 , -�8 ]

is a perfect matching for all 8 ∈ [A]. Note that �+ [+8 , + 9 ] = ��[+8 , + 9 ], whereas �+ [+8 , +�9 ] and

�+ [+�8 , + 9 ] are isomorphic to �� [+8 , + 9 ] for all 8 9 ∈
( [A ]

2

)
.

We now define �8 (qC ) and �8 (qC ). Let -�8 := -8 and + �8 := +8 for every 8 ∈ [A]. For / ∈ {�, �} and
8 ∈ [A], we say that E8 ∈ +/8 is a candidate for G8 ∈ -/8 (given qC ) if

qC (#�+ (G8) ∩ X
qC
C ) ⊆ #�+ (E8), (7.2)

and we define /8 (qC ) as the bipartite graph with partition (-/8 , +/8 ) and edge set

� (/8 (qC )) :=
{
G8E8 : G8 ∈ -/8 , E8 ∈ +/8 , and E8 is a candidate for G8 given qC

}
.

We call any spanning subgraph of /8 (qC ) a candidacy graph.
Next, we define edge set colourings for these candidacy graphs. For 8 ∈ [A] \ [C], we assign to every

edge 4 = G8E8 ∈ � (�8 (qC )) a colour set 2C (4) of size at most C, which represents the colours that would
be used if we were to embed G8 at E8 in the next step. More precisely, for every 8 ∈ [A] \ [C] and every
edge G8E8 ∈ � (�8 (qC )), we set

2C (G8E8) := 2
(
�

(
��

[
qC (#� (G8) ∩ X

qC
C ), {E8}

] ) )
. (7.3)

Tracking this set will help us to ensure that the embedding is rainbow when we extend qC to qC+1. Since
|#� (G8) ∩ X

qC
C | ≤ C and |2(4) | = 1 for all 4 ∈ � (��), we have |2C (G8E8) | ≤ C.

For the candidacy graphs �8 (qC ), we merely need to know that they maintain super-regularity during
the inductive approximate embedding (see S(t) below). Hence, for convenience, we set 2C (4) := ∅ for
every 4 ∈ � (�8 (qC )).

We also assign artificial dummy colours to the edges of � (�+) \ � (��) as follows. Let
20AC :

(+ (�+)
2

)
→ �0AC be a rainbow edge-colouring of all possible edges in + (�+) such that

�0AC ∩ � = ∅. Define 2+ on � (�+) by setting 2+(4) := 2(4) if 4 ∈ � (��) and 2+(4) := 20AC (4)
otherwise.

Step 3. Induction

We inductively prove the following statement S(t) for all C ∈ [A]0.

S(t). There exists a C-partial rainbow embedding qC : X
qC
C → V

qC
C with |- qCB | = |+ qCB | ≥ (1− YC ) |-B | for

all B ∈ [C]; and for all / ∈ {�, �}, there exists a candidacy graph / C
8
⊆ /8 (qC ) such that

(a) �C
8

is (YC , 3C�)-super-regular for all 8 ∈ [A] \ [C].
(b) �C

8
is (YC , 3C�)-super-regular for all 8 ∈ [A].

(c) The colouring 2C restricted to �C
8

is (1 + YC )3C�|-8 |-bounded and has codegree at most =1/3 for
all 8 ∈ [A] \ [C].

The statement S(0) holds for q0 being the empty function: clearly, for all / ∈ {�, �}, 8 ∈ [A], the
candidacy graph /8 (q0) is complete bipartite, and by (7.3), we have 20 (4) = ∅ for all 4 ∈ � (�8 (q0)),
implying S(0).
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Hence, we may assume the truth of S(t) for some C ∈ [A −1]0 and let qC : X
qC
C → V

qC
C and �C

8
, �C
8
be as

in S(t). We will now extend qC to a (C + 1)-partial rainbow embedding qC+1 such that S(t+1) holds. Note
that any matching f : -f

C+1 → +f
C+1 in �C

C+1 with -f
C+1 ⊆ -C+1 and +f

C+1 ⊆ +C+1 induces an embedding

qC+1 : XqCC ∪ -f
C+1 → V

qC
C ∪+f

C+1, which extends qC to a (C + 1)-partial embedding as follows:

qC+1(G) :=

{
qC (G) if G ∈ X

qC
C ,

f(G) if G ∈ -f
C+1.

