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On the support of measures with fixed
marginals with applications in optimal
mass transportation
Abbas Moameni

Abstract. Let μ and ν be Borel probability measures on complete separable metric spaces X and Y,
respectively. Each Borel probability measure γ on X × Y with marginals μ and ν can be described
through its disintegration (γx)x∈X with respect to the initial distribution μ. Assume that μ is
continuous, i.e., μ({x}) = 0 for all x ∈ X . We shall analyze the structure of the support of the measure
γ provided card (spt(γx)) is finitely countable for μ-a.e. x ∈ X . We shall also provide an application
to optimal mass transportation.

1 Introduction

Let X and Y be Polish spaces equipped with Borel probability measures μ on X and
ν on Y . Recall that a measure is called continuous if μ({x}) = 0 for all x ∈ X . Let
Π(μ, ν) be the set of Borel probability measures on X × Y which have X-marginal
μ and Y-marginal ν. Let γ ∈ Π(μ, ν). In what follows, we say that γ ∈ Π(μ, ν) is
concentrated on a set S if the outer measure of its complement is zero, i.e., γ∗(Sc) = 0.
The support of the measure γ is denoted by spt(γ) and is the smallest closed set such
that γ is zero on its complement. We now define precisely some notation describing
measures concentrated on several graphs.

Definition 1.1 Let X and Y be Polish spaces with Borel probability measures μ on
X and ν on Y . Let k ∈ N ∪ {∞}. We say that a measure γ ∈ Π(μ, ν) is concentrated
on the graphs of measurable maps {G i}k

i=1 from X to Y, if there exists a sequence of
measurable nonnegative functions {α i}k

i=1 from X toRwith∑k
i=1 α i(x) = 1 (μ-almost

surely) such that for each bounded continuous function f ∶ X × Y → R,

∫
X×Y

f (x , y) dγ =
k
∑
i=1
∫

X
α i(x) f (x , G i x) dμ.

In this case, we write γ = ∑k
i=1(Id ×G i)#(α i μ).
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2 A. Moameni

Setting � = spt(γ), for every x ∈ X, we denote by �x the x-section of �, i.e.,

�x = {y ∈ Y ; (x , y) ∈ �}.

Here is our main result in this paper.

Theorem 1.2 Let μ and ν be Borel probability measures on complete separable metric
spaces X and Y, respectively. Assume that at least one of μ or ν is continuous. Let
γ ∈ Π(μ, ν) and � = spt(γ). The following assertions hold:
1. If there exists m ∈ N such that card(�x) ≤ m for μ-a.e. x ∈ X , then there exists

k ≤ m and a sequence of Borel measurable maps {G i}k
i=1 from X to Y such that the

measure γ is concentrated on their graphs.
2. If card(�x) < ∞ for μ-a.e. x ∈ X , then there exist k ∈ N ∪ {∞} and a sequence of

Borel measurable maps {G i}k
i=1 from X to Y such that the measure γ is concentrated

on their graphs.

This theorem has direct applications in the theory of optimal transportation as
it provides a precise description of the structure of optimal plans [1, 6, 7, 10–12].
Theorem 1.2 has a straightforward generalization to the multi-marginal case (see
Corollary 2.9). We refer to [9] for applications of this result in multi-marginal mass
transportation. We also remark that a weaker version of Theorem 1.2 is proved
implicitly in [8]. The next section is devoted to the proof of the main theorem.

2 Preliminaries and the proof of Theorem 1.2

We shall need some important preliminaries from the theory of measures before
proving Theorem 1.2. Let (X ,B, μ) be a finite, not necessarily complete measure
space, and let (Y , Σ) be a measurable space. The completion of B with respect to
μ is denoted by Bμ . When necessary, we identify μ with its completion on Bμ .
The push forward of the measure μ by a map T ∶ (X ,B, μ) → (Y , Σ) is denoted by
T# μ, i.e.,

T# μ(A) = μ(T−1(A)), ∀A ∈ Σ.

Definition 2.1 Let T ∶ X → Y be (B, Σ)-measurable, and let ν be a positive measure
on Σ. We call a map F ∶ Y → X a (Σν ,B)-measurable section of T if F is (Σν ,B)-
measurable and T ○ F = IdY .

