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The general relationship between average effect and average
excess
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Summary

The average effect and average excess both measure the phenotypic effects of gametes in a
population. A matrix notation is introduced that provides a general analytical solution for the
average effects at a single locus with k alleles that can be solved for any population regardless of its
genotype frequencies. This same notation also provides an easy way of deriving and generalizing to
k alleles the well-known relationships between average effects and average excesses that exist under
random-mating and regular deviations from Hardy-Weinberg equilibrium due to inbreeding.

Falconer (1985) has recently examined the relation-
ships between R. A. Fisher's (1930) quantitative
genetic measures of average effect and average excess
for the two-allele case, and for deviations from
Hardy-Weinberg genotype frequencies that are
describable by the inbreeding coefficient, / . The
purpose of this note is to show how some of Falconer's
results can be generalized to an arbitrary number of
alleles and to arbitrary deviations from Hardy-
Weinberg. Moreover, the generalized relationships
to be derived here allow the formulation of a general
analytical solution for the average effect.

Both the average effect and the average excess
represent ways of assigning a phenotypic effect to a
haploid (gametic) genotype despite the fact that the
phenotype is expressed only in diploid individuals.
Phenotypic assignments to haploid genotypes play a
critical role in quantitative genetic theory because
diploid individuals pass on haploid gametes to the next
generation in sexually reproducing populations.
Consequently, when dealing with the transmission of
diploid phenotypes from one generation to the next,
it is essential to have some haploid measure of
phenotypic transmissibility, since it is haploid gametes
that constitute the genetic basis of transfer of
phenotypic information across generations.

Fisher (1930) devised two such haploid phenotypic
measures: average excess and average effect. Falconer
(1985) gives several alternative definitions of each
measure, but to avoid repetition I will only give one
for each, following the definitions of Ewens (1979).
The average excess of gamete type At is the conditional
average phenotype of all individuals bearing at least

one At gamete minus the overall population mean.
This description can be expressed mathematically for
a single locus with k alleles as follows. Let Gy be the
average phenotype for diploid individuals with
genotype ij, G be the average phenotype for the
population, gtj = C7y —G be the average phenotypic
deviation of genotype ij, ftj the frequency of the
ordered genotype ij (/y =fn, such that 2/y equals the
total frequency of genotype ij, ignoring allelic order),
and Pi the frequency of allele i. The conditional
frequency of genotype ij, given that one gamete
involved in the fertilization is /, is f(ij\i) =/y//V Then,
the conditional average phenotypic deviation, given
that allele i was involved in a fertilization event (the
average excess of allele /, at) is

(1)
l-i

Note that equation (1) is a perfectly general expres-
sion for the average excesses of the alleles at a single
locus. No assumption is made about the genotype
frequencies being in Hardy-Weinberg equilibrium
or deviating from Hardy-Weinberg equilibrium in
a regular fashion.

The average effect is not a conditional mean
deviation like the average excess, but instead it is the
least-squares regression coefficient of the phenotypic
deviations on the number of alleles of each type that
make up the genotype. These least-squares regression
coefficients, say <% for allele /, are found by minimizing
the equation

a*-a,)2. (2)
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Taking the partial derivative of Q with respect to each
at and setting the resulting equations equal to zero
yields the following equations:

at = Oi + "Ljfljj \i)<Xj i = \,...,k. (3)

It is now convenient to introduce the following
matrix notation. Let a = (al...alc)

T be the vector of
average excess values, & = (al...txk)

T the vector of
average effect values, / the kxk identity matrix with
Is on the diagonals and Os elsewhere, and F the k x k
matrix whose yth element is f[ij \ i). Then the equations
given in (3) can be expressed as

a = (I+F)a. (4)

A general analytical solution to the average effects
follows immediately from equation (4); namely,

& = (I+F)-1a. (5)

Note that equation (5) allows one to solve for the
average effects for any set of genotype frequencies.
Hence equations (4) and (5) give the basic general
relationships between average effects and average
excesses for a A>allele locus in a population with
arbitrary genotype frequencies.

Equation (4) can be used to derive the well-
known equality between average effects and average
excesses under Hardy-Weinberg equilibrium. Let
p = (p1.. .pk) be the row vector of allele frequencies.
Then it follows from the definitions of average excess
and average effects that pa = 'Lipiai = 0 and
p& = I.ip:jaj = 0 (Ewens, 1979). Under Hardy-
Weinberg genotype frequencies, F = P where P is the
matrix each of whose rows is the vector p. From
equation (4),

where 6 is the column vector whose elements are all
Os. This follows because each element of Pa. is given
by pa = 0. Hence average excesses and effects are
identical under Hardy-Weinberg equilibrium.

Similarly, equation (4) can be used to generalize to
k alleles the well-known relationship between average
effect and average excess under regular deviations
from Hardy-Weinberg equilibrium given by

(7)
fa = Pl+PiV -Pdf= P\(\ -f)+pj
fi)=PtPi(l-f), i*j.

With these genotypic frequencies, F=JJ+(l—f)P.
Hence,

a-& = Fa =/a+(l -f)Pa =/&. (8)

It follows from (8) that a = a /(I +/) , which general-
izes to k alleles the result given in equation (12) of
Falconer (1985).

As can be seen from the above, the matrix
formulations given in equations (4) and (5) are quite
useful. First, they provide a general analytical solution
for the average effects that can be solved for any
population regardless of its genotype frequencies.
Second, they provide an easy way of deriving and
generalizing to k alleles the well-known relationships
between average effects and average excesses under
random-mating and under regular deviations from
Hardy-Weinberg that can be described by an
inbreeding coefficient.
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