
Canad. Math. Bull. Vol. 61 (1), 2018 pp. 97–113
http://dx.doi.org/10.4153/CMB-2017-040-1
©Canadian Mathematical Society 2017

On a Singular Integral of Christ–Journé
Type with Homogeneous Kernel

Yong Ding and Xudong Lai

Abstract. In this paper, we prove that the singular integral deûned by

TΩ,a f (x) = p. v.∫
Rd

Ω(x − y)
∣x − y∣d

⋅mx ,ya ⋅ f (y)dy

is bounded on Lp
(Rd) for 1 < p < ∞ and is of weak type (1,1), where Ω ∈ L log+ L(Sd−1

) and
mx ,ya =∶ ∫

1
0 a(sx + (1 − s)y)ds, with a ∈ L∞(Rd) satisfying some restricted conditions.

1 Introduction

In 1965, A. P. Calderón [2] introduced the commutator [A, S] on R, deûned by
[A, S] f (x) = A(x)S f (x) − S(Af )(x),

where A ∈ Lip(R), S ∶= d
dx ○H, and H denotes the Hilbert transform, deûned by

H f (x) = p. v. 1
π ∫

∞

−∞
f (y)
x − y

dy.

Note that the commutator [A, S] can be rewritten as [A,
√
−∆], where ∆ = d2

dx2 is
the Laplacian operator on R. _erefore, the study of the commutator [A, S] plays an
important role in the theory of linear partial diòerential equations, Cauchy integrals
along Lipschitz curves inC, and the Kato square root problem onR (see [3,4,6,7, 16,
21–23] for details).
By a formal computation, we see that

[A, S] f (x) = (−1)p. v. 1
π ∫

∞

−∞
A(x) − A(y)

x − y
f (y)
x − y

dy.

_e operator [A, S] is the so-called Calderón commutator. In [2], Calderón proved
that if A ∈ Lip(R), then the Calderón commutator [A, S] is bounded on Lp(R) for
all 1 < p < ∞.

In 1987, Christ and Journé [9] introduced a variant singular integral of theCalderón
commutator in higher dimensions as follows:

(1.1) Ta f (x) = p. v.∫
Rd

K(x − y) ⋅mx ,ya ⋅ f (y)dy,
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where K is the standard Calderón-Zygmund convolution kernel, which means that K
satisûes the following conditions:
(k1) ∣K(x)∣ ≤ C∣x∣−d ;
(k2) ∫R<∣x ∣<2R K(x)dx = 0, for all R > 0;
(k3) ∣K(x − h) − K(x)∣ ≤ C∣h∣ν ∣x∣−d−ν if ∣x∣ > 2∣h∣, where 0 < ν ≤ 1.
Here and in the sequel, for a ∈ L∞(Rd),

mx ,ya = ∫
1

0
a( sx + (1 − s)y)ds.

When the dimension d = 1, we have

mx ,ya = ∫
x
0 a(z)dz − ∫

y
0 a(z)dz

x − y
=∶ A(x) − A(y)

x − y
.

Obviously, A′(x) = a(x) ∈ L∞(R). So, if taking K(x) = − 1
πx , we see that

Ta f (x) = (−1)p. v. 1
π ∫R

A(x) − A(y)
x − y

f (y)
x − y

dy.

Hence, when d = 1, the operator Ta is just the Calderón commutator [A, S]. In [9],
Christ and Journé showed that Ta is bounded on Lp(Rd) for all 1 < p < ∞.

In 1995, taking K(x) = Ω(x)∣x∣−d (x /= 0), S. Hofmann [20] discussed the singular
integral of Christ-Journé type with homogeneous kernel deûned by

(1.2) TΩ,a f (x) = p. v.∫
Rd

Ω(x − y)
∣x − y∣d ⋅mx ,ya ⋅ f (y)dy,

where

(1.3) Ω(rx′) = Ω(x′), for any r > 0 and x′ ∈ Sd−1

and where Ω satisûes

(1.4) ∫
Sd−1

Ω(x′)dσ(x′) = 0.

In [20], S. Hofmann proved the weighted Lp boundedness of TΩ,a if Ω ∈ L∞(Sd−1)
satisûes (1.3), (1.4), and a ∈ L∞(Rd). Recently, weak type estimates for the singular
integral Ta deûned by (1.1) have also been discussed. In 2012, Grafakos and Honzík
[18] proved that Ta is of weak type (1,1) in dimension d = 2. Further, Seeger [25]
showed that Ta is of weak type (1,1) for all dimension d ≥ 2. In 2015, the authors [11]
established a weighted weak (1,1) boundedness of Ta for dimension d = 2 with power
weight ω(x) = ∣x∣α for −2 < α < 0, later extended to more general A1(Rd) weight for
dimension d ≥ 2 in [12].

It is well known that if Ω ∈ L log+ L(Sd−1) and satisûes (1.3) and (1.4), the singular
integral operator with rough kernel deûned by

(1.5) TΩ( f )(x) = p. v.∫
Rd

Ω(x − y)
∣x − y∣d f (y)dy

is bounded from Lp(Rd) to itself for 1 < p < ∞ (see [5]) and is of weak type (1,1) (see
[24]). Now a natural question is whether similar results hold for TΩ,a deûned in (1.2)
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if Ω ∈ L log+ L(Sd−1). In this paper, we give a partial answer to this question. Our
main result is as follows.

_eorem 1.1 SupposeΩ ∈ L log+ L(Sd−1) and satisûes (1.3) and (1.4). Let a ∈ L1(Rd)
and satisfy â ∈ L1(Rd).
(i) For 1 < p < ∞, we have

∥TΩ,a f ∥p ≤ C∥â∥1∥Ω∥L log+ L∥ f ∥p .
(ii) For p = 1, we have

m({x ∈ Rd ∶ ∣TΩ,a f (x)∣ > λ}) ≤ C
λ
∥â∥1∥ f ∥1 .