If X is a topological space we denote by B(X) the set of Borel sets on X . The
space of Borel probability measures on a topological space X is denoted by P(X).
The following definition and proposition are essential in the sequel.

Definition 2.2 Let X be a Polish space, let T ∶ X → X be a surjective Borel measur-
able map, and let μ be a positive finite measure on B(X). Denote by S(T) the set of
all measurable sections of T, i.e.,

S(T) = {F ∶ (X ,B(X)μ) → (X ,B(X)); T ○ F = IdX}.
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On the support of measures with fixed marginals with applications 3

Let K ⊂ S(T). We say that a measurable function F ∶ (X ,B(X)μ) → (X ,B(X)) is
generated by K if there exist a sequence {Fi}∞i=1 ⊂K such that

X = ∪∞i=1{x ∈ X; F(x) = Fi(x)}.

We also denote by G(K) the set of all functions generated by K. It is easily seen that
K ⊆ G(K) ⊆ S(T).

Proposition 2.1 Let X be a Polish space, let T ∶ X → X be a surjective Borel measurable
map, and let μ be a positive finite measure on B(X). Let K be a nonempty subset
of S(T). Then, there exist k ∈ N ∪ {∞} and a sequence {Fi}k

i=1 ⊂ G(K) such that the
following assertions hold:
1. For each i ∈ N with i ≤ k, we have μ(B i) > 0, where {B i}k

i=1 is defined recursively
as follows:

B1 = X and B i+1 = {x ∈ B i ; Fi+1(x) /∈ {F1(x), . . . , Fi(x)}} provided k > 1.

2. For all F ∈ G(K), we have

μ({x ∈ Bc
i+1 /Bc

i ; F(x) /∈ {F1(x), . . . , Fi(x)}}) = 0.

3. If k /= ∞, then for all F ∈ G(K),

μ({x ∈ Bk ; F(x) /∈ {F1(x), . . . , Fk(x)}}) = 0.

Moreover, if either k /= ∞ or, k = ∞ and μ(∩∞i=1B i) = 0, then for every F ∈ G(K), the
measure ρF = F# μ is absolutely continuous with respect to the measure ∑k

i=1 ρ i , where
ρ i = Fi # μ.

We refer to Proposition 3.1 in [8] for the proof of Proposition 2.1.
The following result shows that every (Σν ,B(X))-measurable map has a

(Σ,B(X))-measurable representation (see [2, Corollary 6.7.6]). Recall that a Souslin
space is the image of a Polish space under a continuous mapping.

Proposition 2.2 Let ν be a finite measure on a measurable space (Y , Σ), let X be a
Souslin space, and let F ∶ Y → X be a (Σν ,B(X))-measurable mapping. Then, there
exists a mapping G ∶ Y → X such that G = F ν-a.e. and G−1(B) ∈ Σ for all B ∈ B(X).

For a measurable map T ∶ (X ,B(X)) → (Y , Σ, ν) denote by M(T , ν) the set of all
measures λ on B so that T pushes λ forward to ν, i.e.,

M(T , ν) = {λ ∈ P(X); T# λ = ν}.

Evidently, M(T , ν) is a convex set. A measure λ is an extreme point of M(T , ν) if the
identity λ = θλ1 + (1 − θ)λ2 with θ ∈ (0, 1) and λ1 , λ2 ∈M(T , ν) imply that λ1 = λ2.
The set of extreme points of M(T , ν) is denoted by extM(T , ν).

We recall the following result from [4] in which a characterization of the set
extM(T , ν) is given.
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4 A. Moameni

Theorem 2.3 Let (Y , Σ, ν) be a probability space, let (X ,B(X)) be a Hausdorff space
with a Radon probability measure λ, and let T ∶ X → Y be a (B(X), Σ)-measurable
mapping. Assume that T is surjective and Σ is countably separated. The following
conditions are equivalent:
(i) λ is an extreme point of M(T , ν);
(ii) there exists a (Σν ,B(X))-measurable section F ∶ Y → X of the mapping T with

λ = F#ν.