(7.4)

The following is a key observation: since 2 is colour-split and by definition of the candidacy graph �C
C+1

and the colouring 2C on � (�C
C+1), whenever f is a rainbow matching in �C

C+1, then qC+1 is a (C +1)-partial
rainbow embedding.

Now, we aim to apply Lemma 6.3 to obtain an almost perfect rainbow matching f in �C
C+1. Let

�C+1 := �+ − XC , and let �C+1 := �+ − VC . We claim that

(�C+1, �C+1,A, 2+ ∪ 2C ) is an (YC , d, (3C�, d
C ), C,Λ)-embedding-instance, (7.5)

where A := (�C
C+1, . . . , �

C
A , �

C
1, . . . , �

C
A ) and d := (3�, . . . , 3�, 3�, . . . , 3�) (3� repeated A − C − 1 times

and 3� repeated A times).
First, note that the colouring 2+ ∪ 2C is locally Λ-bounded and colour-split with respect to the vertex

partition

(-C+1, . . . , -A , -
�
1 , . . . , -

�
A , +C+1, . . . , +A , +

�
1 , . . . , +

�
A )

of �C+1 ∪⋃
8∈[A ]\[C ] �

C
8
∪⋃

8∈[A ] �
C
8
. Moreover, the colour sets of �C+1-edges have size 1, and the colour

sets of candidacy graph edges have size at most C.
Further, the super-regularity of the �C+1-pairs follows from (7.1) (and for the pair �C+1 [+C+1, +

�
C+1]

from the choice of �∗
�

). Moreover, combining (7.1) with assumption (iii), we infer that for every
8 ∈ [A − C − 1], the edge-colouring

2 restricted to ��[+C+1, +C+1+8] is (1 + YC )
4��

(+C+1, +C+1+8)
4� (-C+1, -C+1+8)

-bounded.

Finally, the super-regularity of the candidacy graphs and the boundedness of their colourings follows
from S(t). We conclude that (7.5) holds. Hence, we can apply Lemma 6.3 to this instance with the
following parameters:

Parameter |-C+1 | YC YC+1 C A − C − 1 + A Λ

Plays the role of = Y Y′ C A Λ

=1/3 d (3C
�
, dC )

 (3�
8
)8∈[A ] (38)8∈[A ]0

Let f : -f
C+1 → +f

C+1 be the rainbow matching in �C
C+1 obtained from Lemma 6.3 with |-f

C+1 | ≥
(1 − YC+1) |-C+1 |. The matching f extends qC to a (C + 1)-partial rainbow embedding qC+1, as defined
in (7.4). By Definition 6.1, the updated candidacy graphs with respect to f obtained from Lemma 6.3
are also updated candidacy graphs with respect to qC+1 as defined in Step 2. (More precisely, we
have / C ,f

8
⊆ /8 (qC+1) for / ∈ {�, �}.) Hence, by Lemma 6.3, we obtain new candidacy graphs

�C+1
8

⊆ �8 (qC+1) for 8 ∈ [A] \ [C + 1] and �C+1
8

⊆ �8 (qC+1) for 8 ∈ [A] that satisfy (I)6.3–(III)6.3. By
(I)6.3, we know that �C+1

8
is (YC+1, 3

C+1
�

)-super-regular for every 8 ∈ [A] \ [C + 1], and �C+1
8

is (YC+1, 3
C+1
�

)-
super-regular for every 8 ∈ [A], which implies S(t+1)(a) and S(t+1)(b). Moreover, the new colouring
2C+1, as defined in (7.3), corresponds to the updated colouring as in Definition 6.2, so we can assume
that 2C+1 satisfies (II)6.3 and (III)6.3. Thus, for every 8 ∈ [A] \ [C + 1], the colouring 2C+1 restricted to �C+1

8
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is (1 + YC+1)3C+1
�

|-8 |-bounded by (II)6.3 and has codegree at most =1/3 by (III)6.3. This implies S(t+1)(c)
and hence completes the inductive step.