_e constant C above depends only on the dimension d and Ω.

Remark 1.2 It is clear that the conditions a ∈ L1(Rd) and â ∈ L1(Rd) imply a ∈
L∞(Rd). It seems diõcult to get the Lp and weak (1,1) boundedness of TΩ,a with
a ∈ L∞(Rd) only by themethod presented in this paper. So it is still an open question
whether the commutator TΩ,a is Lp bounded for 1 < p < ∞ and is of weak type (1,1)
for a ∈ L∞(Rd) and Ω ∈ L log+ L(Sd−1) with (1.3) and (1.4).

_e proof of part (i) is quite simple. We use the Fourier inversion formula for
a, and then the problem can be reduced to the Lp boundedness of TΩ . _e main
content of this paper is the proof of _eorem 1.1(ii). _e proof is based on a variant
Calderón–Zygmund decomposition. More precisely, we make a Calderón–Zygmund
type decomposition of an L1 function with some parameters, where the constants that
appear in the estimate are independent of these parameters. For the rest of the proof,
we use some nice ideas from Seeger’s works [24, 25]. Recall that when the dimension
d = 1,mx ,ya can be rewritten as (A(x) − A(y))/(x − y), which has some smoothness
in variables x , y. For dimension d ≥ 2, mx ,ya has no smoothness in x and y, since
a ∈ L∞(Rd). Note that the kernel K satisfying (k1)–(k3) has some smoothness and
the commutator Ta deûned in (1.1) has only one rough factor mx ,ya. However, for the
commutator TΩ,a , it is much harder to establish the weak (1,1) boundedness, since it
involves two rough factors: Ω and mx ,ya.
Besides the higher dimensional variant form of the Calderón commutator deûned

in (1.2), there are some other types of Calderón commutators in higher dimensions.
For example, in [2], Calderón considered the following commutator

TΩ,A f (x) = p. v.∫
Rd

Ω(x − y)
∣x − y∣d ⋅ A(x) − A(y)∣x − y∣ ⋅ f (y)dy,

where A ∈ Lip(Rd) and Ω satisûes (1.3) and

∫
Sd−1

Ω(x′)x′αdσ(x′) = 0, for all α ∈ Zd+ with ∣α∣ = 1.

Calderón showed thatTΩ,A is bounded on Lp(Rd) for 1 < p < ∞ if∇A ∈ L∞(Rd) and
Ω ∈ L log+L(Sd−1). Recently the authors of this paper established a weak type-(1, 1)
criterion for singular integral with rough kernel in [13] and used this criteria to show
TΩ,A is weak type-(1, 1) bounded if Ω ∈ L log+ L(Sd−1). However, this criterion is not
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eõcient for the operator TΩ,a discussed in this paper if a ∈ L∞. For more discussion
about singular integral with rough kernel, we refer the reader to [1,5,8,10,14,15,19,26,
27].

_is paper is organized as follows. In Section 2, we complete the proof of part (i)
of_eorem 1.1 and part (ii) based on some lemmas; their proofs are given in Section 3
and 4, respectively. _roughout this paper, the letter C stands for a positive constant
that is independent of the essential variables and not necessarily the same one in each
occurrence. For a Lebesgue measurable set E ⊂ Rd , we denote its measure by ∣E∣ or
m(E). Here, F f and f̂ denote the Fourier transform of f deûned by

F f (ξ) = ∫
Rd
e−ix ξ f (x)dx .

We let Zd+ denote the space of nonnegative multi-indices and let Z+ denote the set of
all nonnegative integers. Moreover, set

∥Ω∥q ∶= ( ∫
Sd−1

∣Ω(x′)∣qdσ(x′))
1
q ,

∥Ω∥L log+L ∶= ∫
Sd−1

∣Ω(x′)∣ log(2 + ∣Ω(x′)∣)dσ(x′).

2 Proof of Theorem 1.1

Proof of_eorem 1.1(i) Using the inversion Fourier formula, we write

mx ,ya =
1

(2π)d ∫
1

0
∫
Rd
â(η)e i s⟨η ,x⟩e i(1−s)⟨y ,η⟩dηds.

_erefore by Fubini’s theorem, we have

TΩ,a( f )(x) = p. v.∫
Rd

Ω(x − y)
∣x − y∣d

× ( 1
(2π)d ∬[0,1]×Rd

â(η)e i s⟨x ,η⟩e i(1−s)⟨y ,η⟩dsdη) f (y)dy

=∬[0,1]×Rd
ax ,s(η)TΩ(Wη ,s f )(x) dηds,

(2.1)

where ax ,s(η) = 1
(2π)d â(η)e

i s⟨x ,η⟩,Wη ,s(y) = e i(1−s)⟨y ,η⟩ and TΩ is deûned by (1.5).
Now, applying Minkowski’s inequality, the above inequality and that TΩ is bounded
on Lp(Rd), we have

∥TΩ,a( f )∥p ≤∬[0,1]×Rd
∣â∣∥TΩ(Wη ,s f )∥p dηds ≤ C∥â∥1∥Ω∥L log+ L∥ f ∥p .

Proof_eorem 1.1(ii) We will ûnish the proof of part (ii) based on some lemmas,
whose proofs are given in Sections 3 and 4. We focus only on dimension d ≥ 2. By
using scaling arguments, we can assume ∥Ω∥L log+ L(Sd−1) = ∥â∥L1(Rd) = 1. Write TΩ,a
in the form (2.1). In the sequel, we try to make a Calderón-Zygmund decomposition
ofWη ,s f with the underlying cubes independent of η, s.
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Lemma 2.1 Fix η, s. Let f ∈ L1(Rd) and λ > 0. Set

Ωλ = {x ∈ Rd ∶ M( f )(x) > λ},

where M is the Hardy–Littlewood maximal operator. _en we have the following con-
clusions:
(i) Ωλ = ⋃Q, where the Q’s are disjoint dyadic cubes. Let Q be the collection of all

these cubes.
(ii) m(Ωλ) ≤ Cλ−1∥ f ∥1.
(iii) f Wη ,s = gη ,s + bη ,s .
(iv) bη ,s = ∑Q∈Q b

η ,s
Q , supp bη ,sQ ⊂ Q, ∫ b

η ,s
Q = 0, ∥bη ,sQ ∥1 ≤ Cλ∣Q∣, ∥bη ,s∥1 ≤ C∥ f ∥1.

