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A K R O N E C K E R - T Y P E T H E O R E M F O R C O M P L E X 
POLYNOMIALS IN S E V E R A L V A R I A B L E S 

BY 

C. J. SMYTH 

ABSTRACT. We give a classification result for "extreme-monic" 
polynomials in several variables having measure 1. The result im­
plies a recent several-variable generalization, by D. W. Boyd, of 
Kronecker's classical theorem (that all zeros of a monic integral 
polynomial, with non-zero constant term and measure 1, are roots 
of unity). 

Introduction. For a monic polynomial P(z) with integer coefficients and 
P(0) 7̂  0, the classical Kronecker theorem [4] states that if all zeros of P(z) lie 
in | z | < l , they are all roots of unity. 

In this paper we generalize (Theorem 1) to several variables the following 
result: if P(z)eC[z] is monic with |P(0)|= 1 and measure (defined below) 1, 
then all zeros of P lie on \z\= 1. This result is an immediate consequence of 
equation (1) below. In more than one variable, however, the result is somewhat 
deeper, since, for instance, it enables Boyd's [1, Theorem 1] recent several-
variable generalization of Kronecker's theorem to be derived from it as a 
corollary (Corollary 1). This theorem had strengthened an earlier result of the 
same type by Montgomery and Schinzel [6, Theorem 2]. 

The method of this paper is based on a correspondence between a polyno­
mial FeC[z] = C [ z 1 ? . . . , zn] and a certain convex set «(F) in IRn. We show that 
under suitable conditions the faces of «(F) correspond to factors of F. This fact 
is used as a basis for an induction argument. 

I would like to thank Prof. David Boyd for useful discussions on this subject, 
including the suggested form for the definition of an extreme-monic polyno­
mial. Some ideas in this paper were suggested by a paper of Lawton [5]. 

This work was supported by an NSERC grant while the author was visiting 
The University of British Columbia, Vancouver, B.C. 

Definitions and results. For z = ( z l 5 . . . , zn) and F(z) = Z i e J a(j)z,
1

1 • • • zfre 
C[z], we define a body «(F) in Un to be the convex hull of the j e J with 
a ( j ) ^0 (Clarke [2] called «(F) the exponent polytope of F). ForFeC[z] , the 
measure M(F) is 

e x p [ (2^r - T ' ' ' f "1O8 iF(ei9s " " e'e")l ddl ' " de"\' 
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By Jensen's Theorem, 

( m \ m 

a o n (z-a1)) = \aQ\ \~\ maxil^l 1) 
i = i ' i = i 

for polynomials in one variable z. 
A one-variable polynomial P(z) is said to be unit-monic if it is monic with 

|P(0)| = 1. More generally, FeC[z] is said to be extreme-monic if |a(j)| = 1 for 
all extreme points j of ^ (F) . In a similar manner to Boyd [1], we define a 
polynomial FeC[z] to be extended unit-monic (resp. extended cyclotomic) if it 
is of the form F(z) = z\" • • • z^P(z^ • • • z£0, where P is a unit-monic (resp. 
cyclotomic) polynomial in one variable, the v{ are integers and the bt are 
chosen minimally such that F(z) is a polynomial in Z j , . . . , z n . 

Our main result is 

THEOREM 1. Let FeC[z]. Then F is extreme-monic with M(F)= 1 iff F is a 
product of pz\x • ' ' z„n and extended unit-monic polynomials. Here dl9 . . . , d^ 
are integers, and \p\— 1. 

COROLLARY 1. (Boyd [1]). Let FeZ[z] . Then M(F)= 1 iff F is a product of 
±Zii • • • z„n and extended cyclotomic polynomials. 

As a by-product of the proof of Theorem 1 we obtain 

THEOREM 2. For any k-dimensional face c€' of ^ (F) ( 0 < k < n ) , we haue 
M(F)>M(F(<€')). Here F(« ') = I i 6 J n« ' a(J)zV ' • ' zfc. 

In particular (fc = 0) 

COROLLARY 2. M(F)>|a( j ) | for every extreme point j of ^ (F) . 