Step 4. Completion

We may assume that qA : XqAA → V
qA
A is an A-partial embedding fulfilling S(r) with (YA , 3A�)-super-

regular candidacy graphs �A8 ⊆ �8 (qA ). Recall that we defined the bipartite candidacy graphs �A8 on
copies (-�8 , +�8 ) only to conveniently apply Lemma 6.3 in Step 3. We now identify �A8 with a bipartite
graph �′

8 on (-8 , +8) and edge set � (�′
8) := {G8E8 : c(G8)c(E8) ∈ � (�A8 )}. Hence, for each 8 ∈ [A], �′

8 is
(YA , 3A�)-super-regular; and for every edge G8E8 ∈ � (�′

8), we deduce from (7.2) that

qA (#� (G8) ∩ X
qA
A ) ⊆ #��

(E8). (7.6)

We want to apply Lemma 4.7 in order to complete the embedding using the edges in �� and the
candidacy graphs (�′

8)8∈[A ] . For every 8 ∈ [A], let + 8 := +8 \ + qA8 and - 8 := -8 \ - qA8 be the sets of
unused/unembedded vertices. Note that we have no control over these sets except knowing that they are
very small. To be able to apply Lemma 4.7, we now (randomly) add vertices that have already been
embedded back to the unembedded vertices. That is, we will find sets + ′

8 ⊇ + 8 and - ′
8 ⊇ - 8 of size

exactly =� := ⌈`=⌉ (same size required for condition (ii) in Lemma 4.7) such that �′
8 [- ′

8 , +
′
8 ] is still

super-regular.
For the application of Lemma 4.7, we also have to ensure not only that the colouring 2 restricted to

�� [+ ′
1 ∪ . . .∪+

′
A ] is sufficiently bounded (see property (c) below) but also that the colouring 2 restricted

to�� between already embedded sets+8 \+ ′
8 and sets+ ′

9 used for the completion is sufficiently bounded

(see property (d) below). Therefore, for 8, 9 ∈ [A], let �ℎ8C
�

[+8 \ + ′
8 , +

′
9 ] be the spanning subgraph of

�� [+8 \+ ′
8 , +

′
9 ] containing those edges E8E 9 ∈ � (�� [+8 \+ ′

8 , +
′
9 ]) for which q−1

A (E8) has an�-neighbour

in - ′
9 . That is, �ℎ8C

�
[+8 \ + ′

8 , +
′
9 ] contains all the edges between +8 \ + ′

8 and + ′
9 that will potentially be

used to extend the partial embedding when applying Lemma 4.7.

We claim that sets +
+
8 ⊆ +

qA
8

can be chosen such that, setting -
+
8 := q−1

A (++
8 ), + ′

8 := + 8 ∪ +
+
8 , and

- ′
8 := - 8 ∪ -

+
8 , we have:

(a) �� [+ ′
8 , +

′
9 ] is (YA+1, 3�)-super-regular for all 8 9 ∈

( [A ]
2

)
.

(b) �′
8 [- ′

8 , +
′
8 ] is (YA+1, 3

A
�
)-super-regular for every 8 ∈ [A].

(c) The colouring 2 restricted to �� [+ ′
1 ∪ . . . ∪+ ′

A ] is `3/2=-bounded.

(d) The colouring 2 restricted to �ℎ8C
�

[+8 \+ ′
8 , +

′
9 ] is `3/2=-bounded for all 8, 9 ∈ [A].

(e) |+ ′
8 | = |- ′

8 | = =� for every 8 ∈ [A].

This can be seen with a probabilistic argument. Independently for every 8 ∈ [A] and E ∈ + qA
8

, let E

belong to +
+
8 with probability ?8 := (=� − |+ 8 |)/|+ qA8 |. We now show that (a)–(e) hold simultaneously

with positive probability.
Note that ?8 = `±

√
YA . Recall that�� [+8 , + 9 ] is (Y0, 3�)-super-regular, �′

8 is (YA , 3A�)-super-regular,

|+ 8 | = |- 8 | ≤ 2YA=, and 2 is locally Λ-bounded. Using Chernoff’s bound, it is routine to show that (a)
and (b) hold with probability at least 1 − e−

√
=, say. Note here that the regularity follows easily from the

regularity of the respective supergraphs.
We show next that (d) also holds with high probability. Let 8, 9 ∈ [A], and let U be a colour. Let -

be the number of U-coloured edges E8E 9 in �� [+8 \ + ′
8 , +

′
9 ]) for which E 9 ∈ +

+
9 and q−1

A (E8) has an

�-neighbour in -
+
9 . Note that since |+ 9 | = |- 9 | ≤ 2YA= and 2 is locally Λ-bounded, the number of

U-coloured edges E8E 9 in �� [+8 \ + ′
8 , +

′
9 ]) for which E 9 ∈ + 9 or q−1

A (E8) has an �-neighbour in - 9 ,

is at most 4ΛYA=. Now, consider an edge E8E 9 ∈ � (�� [+ qA8 , +
qA
9
]) with {G 9 } = #� (q−1

A (E8)) ∩ - qA9 .