(v) ∥gη ,s∥2
2 ≤ Cλ∥ f ∥1.

Here, all the constants C in (i)–(v) are independent of η, s.

Proof We ûrst make a Whitney decomposition of the set Ωλ . _en there exists a
family of dyadic closed cubes {Q j} j (see [17]) such that
(a) ⋃Q j = Ωλ and the Q j ’s have disjoint interior.
(b)

√
d ⋅ l(Q j) ≤ dist(Q j , Ωc

λ) ≤ 4
√
d ⋅ l(Q j), where l(Q j) denotes the side length

of Q j .
By the weak type-(1,1) bound of M, we have

(2.2) m(Ωλ) ≤
C
λ
∥ f ∥1 .

We write f Wη ,s = gη ,s + bη ,s , where

gη ,s = f Wη ,s χΩc
λ
+∑

Q

1
∣Q∣ ∫Q

f (x)Wη ,s(x)dxχQ ,

bη ,s = ∑
Q

{ f Wη ,s − 1
∣Q∣ ∫Q

f (x)Wη ,s(x)dx} χQ =∶ ∑
Q
bη ,sQ .

So, bη ,sQ is supported in Q and ∫ b
η ,s
Q = 0. Let tQ denote the cube with t times the side

length of Q and the same center. We ûrst claim that

(2.3) 1
∣Q∣ ∫Q

∣ f (x)∣dx ≤ Cλ,

where C is only dependent on the dimension d. In fact, by the Whitney decompo-
sition property (b), we have 9

√
dQ ∩ Ωc

λ /= ∅. _us, by the deûnition of Ωc
λ , there

exists x0 ∈ 9
√
dQ such that M f (x0) ≤ λ. Using the maximal function property, we

have 1
∣9√dQ ∣ ∫9

√
dQ ∣ f (x)∣dx ≤ C′λ, where C′ is only dependent on the dimension d.

Hence, we have the estimate

1
∣Q∣ ∫Q

∣ f (x)∣dx ≤ (9
√
d)d

∣9
√
dQ∣ ∫9

√
dQ

∣ f (x)∣dx ≤ Cλ.
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For bη ,sQ and bη ,s , by (2.2) and (2.3) we have

∥bη ,sQ ∥1 ≤ 2∫
Q
∣ f (x)∣dx ≤ Cλ∣Q∣,

∥bη ,s∥1 ≤ C∥ f ∥1 + λm(Ωλ) ≤ C∥ f ∥1 .

Note that ∣ f (x)∣ ≤ λ almost everywhere in (Ωλ)c ; by (2.2) and (2.3), we have

∥gη ,s∥2
2 ≤ Cλ∥ f ∥1 + Cλ2m(Ωλ) ≤ Cλ∥ f ∥1 .

By Lemma 2.1(iii) and (2.1), we have

m({x ∶ ∣TΩ,a( f )(x)∣ > λ})

≤ m({x ∶ ∣ ∬[0,1]×Rd
ax ,s(η)TΩ(gη ,s)(x) dηds∣ > λ

2
})

+m({x ∶ ∣ ∬[0,1]×Rd
ax ,s(η)TΩ(bη ,s)(x) dηds∣ > λ

2
}) .

Notice that TΩ is bounded from Lp(Rd) to itself with bound ∥Ω∥L log+ L . Hence, com-
bining this with Chebyshev’s inequality, Minkowski’s inequality, and Lemma 2.1(v),

m({x ∶ ∣ ∬[0,1]×Rd
ax ,s(η)TΩ(gη ,s)(x) dηds∣ > λ

2
})

≤ 4
λ2 ( ∬[0,1]×Rd

∣â(η)∣ ⋅ ∥TΩ(gη ,s)∥2dηds)
2

≤ C
λ
∥ f ∥1 .

For Q ∈ Q, denote by l(Q) the side length of cube Q. Set E∗ = ⋃Q∈Q 2200Q. _en we
have

m({x ∶ ∣ ∬[0,1]×Rd
ax ,s(η)TΩ(bη ,s)(x) dηds∣ > λ

2
}) ≤

m(E∗) +m({x ∈ (E∗)c ∶ ∣ ∬[0,1]×Rd
ax ,s(η)TΩ(bη ,s)(x) dηds∣ > λ

2
}) .

By Lemma 2.1(ii), the set E∗ satisûes

m(E∗) ≤ Cm(Ωλ) ≤
C
λ
∥ f ∥1 .

_us, to complete the proof of _eorem 1.1(ii), it remains to show that

m({x ∈ (E∗)c ∶ ∣ ∬[0,1]×Rd
ax ,s(η)TΩ(bη ,s)(x) dηds∣ > λ

2
}) ≤ C

λ
∥ f ∥1 ,

where C is only dependent on the dimension d.
Denote Qk = {Q ∈ Q ∶ l(Q) = 2k} and let Bη ,sk = ∑Q∈Qk

bη ,sQ . _en bη ,s can
be rewritten as bη ,s = ∑ j∈Z B

η ,s
j . Take a smooth radial function ϕ on Rd such that
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supp ϕ ⊂ {x ∶ 1
4 ≤ ∣x∣ ≤ 1} and ∑ j ϕ j(x) = 1 for all x ∈ Rd/{0}, where ϕ j(x) =

ϕ(2− jx). Now we deûne the operator Tj as

Tj( f )(x) = ∫
Rd

Ω(x − y)
∣x − y∣d ϕ j(x − y) f (y)dy.