By making use of the Choquet theory in the setting of non-compact sets of mea-
sures [13], each λ ∈ M(T , ν) can be represented as a Choquet-type integral over
ext M(T , ν). Denote by Σext M(T ,ν) the σ-algebra over ext M(T , ν) generated by the
functions ρ → ρ(B), B ∈ B(X). We have the following result (see [8] for a proof).

Theorem 2.4 Let X and Y be complete separable metric spaces, and let ν be a proba-
bility measure on B(Y). Let T ∶ (X ,B(X)) → (Y ,B(Y)) be a surjective measurable
mapping, and let λ ∈ M(T , ν). Then, there exists a probability measure ξ on∑ext M(T ,ν)
such that for each B ∈ B(X),

λ(B) = ∫
ext M(T ,ν)

ρ(B) dξ(ρ), (ρ → ρ(B) is measurable).

We now recall the notion of isomorphisms for measures.

Definition 2.5 Assume that X and Y are topological spaces with Borel probability
measures μ on X and ν on Y . We say that (X , B(X), μ) is isomorphic to (Y , B(Y), ν)
if there exists a one-to-one map T of X onto Y such that for all A ∈ B(X), we have
T(A) ∈ B(Y) and μ(A) = ν(T(A)), and for all B ∈ B(Y), we have T−1(B) ∈ B(X)
and μ(T−1(B)) = ν(B).

Here is the well-known measure isomorphism theorem (see Theorem 17.41 in [5]
for a proof).

Theorem 2.6 Let μ be a Borel probability measure on a Polish space X. If μ is contin-
uous, then (X , B(X), μ) and ([0, 1], λ), where λ is Lebesgue measure, are isomorphic.

Lemma 2.7 Let γ ∈ Π(μ, ν). If either μ or ν is continuous, then so is γ.

Proof Assume that μ is continuous. Take (x , y) ∈ X × Y . It follows that

μ({x}) = γ({x} × Y) ≥ γ({x} × {y}),

from which the desired result follows. The proof is similar if ν is continuous. ∎

Proof of Theorem 1.2 We assume that μ is a continuous measure. It follows
from Lemma 2.7 that γ is also continuous. It follows from Theorem 2.6 that the
Borel measurable spaces (X ,B(X), μ) and (X × Y ,B(X × Y), γ) are isomorphic.
Thus, there exists an isomorphism T = (T1 , T2) from (X ,B(X), μ) onto (X × Y ,
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On the support of measures with fixed marginals with applications 5

B(X × Y), γ). It can be easily deduced that T1 ∶ X → X and T2 ∶ X → Y are surjective
maps and

(T1)# μ = μ & (T2)# μ = ν.

Consider the convex set

M(T1 , μ) = {λ ∈ P(X); (T1)# λ = μ},

and note that μ ∈M(T1 , μ). Since μ ∈M(T1 , μ), it follows from Theorem 2.4 that
there exists a probability measure ξ on∑ext M(T1 ,μ) such that for each B ∈ B(X),

μ(B) = ∫
ext M(T1 ,μ)

ρ(B) dξ(ρ), (ρ → ρ(B) is measurable).(1)

Since � = spt(γ), it follows that T−1(�) is a measurable subset of X with
μ(T−1(�)) = 1. Let Aγ ∈ B(X) be the set such that Aγ ⊆ T−1(�) and for all x ∈ Aγ ,
the cardinality of the set �x does not exceed m. It follows from the assumption that
μ(Aγ) = 1. Since μ(X /Aγ) = 0, it follows from (1) that

∫
ext M(T1 ,μ)

ρ(X1 /Aγ) dξ(ρ) = μ(X /Aγ) = 0,

and therefore there exists a ξ-full measure subset Kγ of ext M(T1 , μ) such that
ρ(X /Aγ) = 0 for all ρ ∈ Kγ . Let S(T1) be the set of all sections of T1 and define

K ∶= {F ∈ S(T1); ∃ρ ∈ Kγ with μ = F#ρ}.