Crucially, observe that G 9 ≠ q−1
A (E 9 ) because E8E 9 is an edge in �� and therefore not in ��. This
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implies that

P

[
E 9 ∈ +

+
9 , G 9 ∈ -

+
9

]
= ?2

9 ≤ 2`2.

Since 2 is locally Λ-bounded, U appears on at most 2Λ= such edges E8E 9 , and hence

E [-] ≤ 4Λ`2=.

Since 2 is locally Λ-bounded, an application of McDiarmid’s inequality yields that, with probability

at least 1 − e−=
2/3

, we have - ≤ 5Λ`2=, which implies that the number of U-coloured edges in
�ℎ8C
�

[+8 \+ ′
8 , +

′
9 ] is at most `3/2=. Together with a union bound, we infer that (d) holds with probability

at least 1 − e−
√
=.

A similar (even simpler) argument using the local boundedness of 2 and McDiarmid’s inequality also
works for (c). Thus, a union bound implies that (a)–(d) hold simultaneously with probability at least

1 − 4e−
√
=. Moreover, standard properties of the binomial distribution yield that |++

8 | = =� − |+ 8 | (and
thus, |+ ′

8 | = |- ′
8 | = =�) for all 8 ∈ [A] with probability at least Ω(=−A/2). Hence, there exist such sets - ′

8

and + ′
8 for all 8 ∈ [A] satisfying (a)–(e).

Let

X
′
A :=

⋃
8∈[A ] -

′
8 , V

′
A :=

⋃
8∈[A ] +

′
8 ,

- ′
0 := XA \ X′

A , + ′
0 := VA \ V′

A .

The restriction of qA to - ′
0 clearly yields a rainbow embedding k0 : - ′

0 → + ′
0 of � [- ′

0] into ��[+ ′
0].

Let � ′ := �� [V′
A ] ∪�ℎ8C� [+ ′

0,V
′
A ], and let � ′ be the subgraph of � with partition (- ′

8 )8∈[A ]0 that arises
from � by discarding all edges in � [- ′

0]. (This is feasible since edges within - ′
0 have already been

embedded by k0.) By (a) and (b), we have that B′ :=(� ′, � ′, (- ′
8 )8∈[A ]0 , (+ ′

8 )8∈[A ]0) is an (YA+1, 3�)-
super-regular blow-up instance with exceptional sets (- ′

0, +
′
0) and (YA+1, 3

A
�
)-super-regular candidacy

graphs (�′
8 [- ′

8 , +
′
8 ])8∈[A ] . Moreover, 2 restricted to � ′ is `1/2=�-bounded by (c) and (d), and all clusters

have the same size =� by (e). Further,

◦ From (7.6) and the definition of �ℎ8C
�

, it holds that for all G ∈ - ′
0, 8 ∈ [A] and G8 ∈ #� ′ (G) ∩ - ′

8 ,
we have #�′

8
(G8) ⊆ #�′ (k0 (G)).

◦ For all 8 ∈ [A], G ∈ - ′
8 , E ∈ #�′

8
(G), and distinct G0, G

′
0 ∈ #� ′ (G) ∩ - ′

0, we have 2(k0 (G0)E) ≠

2(k0 (G ′0)E) because k0(G0) and k0 (G ′0) belong to different clusters of (+8)8∈[A ] and 2 is colour-split
with respect to (+8)8∈[A ] .

Hence, we can finally apply Lemma 4.7 as follows:

Parameter =� YA+1 `1/2 3� 3A
�

A A − 1 B′ (�′
8 [- ′

8 , +
′
8 ])8∈[A ]

Plays the role of = Y ` 3� 3� A Δ B (�8)8∈[A ]

This yields a rainbow embedding k of � ′ into � ′ that extends k0, such that k(G) ∈ #�′
8
(G) for all

8 ∈ [A] and G ∈ - ′
8 . Since the colours of 2 restricted to � ′ ⊆ �� are distinct from the colours already

used by k0, it holds that k is a valid rainbow embedding of � into �. This completes the proof. �
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