_en we have TΩ = ∑ j Tj . We write

TΩ(bη ,s)(x) = ∑
n∈Z
∑
j∈Z

Tj(Bη ,sj−n)(x).

Note that Tj(Bη ,sj−n)(x) = 0 for x ∈ (E∗)c and n < 100. _erefore,

m({x ∈ (E∗)c ∶ ∣ ∬[0,1]×Rd
ax ,s(η)TΩ(bη ,s)(x) dηds∣ > λ

2
}) =

m({x ∈ (E∗)c ∶ ∣ ∬[0,1]×Rd
ax ,s(η)∑

j
∑

n≥100
Tj(Bη ,sj−n)(x) dηds∣ >

λ
2
}) .

Hence, to ûnish the proof of part (ii), it suõces to verify the estimate

(2.4) m({x ∈ (E∗)c ∶ ∣ ∬[0,1]×Rd
ax ,s(η)∑

j
∑

n≥100
Tj(Bη ,sj−n)(x) dηds∣ >

λ
2
})

≤ C
λ
∥ f ∥1 .

2.1 Some Key Estimates

In the sequel we will show that (2.4) holds if Ω is restricted in some subset of Sd−1.
More precisely, for a ûxed n ≥ 100, denote D ι = {θ ∈ Sd−1 ∶ ∣Ω(θ)∣ ≥ 2ιn∥Ω∥1}, where
0 < ι < γ

2 will be chosen later. _e operator Tn
j, ι is deûned by

Tn
j, ι( f )(x) = p. v.∫

Rd
ΩχD ι( x − y

∣x − y∣ )
ϕ j(x − y)
∣x − y∣d ⋅ f (y)dy.

We have the following result, which will be proved in next section.

Lemma 2.2 Under the conditions of _eorem 1.1 with 0 < ι < γ/2, we have

m({x ∈ (E∗)c ∶ ∣ ∬[0,1]×Rd
ax ,s(η)∑

j
∑

n≥100
Tn

j, ι(B
η ,s
j−n)(x) dηds∣ >

λ
2
}) ≤ C ∥ f ∥1

λ
.

_us, to ûnish the proof of_eorem 1.1, by Lemma 2.2 it suõces to verify (2.4) for
the kernel function Ω, which satisûes ∥Ω∥∞ ≤ 2ιn∥Ω∥1 in each Tj(Bη ,sj−n).

In the following, we need to give a partition of unity on the unit surface Sd−1. Fix
n ≥ 100. Let Θn = {env }v be a collection of unit vectors on Sd−1 which satisûes the
following two conditions:
(a) ∣env − env′ ∣ ≥ 2−nγ−4, if v /= v′.
(b) If θ ∈ Sd−1, there exists a env such that ∣env − θ∣ ≤ 2−nγ−4.
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_e constant 0 < γ < 1 in (a) and (b) will be chosen later. To do this, we can simply
take a maximal collection {env }v for which (a) holds. Notice that there are C2nγ(d−1)

elements in the collection {env }v . For every θ ∈ Sd−1, there only exists ûnite env such
that ∣env − θ∣ ≤ 2−nγ−4. Now we can construct an associated partition of unity on the
unit surface Sd−1. Let ζ be a smooth, nonnegative, radial function with ζ(u) = 1 for
∣u∣ ≤ 1

2 and ζ = 0 for ∣u∣ > 1. Set

Γ̃n
v (ξ) = ζ(2nγ( ξ

∣ξ∣ − e
n
v ))

and deûne

Γn
v (ξ) = Γ̃n

v (ξ)( ∑
v

Γ̃n
v (ξ))

−1
.

_en it is easy to see that Γn
v is homogeneous of degree 0 with

∑
v

Γn
v (ξ) = 1, for all ξ /= 0 and all n.

Now we deûne operator Tn ,v
j by

Tn ,v
j (h)(x) = p. v.∫

Rd

Ω(x − y)
∣x − y∣d ϕ j(x − y)Γn

v (x − y) ⋅ h(y)dy.

For convenience, deûne the kernel of Tn ,v
j as Kn ,v

j (x) = Ω(x)
∣x ∣d ϕ j(x)Γn

v (x). _erefore,
for ûxed n ≥ 100 we have

Tj = ∑
v

Tn ,v
j .

In the sequel, we need to separate the phase of the kernel into diòerent directions.
Hence we deûne a multiple operator by

Ĝn ,vh(ξ) = Φ(2nγ⟨env , ξ/∣ξ∣⟩)ĥ(ξ),

where h is a Schwartz function and Φ is a smooth, nonnegative, radial function such
that 0 ≤ Φ(x) ≤ 1 and Φ(x) = 1 on ∣x∣ ≤ 2, Φ(x) = 0 on ∣x∣ > 4. Now we can split
Tn ,v

j into two parts:
Tn ,v

j = Gn ,vTn ,v
j + (I −Gn ,v)Tn ,v

j .

_e following lemma gives the L2 estimate involving Gn ,vTn ,v
j , which will be

proved in the next section.

Lemma 2.3 For n ≥ 100, ∥Ω∥∞ ≤ 2ιn∥Ω∥1 with 0 < ι < γ/2, there exists a constant
C such that

∥ ∬[0,1]×Rd
ax ,s(η)∑

v
∑
j
Gn ,vTn ,v

j (Bη ,sj−n)(x)dηds∥
2

2
≤ C2−nγ+2nιλ∥ f ∥1 ,

where constant C is independent of n, λ, and f .