Let G(K) be the set of all measurable sections of T1 generated by K as in Defini-
tion 2.2. By Proposition 2.1, there exists a sequence {Fi}k

i=1 ⊂ G(K)with k ∈ N ∪ {∞}
satisfying assertions (1)–(3) in that proposition. Let Bγ ∶= ∩k

i=1F−1
i (Aγ), and for each

k ∈ N ∪ {∞}, define

Nk = {
{1, 2, . . . , k}, k ∈ N,
N, k = ∞.

Let ρ i ∶= Fi # μ for each i ∈ Nk . We shall now proceed with the proof in several steps.

Step I: In this step, we show that μ(Bγ) = 1 and

(x , T2 ○ Fi(x)) ∈ �, ∀x ∈ Bγ , ∀i ∈ Nk .(2)

Note first that ρ i(X /Aγ) = 0 for each i ∈ Nk . In fact, for a fixed i ∈ Nk , since
Fi ∈ G(K) there exists a sequence {Fσ j}∞j=1 ⊂K such that X = ∪∞j=1A j , where

A j = {x ∈ X; Fi(x) = Fσ j}.

https://doi.org/10.4153/S0008439524000377 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000377


6 A. Moameni

Let σ j ∈ Kγ be such that the map Fσ j is a push-forward from σ j to μ. It follows that

ρ i(X /Aγ) = μ(F−1
i (X /Aγ)) = μ((∪∞j=1A j) ∩ F−1

i (X /Aγ))

≤
∞

∑
j=1

μ(A j ∩ F−1
i (X /Aγ))

=
∞

∑
j=1

μ(A j ∩ F−1
σ j
(X /Aγ))

≤
∞

∑
j=1

μ(F−1
σ j
(X /Aγ)) =

∞

∑
j=1

σ j(X /Aγ) = 0.

This proves that ρ i(X /Aγ) = 0. Since ρ i is a probability measure, we have that
ρ i(Aγ) = 1 for every i ∈ Nk . Therefore, μ(F−1

i (Aγ)) = ρ i(Aγ) = 1. This implies that
μ(Bγ) = μ( ∩k

i=1 F−1
i (Aγ)) = 1. We shall now prove that

(x , T2 ○ Fi(x)) ∈ �, ∀x ∈ Bγ , ∀i ∈ Nk .

Since for all x ∈ Aγ , we have T(x) = (T1x , T2x) ∈ �, it follows that for each i ∈ Nk ,

(T1 ○ Fi(x), T2 ○ Fi(x)) ∈ �, ∀x ∈ F−1
i (Aγ),

from which together with T1 ○ Fi = IdX one obtains

(x , T2 ○ Fi(x)) ∈ �, ∀x ∈ F−1
i (Aγ).(3)

Thus,

(x , T2 ○ Fi(x)) ∈ �, ∀x ∈ Bγ , ∀i ∈ Nk .

This completes the proof of Step I.

Step II: In this step, we assume that assumption (1) of the theorem holds. In this
case, we show that k ≤ m.

To do this, let us assume that k > m. It follows from Step I that

(x , T2 ○ Fi(x)) ∈ �, ∀x ∈ Bγ , ∀i ∈ {1, . . . , m + 1}.(4)

Note that by assertion (1) in Proposition 2.1, we have μ(Bm+1) > 0. Since μ(Bγ) = 1
and μ(Bm+1) > 0, it follows that Bγ ∩ Bm+1 /= ∅. Take x ∈ Bγ ∩ Bm+1 . We have that the
cardinality of the set �x is at most m. On the other hand, it follows from (4) that
T2 ○ Fi(x) ∈ �x for all i ∈ {1, 2, . . . , m + 1}. Thus, there exist i , j ∈ {1, 2, . . . , m + 1}
with i < j such that T2 ○ Fi(x) = T2 ○ F j(x). Since T1 ○ Fi = T1 ○ F j = IdX and the
map T = (T1 , T2) is injective, it follows that Fi(x) = F j(x). On the other hand,
x ∈ Bm+1 ⊆ B j from which we have F j(x) /∈ {F1(x), . . . , F j−1(x)}. This leads to a
contradiction and therefore k ≤ m in this case.
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On the support of measures with fixed marginals with applications 7

Step III: In this step, we assume that assumption (2) of the theorem holds. In this
case, we prove that if k = ∞, then μ(∩∞i=1B i) = 0.