Auxiliary results. For the proof, we need the corollary to the following 

LEMMA 1. Let c€1, ^2 be closed convex polyhedra in Un, and c€1 + c€2 = 
\i™ + i™\j™e%(i = l,2)}. Then 

(i) Every extreme point of c€1 + c€2 can be expressed as a sum j ( 1 ) + j ( 2 ) , 
j ( l ) e %(i = 1, 2), in only one way. Further such j ( l ) are extreme points of %(i = 
1,2). 

(ii) For every extreme point j ( 1 ) of c€1 there is an extreme point j ( 2 ) of %2 such 
that j ( 1 ) + j ( 2 ) is an extreme point of c€1 + c€2-

The lemma is essentially Theorem 15 of [3], 

COROLLARY 3. Let F0 = F1F2, where F0 , F1? F2eC[z] , and Fi(z) = 
Sj e J i Oi(i)zV * * * z^ii = 0, 1, 2). Then 

(i) <€(F1F2) = <€(F1) + <€(F2) 
(ii) if any two of the Ft are extreme monic, so is the third. 
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Proof. Clearly cë(F1F2)ç cë(F1) +
 cë(F2). Since the Oj(j) are non-zero for 

j e Jh Lemma 1 (i) shows that any extreme point of cê(F1) +
 c€(F2) is uniquely 

expressible in the form j(1)-f j ( 2 ) , for some extreme points j ( l ) of «(F^O = 1, 2). 
Hence 

(2) o0(|(1) + P ) = a1a
(1>)a2a«>) 

so that ao(j(1) + j ( 2 ) ) ^ 0 , and j ( 1 ) + j ( 2 )G^(F1F2). Thus all extreme points of 
C€(F1) +

 C€(F2) belong to « ( F ^ ) , which proves (i). 
From (2) we see that F0 is extreme monic if Fx and F2 are. Now suppose that 

F0 and Ft are extreme monic. Then Lemma 1 (i), shows that for each extreme 
point j ( 1 ) of ^(Fi) there is an extreme point j ( 2 ) of C€(F2) such that j ( 1 ) +j ( 2 ) is an 
extreme point of ^(F0) , so that (2) again holds. Hence |a2(j(2))|= 1 and Ft is 
also extreme-monic. 

Proof of the Theorems. Take F(z) = XJeJa(j)zV • • • zJ
n

neC[z], consider a k-
dimensional face cêf of «(F), for some k : 0 < k < n, and choose a hyperplane %t 
containing « ' . Since J<^Zn <=[Rn, Ht can be chosen so that it has a normal vector 
v i = (vn> v2i> • • • , vni)> where the vn(i = 1 , . . . , n) are coprime integers. We 
can then find, by a classical result of Hermite, a square matrix V=(u i I) with 
integral entries, determinant 1 and first column VJ". Hence we can change 
variables by defining new variables Wi(J= 1 , . . . , n) by z{ = 
Ilr=i wîH* = 1 , . . . , n), and then putting G(w) = F(z), where w= ( w l 5 . . . , wn). 
Then since Itf-i *!' = I ï - i w ^ i J^i), G(w) = I k e K a(k V^1)wï> • • • w ^ 
where K > { j V | j e J > . 

With these new variables w, we define «(G) to be the convex hull of the 
keK with a ( k V - 1 ) ^ 0 . Now, for some integer m, 2i? = {j |£r=i ^Wi = m}. So 
the face «'(G) = {jV| j e «'} of «(G) is in the hyperplane XV = 
{k = jV\Ivilji = m} = {k\k1 = m}. 

We now write G(w) as a sum of terms G t (w 2 , . . . , wn)vvi, where the 
Gi(w2,..., wn) are polynomials in w 2 \ . . . , w*1, and / runs over a finite set of 
integers either (i) all <m, or (ii) all >m. By replacing wt by w^1, if necessary, 
we may assume that (i) occurs, with L the least value of J. Then 

G(w) = w f t G m w r L + Gm_! w r 1 - " 1 + • • " + GL}. 