_e terms involving (I − Gn ,v)Tn ,v
j are more complicated. In Section 4, we will

prove the following lemma.
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Lemma 2.4 For ∥Ω∥∞ ≤ 2ιn∥Ω∥1 in Tn ,v
j , then

∥ ∬[0,1]×Rd
ax ,s(η) ∑

n≥100
∑
v
∑
j
(I −Gn ,v)Tn ,v

j (Bη ,sj−n)(x)dηds∥ 1
≤ C∥ f ∥1

where C is independent of λ and f .

Proof_eorem 1.1(ii) We now complete the proof of (2.4) with ∥Ω∥∞ ≤ 2ιn∥Ω∥1 in
each Tj . By Chebyshev’s inequality, we have

m({x ∈ (E∗)c ∶ ∣ ∬[0,1]×Rd
ax ,s(η)∑

j
∑

n≥100
Tn

j (B
η ,s
j−n)(x)dηds∣ >

λ
2
})

≤ 16
λ2 ∥ ∬[0,1]×Rd

ax ,s(η) ∑
n≥100

∑
v
∑
j
Gn ,vTn ,v

j (Bη ,sj−n)(x)dηds∥
2

2

+ 4
λ
∥ ∬[0,1]×Rd

ax ,s(η) ∑
n≥100

∑
v
∑
j
(I −Gn ,v)Tn ,v

j (Bη ,sj−n)(x)dηds∥ 1

=∶ I + II.

Using Lemma 2.4, we can get the desired estimate of II. Notice that we choose
0 < ι < γ

2 . For I, by Minkowski’s inequality and Lemma 2.3, we have

I ≤ Cλ−2( ∑
n≥100

∥ ∬[0,1]×Rd
ax ,s(η)∑

v
∑
j
Gn ,vTn ,v

j (Bη ,sj−n)dηds∥ 2
)

2

≤ Cλ−2( ∑
n≥100

(2−nγ+2nιλ∥ f ∥1)
1
2 )

2
≤ Cλ−1∥ f ∥1 .

Combining this with Lemma 2.2, we complete the proof of _eorem 1.1(ii), once
Lemmas 2.2–2.4 hold.

3 Proofs of Lemmas 2.2 and 2.3

Proof of Lemma 2.2 Denote the kernel of operator Tn
j, ι by

Kn
j, ι(y) ∶= ΩχD ι( y

∣y∣ )
ϕ j(y)
∣y∣d .

It is easy to see that

∣ ∫
Rd

Kn
j, ι(y)dy∣ ≤ C ∫

D ι ∫
2 j

2 j−2
∣Ω(θ)∣r−1drdσ(θ) ≤ C ∫

D ι
∣Ω(θ)∣dσ(θ).
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_erefore, by Chebyshev’s inequality, Minkowski’s inequality and Lemma 2.1(iv), we
get

m({x ∈ (E∗)c ∶ ∣ ∬[0,1]×Rd
ax ,s(η) ∑

n≥100
∑
j∈Z

Tn
j, ι(B

η ,s
j−n)(x)dηds∣ >

λ
2
})

≤ C
λ
∥ ∬[0,1]×Rd

ax ,s(η) ∑
n≥100

∑
j∈Z

Tn
j, ι(B

η ,s
j−n)(x)dηds∥ 1

≤ C
λ
∑

n≥100
∬[0,1]×Rd

∣â(η)∣∑
j
∥Bη ,sj−n∥1dηds∫

D ι
∣Ω(θ)∣dσ(θ)

≤ C
λ
∥â∥1∥ f ∥1 ∫

Sd−1
card{n ∈ N ∶ n ≥ 100, 2ιn ≤ ∣Ω(θ)∣/∥Ω∥1} ∣Ω(θ)∣dσ(θ)

≤ C
λ
∥â∥1∥ f ∥1 .

Proof of Lemma 2.3 Wewill use some ideas from [24] in the proof of Lemma2.3. As
usual, we adopt the TT∗ method in the L2 estimate. Moreover, we also use an orthog-
onality argument based on the following observation of the support of F(Gn ,vTn ,v

j ).
For a ûxed n ≥ 100, one has

(3.1) sup
ξ/=0
∑
v

∣Φ2(2nγ⟨env , ξ/∣ξ∣⟩)∣ ≤ C2nγ(d−2) .

In fact, by the homogeneity of Φ, it suõces to take the supremum over the surface
Sd−1. For ∣ξ∣ = 1 and ξ ∈ suppΦ(2nγ⟨env , ξ/∣ξ∣⟩), denote by ξ� the hyperplane perpen-
dicular to ξ. _us,

(3.2) dist(env , ξ�) ≤ C2−nγ .

Since the mutual distance of env ’s is bounded by 2−nγ−4, there are at most C2nγ(d−2)

vectors satisfy (3.2). We hence get (3.1).
By applying Minkowski’s inequality, Plancherel’s theorem, and Cauchy–Schwarz

inequality, we have

∥ ∬[0,1]×Rd
ax ,s(η)∑

v
∑
j
Gn ,vTn ,v

j (Bη ,sj−n)(x)dηds∥
2

2

≤ ( ∬[0,1]×Rd
∣â(η)∣∥ ∑

v
Φ(2nγ⟨env , ξ/∣ξ∣⟩)F( ∑

j
Tn ,v

j (Bη ,sj−n))(ξ)∥ 2
dηds)

2

≤ C2nγ(d−2)( ∬[0,1]×Rd
∣â(η)∣∥ ∑

v
∣F( ∑

j
Tn ,v

j (Bη ,sj−n)) ∣
2
∥

1
2

1
dηds)

2

≤ C2nγ(d−2)( ∬[0,1]×Rd
∣â(η)∣( ∑

v
∥ ∑

j
Tn ,v

j (Bη ,sj−n)∥
2

2
)

1
2
dηds)

2
.