To prove this, let us assume that k = ∞ and μ(∩∞i=1B i) > 0. By Step I, we have that
μ(Bγ) = 1 and

(x , T2 ○ Fi(x)) ∈ �, ∀x ∈ Bγ , ∀i ∈ N.(5)

Take x ∈ ( ∩∞i=1 B i) ∩ Bγ . It follows from (5) that T2 ○ Fi x ∈ �x for each i ∈ N. On
the other hand, by assumption, we have that card(�x) < ∞. Thus, there exist i , j with
i < j such that T2 ○ Fi(x) = T2 ○ F j(x). As in Step II, since T1 ○ Fi = T1 ○ F j = IdX and
the map T = (T1 , T2) is injective, it follows that Fi(x) = F j(x). On the other hand,
x ∈ ∩∞i=1B i ⊆ B j from which we have F j(x) /∈ {F1(x), . . . , F j−1(x)}. This leads to a
contradiction and Step III follows.

It now follows from Steps II and III that either k /= ∞ or, if k = ∞, then
μ(∩∞i=1B i) = 0. On the other hand, Proposition 2.1 yields that if either k /= ∞ or, k = ∞
and μ(∩∞i=1B i) = 0, then for every F ∈ G(K), the measure ρF = F# μ is absolutely
continuous with respect to the measure ∑k

i=1 ρ i , where ρ i = Fi # μ for i ∈ Nk . This
together with the representation

μ(B) = ∫
ext M(T1 ,μ)

ρ(B) dξ(ρ) = ∫
Kγ

ρ(B) dξ(ρ), (∀B ∈ B(X)),

imply that μ is absolutely continuous with respect to∑k
i=1 ρ i . It then follows that there

exists a nonnegative measurable function α ∶ X → R ∪ {+∞} such that

dμ
d(∑k

i=1 ρ i)
= α.

Define α i = α ○ Fi for i ∈ Nk . We show that∑k
i=1 α i(x) = 1 for μ-almost every x ∈ X .

In fact, for each B ∈ B(X), we have

μ(B) = μ(T−1
1 (B))

=
k
∑
i=1
∫

T−1
1 (B)

α(x) dρ i =
k
∑
i=1
∫

F−1
i ○T−1

1 (B)
α(Fi x) dμ =

k
∑
i=1
∫

B
α i(x) dμ,

from which we obtain μ(B) = ∑k
i=1 ∫B α i(x) dμ. Since this holds for all B ∈ B(X), we

have

k
∑
i=1

α i(x) = 1, μ − a.e .

It now follows from Proposition 2.2 that each Fi is μ-a.e. equal to a (B(X),B(X))-
measurable function for which we still denote it by Fi . For each i ∈ Nk , let
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8 A. Moameni

G i = T2 ○ Fi . We now show that γ = ∑k
i=1(Id ×G i)#(α i μ). For each bounded

continuous function f ∶ X × Y → R, it follows that

∫
X×Y

f (x , y) dγ = ∫
X

f (T1x , T2x) dμ =
k
∑
i=1
∫

X
α(x) f (T1x , T2x) dρ i

=
k
∑
i=1
∫

X
α(Fi(x)) f (T1 ○ Fi(x), T2 ○ Fi(x)) dμ

=
k
∑
i=1
∫

X
α i(x) f (x , G i(x)) dμ.

Therefore,

γ =
k
∑
i=1
(Id ×G i)#(α i μ). ∎

Remark 2.8 It follows from the last part of the proof of Theorem 1.2 that if
G i(x) = G j(x) for some x ∈ X, then α i(x) = α j(x). In fact, let us assume that G i(x) =
G j(x) for some x ∈ X . It implies that T2 ○ Fi(x) = T2 ○ F j(x). Since T1 ○ Fi(x) =
T1 ○ F j(x) = x and T = (T1 , T2) is injective, we obtain that Fi(x) = F j(x). This yields
that

α i(x) = α ○ Fi(x) = α ○ F j(x) = α j(x),

as claimed.