= w^G m {wT- L +(G m _ 1 /G m )wr L " 1 + - ' - + (GL/Gm)} 
for G m ^ 0 = w ^ G m H s a y , 

where H is a rational function of w 1 ? . . . , wn. 
Now log M(F) = l/(27r)n J?w• • • Jgw log |F(e" \ . . . , eie»)| d ^ • • • d0n. On 

changing variables with the transformation ( 0 l 5 . . . , 0n) = ( c ^ , . . . , </>n) V, with 
Jacobian det V = 1, we have 

(3) log M(F) = log M(G) = log M(Gm) 4- log M(H). 
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Now log M(H) = 1/(2TT)M & • • • ft" d02-- d6n Jgw log |H| d0x > 0 , by Jensen's 

Theorem. So logM(F)>logM(Gm). On applying the above transformation to 
F(« ' ) (as defined in the statement of Theorem 2), we see that M(F(<€')) = 
M(Gm), and log M ( F ) > log M(F(<ë')). This proves Theorem 2. 

To complete the proof of Theorem 1, first note that it is trivial in one 
direction—i.e. if / is a product of pz\x • • • z ^ and extended unit-monic polyno­
mials, then M ( F ) = 1 , by Jensen's Theorem, and F is extreme-monic, by 
Corollary 3. We therefore assume that F is extreme-monic with M(F) = 1, and 
have to prove that F is a product of pz\x • • • z„n and extended unit-monic 
polynomials. 

We use double induction on the number of variables n of F and the number 
r of irreducible factors of F in C[z] (excluding trivial factors pz\x • • • zfy. The 
result is clearly true if n = l, or if r = 0, in which case F = a(j)zV • • • zJ

n" for 
some single point j . We now assume the truth of the result for all n <n and 
r'<r, where rc>2, r>l. Let F be a polynomial in n variables with r 
irreducible factors. The main step in the proof is to show that for the 
polynomial G, as defined earlier, the rational function H is in fact a polynomial 
in w1? w f , . . . , w*1. To show this, first note that as F is extreme monic, G is 
extreme monic, and hence Gm is extreme-monic, as ^ (G m ) is a face of ^ (G) . 
Now l = M ( G ) > M ( G m ) > l , so that M ( G m ) = l . As Gm is a function of 
w2,. . . , vvn, the induction hypothesis therefore shows that Gm is a product of 
pu>22 * * • Wnn an<3 extended unit-monic polynomials. However, we can also 
ensure that Gm is not just of the form pw2

2 * • • w„n, but does in fact contain 
extended unit-monic factors. To do this it is simply necessary to choose the 
face c€r of ^(F) so that it contains at least two points of J, but is not the whole 
of ^(F) . This is always possible if the points of c€f do not lie on a single line. 
However, we can assume this, for if the points of c€' were collinear, we could, 
by a change of variables, express F as a product of a monomial and a 
polynomial in one variable. This would mean that we could take n — 1, while 
we are assuming n > 2. 

We have from (3) that 

(4) 0 = log M(Gm) = log M(H). 

We can now show that 

LEMMA 2. Under our previous assumptions, H is a polynomial. 

Proof. Assume H is not a polynomial. Then Gm does not divide some Gk. 
Since Gm is extended unit monic we can choose a factor of Gm of the form 
w^2 • * * w ^ - a , with | a | = l , which also does not divide Gk. Further, since 
wS* • • • w^-a =nj l=i (w^ / h • • • waJh-e^mavh) where h = (a2 , . . . , an), we 
can assume that h = 1. We then change variables, keeping w{ fixed, so that 
w2

2 * * * w£" becomes a new variable. Assuming that this has already been done, 
we are now able to assume that Gm has a factor w2~a not dividing Gk. 
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Now, writing Gk in the form (w2-a)A + B, where £ # 0 is a polynomial in 
w f , . . . , w f , it is clear that we can choose an (n-2)-dimensional point 
( w ? , . . . , w*) with \w*\ = 1 (i = 3 , . . . , n) and £ ( w ? , . . . , w*) ^ 0. Then there 
will be a neighbourhood N of (a, wf , . . . , w*) on the (n — 1)-dimensional unit 
torus such that 