(3.3)

Next we will show that for a ûxed env , η, s,

(3.4) ∥ ∑
j
Tn ,v

j (Bη ,sj−n)∥
2

2
≤ C2−2nγ(d−1)+2nιλ∥ f ∥1 .
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_en, using card(Θn) ≤ C2nγ(d−1) and applying (3.3) and (3.4), we get

∥ ∬[0,1]×Rd
ax ,s(η)∑

v
∑
j
Gn ,vTn ,v

j (Bη ,sj−n)dηds∥
2

2
≤ C2−nγ+2nιλ∥ f ∥1 ,

which is just the desired bound of Lemma 2.3. _us, to ûnish the proof of Lemma 2.3,
it is enough to prove (3.4). By applying ∥Ω∥∞ ≤ 2ιn∥Ω∥1, we have

∣Tn ,v
j (Bη ,sj−n)(x)∣ ≤ C2− jd2ιn∥Ω∥1 ∫

Rd
ϕ j(x − y)Γn

v (x − y)∣Bη ,sj−n(y)∣dy

≤ C2ιnHn ,v
j ∗ ∣Bη ,sj−n ∣(x),

where Hn ,v
j (x) ∶= 2− jd χEn ,v

j
(x) and χEn ,v

j
(x) is a characteristic function of the set

En ,v
j ∶= {x ∈ Rd ∶ ∣⟨x , env ⟩∣ ≤ 2 j , ∣x − ⟨x , env ⟩env ∣ ≤ 2 j−nγ} .

For a ûxed env , we write

∥ ∑
j
Tn ,v

j (Bη ,sj−n)∥
2

2
≤ C22ιn∑

j
∫
Rd

Hn ,v
j ∗Hn ,v

j ∗ ∣Bη ,sj−n ∣(x) ⋅ ∣B
η ,s
j−n(x)∣dx

+ C22ιn∑
j

j−1

∑
i=−∞

∫
Rd

Hn ,v
j ∗Hn ,v

i ∗ ∣Bη ,si−n ∣(x) ⋅ ∣B
η ,s
j−n(x)∣dx .

(3.5)

Observe that ∥Hn ,v
i ∥1 ≤ C2−idm(En ,v

i ) ≤ C2−nγ(d−1); therefore, for any i ≤ j,

Hn ,v
j ∗Hn ,v

i (x) ≤ 2−nγ(d−1)2− jd χẼn ,v
j
,

where Ẽn ,v
j = En ,v

j + En ,v
j . Hence for a ûxed j, n, env , and x, we have

Hn ,v
j ∗Hn ,v

j ∗ ∣Bη ,sj−n ∣(x) +
j−1

∑
i=−∞

Hn ,v
j ∗Hn ,v

i ∗ ∣Bη ,si−n ∣(x)

≤ C2−nγ(d−1)2− jd∑
i≤ j
∫
x+Ẽn ,v

j

∣Bη ,si−n(y)∣dy

≤ C2−nγ(d−1)2− jd∑
i≤ j

∑
Q∈Qi−n

Q∩{x+Ẽn ,v
j }/=∅

∫
Rd

∣bη ,sQ (y)∣dy

≤ C2−nγ(d−1)2− jd∑
i≤ j

∑
Q∈Qi−n

Q∩{x+Ẽn ,v
j }/=∅

λ∣Q∣

≤ C2−nγ(d−1)2− jd2 jd−nγ(d−1)λ

≤ Cλ2−2nγ(d−1) ,

(3.6)

where in third inequality above, we use ∫ ∣bη ,sQ (y)∣dy ≤ Cλ∣Q∣ (see Lemma 2.1(iv))
and in the fourth inequality we use the fact that the cubes inQ are disjoint (see Lemma
2.1(i)). By (3.5), (3.6) and∑ j ∥B

η ,s
j−n∥1 ≤ C∥ f ∥1, we obtain

∥ ∑
j
Tn ,v

j (Bη ,sj−n)∥
2

2
≤ Cλ2−2nγ(d−1)+2nι∑

j
∥Bη ,sj−n∥1 ≤ Cλ2−2nγ(d−1)+2nι∥ f ∥1 ,

which is just (3.4), and we complete the proof of Lemma 2.3.

https://doi.org/10.4153/CMB-2017-040-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-040-1


108 Y. Ding and X. Lai

4 Proof of Lemma 2.4

To prove Lemma 2.4, we have to consider some oscillatory integrals that come from
the term (I −Gn ,v)Tn ,v

j .
Before stating the proof of Lemma 2.4, let us give some notations. We introduce

a frequency decomposition. Let ψ be a radial C∞ function such that ψ(ξ) = 1 for
∣ξ∣ ≤ 1, ψ(ξ) = 0 for ∣ξ∣ ≥ 2 and 0 ≤ ψ(ξ) ≤ 1 for all ξ ∈ Rd . Deûne β(ξ) = ψ(ξ) −
ψ(2ξ), βk(ξ) = β(2k ξ); then βk is supported in {ξ ∶ 2−k−1 ≤ ∣ξ∣ ≤ 2−k+1}. Deûne the
convolution operators Λk with Fourier multipliers βk . _at is, Λ̂k f (ξ) = βk(ξ) f̂ (ξ).
_en by the construction of βk , we have

I = ∑
k∈Z

Λk ,

where I is the identity. Write (I − Gn ,v)Tn ,v
j = ∑k(I − Gn ,v)ΛkTn ,v

j . By using Min-
kowski’s inequality,

(4.1) ∥ ∬[0,1]×Rd
ax ,s(η) ∑

n≥100
∑
v
∑
j
(I −Gn ,v)Tn ,v

j (Bη ,sj−n)(x)dηds∥ 1
≤

∑
n≥100

∑
v
∑
j
∑
k

∑
l(Q)=2 j−n

∬[0,1]×Rd
∣â(η)∣ ⋅ ∥(I −Gn ,v)ΛkTn ,v

j (bη ,sQ )∥1dηds.