It is worth noting that Theorem 1.2 has a straight forward generalization to the
multi-marginal case.

Corollary 2.9 Let μ1 , . . . , μn be Borel probability measures on complete separable
metric spaces X1 , . . . , Xn respectively. Assume that μ1 is continuous. Let γ be a prob-
ability measure on X1 ×⋯× Xn with fixed marginal μ i on X i , and let � = spt(γ). The
following assertions hold:
1. If there exists m ∈ N such that the cardinality of the set

�x1 ∶= {(x2 , . . . , xn) ∈ X2 ×⋯× Xn ; (x1 , . . . , xn) ∈ �}

does not exceed m for μ1-a.e. x1 ∈ X1 , then there exists k ≤ m and a sequence of
Borel measurable maps {G i}k

i=1 from X1 to X2 ×⋯× Xn such that the measure γ
is concentrated on their graphs.

2. If card(�x1) < ∞ for μ1-a.e. x1 ∈ X1 , then there exist k ∈ N ∪ {∞} and a sequence
of Borel measurable maps {G i}k

i=1 from X1 to X2 ×⋯× Xn such that the measure
γ is concentrated on their graphs.

Proof Let Y = X2 ×⋯× Xn and ν be the projection of γ on Y . It follows that
γ ∈ Π(μ1 , ν). Since μ1 is continuous the desired result follows from Theorem 1.2. ∎
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On the support of measures with fixed marginals with applications 9

3 Applications in optimal transportation

Here, we shall provide an application of Theorem 1.2. Let T be a (2, 3)-torus knot in
R

3 (see Figure 1). Our goal is to describe the structure of optimal plans for the cost
c ∶ T × T → R given by

c(x , y) = 1
2
∣x − y∣2 .

Let μ and ν be two probability measures on T. Since the function c is bounded and
continuous on T × T it follows that the problem

inf {∫
T×T

c(x , y) dγ; γ ∈ Π(μ, ν)},(6)

admits a solution. We have the following result.

Theorem 3.1 Assume that the nonatomic measure μ is absolutely continuous in each
coordinate chart on T. Then any optimal plan of (6) is concentrated on the graphs of at
most eight measurable maps.

Proof By standard results in the theory of optimal transportation, there exist
measurable functions φ ∶ T → R and ψ ∶ T → R with

ψ(y) = inf
x∈T
{c(x , y) − φ(x)} and φ(x) = inf

y∈T
{c(x , y) − ψ(y)},(7)

such that for any optimal plan γ of (6),

spt(γ) ⊆ {(x , y) ∈ T × T ∶ φ(x) + ψ(y) = c(x , y)}.

Since T is bounded, it follows from Lemma C.1 in [3] that φ is locally Lipschitz on T.
Let M = Dom(Dφ). It follows from Rademacher’s theorem together with the absolute
continuity of μ that μ(M) = 1. For x0 ∈ M, if there exist y0 , y ∈ T with (x0 , y0) and
(x0 , y) ∈ spt(γ), then we must have D1c(x0 , y0) = D1c(x0 , y). Let N⃗(x0) be the
outward normal vector at xo . If

D1c(x0 , y0) = D1c(x0 , y),

Figure 1: (2, 3)-torus knot T.
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10 A. Moameni

then y − y0 = αN⃗(x0) for some α ∈ R. This implies that y = y0 + αN⃗(x0). The latter
argument shows that all the points in the set

{y ∈ T; D1c(x0 , y0) = D1c(x0 , y)},

live on a straight line through y0 and parallel to the normal vector N⃗(x0). On the
other hand, one can easily observe that any straight line can intersect the manifold
T in at most eight points. This proves that card(�x) ≤ 8 is for μ-a.e. x ∈ T where
�x = {y ∈ T; (x , y) ∈ spt(γ)}. Therefore, by Theorem 1.2, there exist k ∈ {1, 2, . . . , 8}
and a sequence of Borel measurable maps {G i}k

i=1 from T to T such that the measure
γ is concentrated on their graphs. ∎
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