(5) | G t / G m | > ( ™ ~ * ) + l 

on JV. NOW (5) is impossible if all zeros of H, as a polynomial in w1? lie in 
I w J ^ l . Hence there is an £ > 0 such that fô"log |H\ dd^ >e for any 
(w2, • . . , wn) fixed in JV. Since fâ" log |H| d#! > 0 for any fixed (vv2 , . . . , vvn) not 
necessarily in J{, this implies that log M(H) > e/(27r)n x ( ( n - l)-dimensional 
measure of JV)>0. This contradicts (4), so proves the lemma. 

We have thus achieved a polynomial factorization G = GmH of G, where Gm 

is a function of w2, • . . , wn, with at least one extended unit-monic factor. 
Hence H has fewer than r irreducible factors, which by the induction 
hypothesis implies that H is a product of pw?1 • • • w^ and extended unit-monic 
polynomials. Thus the same is true for G, and hence, on changing variables, F 
is a product of pz\x • • • z„n and extended unit-monic polynomials. 

Proof of Corollary 1. Let FeZ[z] and M(F) = 1. Then for any extreme point 
j of ^(F) , | a ( j ) |< l by Corollary 2. Hence a(j) = ± l , so that F is extreme-
monic. Thus from Theorem 1, F can be written in the form F(z) = 
±AX ' ' ' z ^ r G U (zisl^2s2 • • * z»m-0s),

 w h e r e |0S| = 1 (s = 1 , . . . , S). To show 
that in fact its roots are roots of unity, we proceed as follows, making use of 
polynomials of the type F(zr\ . . . , zr"), used in [6]. We take a supporting 
hyperplane YA = I rih = m > 0 , with the rt integers, meeting ^(F) in precisely one 
point, an extreme point. We can also assume that none of the vectors 
(A s l , . . . , Asn) are parallel to the hyperplane, so that YA = \ Ktri 7̂  0 (s = 1 , . . . , S). 
Then either F(zr\ . . . , zr") or F(z~r\ . . . , z~r«) is of the form ±zkP(z) for some 
k and some monic polynomial PeZ[z] , where P(z) is of the form 
nf=i (zk* - 0^s), with all ks > 0 , and ss = ±1 . Hence the 0S are all roots of unity, 
by Kronecker's classical Theorem. 

We see that in the above proof of Corollary 1, the fact that F has integer 
coefficients is used in two places: (i) to show that a ( j )^0 and | a ( j )< l implies 
a(j) = ± l for extreme points j , and (ii) so that Kronecker's original one-
variable result can be applied. 

REFERENCES 

1. D. W. Boyd, Kronecker's theorem and Lehmefs problem for polynomials in several variables, 
(to appear). 

2. B. L. Clarke, Asymptotes and intercepts of real-power polynomial surfaces from the geometry of 
the exponent polytope, SIAM J. Appl. Math. 35 (1978), 755-786. 

3. P. J. Kelly and M. L. Weiss, Geometry and Convexity (John Wiley and Sons, New York 
1979). 

https://doi.org/10.4153/CMB-1981-068-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-068-8


452 C. J. SMYTH 

4. L. Kronecker, Zwei Sàtze ùber Gleichungen mit ganzzahligen Coefficienten, J. reine angew. 
Math. 53 (1857), 173-175. 

5. W. Lawton, Asymptotic properties of roots of polynomials -preliminary report, Proceedings 7th 
National Mathematics Conference, Dept. Math. Azarabadegan Univ., Tabriz, 1976. 

6. H. L. Montgomery and A. Schinzel, Some arithmetic properties of polynomials in several 
variables, in Transcendence Theory: Advances and Applications, A. Baker and D. W. Masser 
(editors) (Academic Près 1977). 

DEPARTMENT OF MATHEMATICS 

JAMES COOK UNIVERSITY OF NORTH QUEENSLAND 

TOWNSVILLE, QLD AUSTRALIA 

https://doi.org/10.4153/CMB-1981-068-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-068-8