Lemma 4.1 _ere exists N > 0 such that for any N1 ∈ Z+

(4.2) ∥(I −Gn ,v)ΛkTn ,v
j (bη ,sQ )∥1 ≤ C2−nγ(d−1)+nι+(− j+k)N1+nγ(N1+2N)∥bη ,sQ ∥1 ,

where C is a constant only dependent on N1.

Proof Denote hk ,n ,v(ξ) = (1 −Φ(2nγ⟨env , ξ/∣ξ∣⟩))βk(ξ). _en

∥(I −Gn ,v)ΛkTn ,v
j (bη ,sQ )∥ 1 ≤ ∥F−1(hk ,n ,v K̂n ,v

j )∥ 1∥b
η ,s
Q ∥1 .

Write

F−1(hk ,n ,v K̂n ,v
j )(x) = 1

(2π)d ∫Rd
e ix ⋅ξhk ,n ,v(ξ)∫

Rd
e−i ξ⋅ωKn ,v

j (ω)dωdξ.

In order to separate the rough kernel, we change to polar coordinates ω = rθ; then
the integral above can be written as

1
(2π)d ∫Sd−1

Ω(θ)Γn
v (θ){ ∫Rd ∫

∞

0
e i(⟨x−rθ ,ξ⟩)hk ,n ,v(ξ) ⋅

ϕ j(r)
r

drdξ}dσ(θ).

(4.3)

Since θ ∈ supp Γn
v , ∣θ − env ∣ ≤ 2−nγ . By the support of Φ, we see ∣⟨env , ξ/∣ξ∣⟩∣ ≥ 21−nr .

_us,

(4.4) ∣⟨θ , ξ/∣ξ∣⟩∣ ≥ ∣⟨env , ξ/∣ξ∣⟩∣ − ∣⟨env − θ , ξ/∣ξ∣⟩∣ ≥ 2−nγ .
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Noting that ϕ j is supported in [2 j−2 , 2 j], we can integrate by parts N1 times with r.
Hence the integral (4.3) can be rewritten as

1
(2π)d ∫Sd−1

Ω(θ)Γn
v (θ){ ∫{2−k−1≤∣ξ∣≤2−k+1} ∫

2 j

2 j−2
e i(⟨x−rθ ,ξ⟩)hk ,n ,v(ξ)

× (i⟨θ , ξ⟩)−N1 ⋅ ∂N1
r [ϕ j(r)r−1]drdξ}dσ(θ),

since hk ,n ,v is supported in {2−k−1 ≤ ∣ξ∣ ≤ 2−k+1}. Integrating by parts in ξ, the integral
in curly brackets above can be rewritten as

(4.5) ∫{2−k−1≤∣ξ∣≤2−k+1} ∫
2 j

2 j−2
e i⟨x−rθ ,ξ⟩ (I − 2−2k∆ξ)N[(i⟨θ , ξ⟩)−N1hk ,n ,v(ξ)]

(1 + 2−2k ∣x − rθ∣2)N

× ∂N1
r [ϕ j(r)r−1]drdξ.

We ûrst give an estimate of the term in (4.5). Note that 2 j−2 ≤ r ≤ 2 j , and we get

∣∂N1
r [ϕ j(r)r−1]∣ ≤ C2− j(1+N1) .(4.6)

In the following, we claim that

(4.7) ∣ (I − 2−2k∆ξ)N[⟨θ , ξ⟩−N1hk ,n ,v(ξ)]∣ ≤ C2(nγ+k)N1+2nγN .

In fact, by (4.4), it is easy to see that

∣(−i⟨θ , ξ⟩)−N1 ⋅ hk ,n ,v(ξ)∣ ≤ C∣⟨θ , ξ⟩∣−N1 ≤ C2(nγ+k)N1 .

Using the product rule, we get

∣∂ξ i hk ,n ,v(ξ)∣
= ∣ − ∂ξ i [Φ(2nγ⟨env , ξ/∣ξ∣⟩)] ⋅ βk(ξ) + ∂ξ i βk(ξ) ⋅ ( 1 −Φ(2nγ⟨env , ξ/∣ξ∣⟩)) ∣
≤ C2nγ+k .

_erefore by induction, we have ∣∂αξ hk ,n ,v(ξ)∣ ≤ C2(nγ+k)∣α∣ for any multi-indices
α ∈ Zd+. By using (4.4) and the product rule again, we have

∣∂2
ξk(⟨θ , ξ⟩)

−N1hk ,n ,v(ξ))∣

= ∣ ⟨θ , ξ⟩−N1−2 ⋅ N1(N1 + 1)θ2
k ⋅ hk ,n ,v

+ 2⟨θ , ξ⟩−N1−1 ⋅ (−N1) ⋅ θk∂ξk hk ,n ,v(ξ) + ⟨θ , ξ⟩−N1∂2
ξk hk ,n ,v(ξ)∣

≤ C2(nγ+k)(N1+2) .

Hence, we conclude that

2−2k ∣∆ξ[(⟨θ , ξ⟩)−N1hk ,n ,v(ξ)]∣ ≤ C2(nγ+k)N1+2nγ .

Proceeding by induction, we get (4.7). Now we choose N = [d/2] + 1. Since we need
to get the L1 estimate of (4.3), by the support of hk ,n ,v ,

∫{2−k−1≤∣ξ∣≤2−k+1} ∫
( 1 + 2−2k ∣x − rθ∣2)−N

dxdξ ≤ C .
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Integrating with r, we get a bound 2 j . Note that we assume that ∥Ω∥∞ ≤ 2nι∥Ω∥1.
Next, integrating with θ, we get a bound 2−nγ(d−1)+nι∥Ω∥1. Combining (4.6), (4.7),
and the above estimates, (4.2) is bounded by

2− j(1+N1)+(nγ+k)N1+2nγN+ j−nγ(d−1)+nι∥Ω∥1 ≤ C2−nγ(d−1)+nι2(− j+k)N1+nγ(N1+2N) .

Hence, we complete the proof of Lemma 4.1 with N = [d/2] + 1.

Lemma 4.2 _ere exists N > 0 such that

∥(I −Gn ,v)ΛkTn ,v
j (bη ,sQ )∥1 ≤ C2−nγ(d−1)+nι+ j−n−k+2nγN∥bη ,sQ ∥1 .

Proof _e proof of this lemma is similar to that of Lemma 4.1. However, we will
not integrate by parts with r, but use some cancellation of bη ,sQ . Denote hk ,n ,v(ξ) =
(1 −Φ(2nγ⟨env , ξ/∣ξ∣⟩))βk(ξ). _en

(4.8) (I −Gn ,v)ΛkTn ,v
j (bη ,sQ )(x) =

∫
Rd
(F−1(hk ,n ,v K̂n ,v

j )(x − y) − F−1(hk ,n ,v K̂n ,v
j )(x − yQ))bη ,sQ (y)dy,

where yQ is the center of Q. Here we use the cancellation of bη ,sQ (see Lemma 2.1(iv)).
By changing to polar coordinate and integrating by parts with ξ, we can rewrite
F−1(hk ,n ,v K̂n ,v

j )(x − y) as

1
(2π)d ∫Sd−1

Ω(θ)Γn
v (θ){ ∫{2−k−1≤∣ξ∣≤2−k+1} ∫

2 j

2 j−2
e i⟨x−y−rθ ,ξ⟩

×
(I − 2−2k∆ξ)N[hk ,n ,v(ξ)]
(1 + 2−2k ∣x − y − rθ∣2)N ⋅ ϕ j(r)r−1drdξ}dσ(θ).

Here we choose N = [d/2]+ 1. _us, (4.8) can be rewritten as two parts: I(x)+ II(x),
where

I(x) = 1
(2π)d ∫Rd ∫Sd−1

Ω(θ)Γn
v (θ){ ∫

ξ
∫

r
e i⟨x−rθ ,ξ⟩( e−i⟨y ,ξ⟩ − e−i⟨yQ ,ξ⟩)

×
(I − 2−2k∆ξ)N[hk ,n ,v(ξ)]
(1 + 2−2k ∣x − y − rθ∣2)N ϕ j(r)r−1drdξ}dσ(θ) ⋅ bη ,sQ (y)dy

and

II(x) = 1
(2π)d ∫Rd ∫Sd−1

Ω(θ)Γn
v (θ)

× { ∫
ξ
∫

r
e i⟨x−yQ−rθ ,ξ⟩(I − 2−2k∆ξ)N[hk ,n ,v(ξ)]ϕ j(r)r−1

× ((1 + 2−2k ∣x − y − rθ∣2)−N − (1 + 2−2k ∣x − yQ − rθ∣2)−N)drdξ}

× dσ(θ) ⋅ bη ,sQ (y)dy.
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Note that y ∈ Q and yQ is the center of Q, then ∣y − yQ ∣ ≤ C2 j−n . By applying (4.7)
with N1 = 0, we get

∣ (I − 2−2k∆ξ)N(hk ,n ,v(ξ)) ∣ ≤ C22nγN

Notice that ∣e−i⟨y ,ξ⟩ − e−i⟨yQ ,ξ⟩∣ ≤ C2 j−n−k . Now, integrating with the variables in
the order as we did in proving Lemma 4.1, we can obtain that the L1 norm of I(x) is
bounded by 2−nγ(d−1)+nι+ j−n−k+2nγN∥bη ,sQ ∥1.
For II(x), using the observation

∣Ψ(y) − Ψ(yQ)∣ = ∣ ∫
1

0
⟨ y − yQ ,∇Ψ(ty + (1 − t)y0)⟩dt∣

≤ C∣y − yQ ∣ ∫
1

0

N2−2k ∣x − (ty + (1 − t)yQ) − rθ∣
(1 + 2−2k ∣x − (ty + (1 − t)yQ) − rθ∣2)N+1 dt,

where Ψ(y) = (1 + 2−2k ∣x − y − rθ∣2)−N , we can also get that the L1 norm of II(x) is
bounded by 2−nγ(d−1)+nι+ j−n−k+2nγN∥bη ,sQ ∥1. _us, we ûnish the proof of Lemma 4.2

Proof of Lemma 2.4 Let us come back to the proof of Lemma 2.4. Denote by [x]
the integral part of x. Let ε0 satisfy 0 < ε0 < 1 and will be chosen later. By (4.1),

∥ ∬[0,1]×Rd
ax ,s(η) ∑

n≥100
∑
v
∑
j
(I −Gn ,v)Tn ,v

j (Bη ,sj−n)(x)dηds∥ 1

≤ ∑
n≥100

∑
v
∑
j

∑
k< j−[nε0]

∑
l(Q)=2 j−n

∬[0,1]×Rd
∣â(η)∣

× ∥(I −Gn ,v)ΛkTn ,v
j (bη ,sQ )∥1dηds

+ ∑
n≥100

∑
v
∑
j

∑
k≥ j−[nε0]

∑
l(Q)=2 j−n

∬[0,1]×Rd
∣â(η)∣

× ∥(I −Gn ,v)ΛkTn ,v
j (bη ,sQ )∥1dηds

Now, using Lemma 4.1 with N = [d/2] + 1 for the ûrst term, Lemma 4.2 with N =
[d/2] + 1 for the second term, the fact [nε0] ≤ nε0 < [nε0] + 1, Lemma 2.1(iv) and
card(Θn) ≤ C2nγ(d−1), the above sum is bounded by

∑
n≥100

(2nτ1 + 2nτ2)∥â∥1∥ f ∥1 ,

where

τ1 = −ε0N1 + ι + γ(N1 + 2([d/2] + 1)), τ2 = 2γ([d/2] + 1) + ε0 + ι − 1.

Choose 0 < ι ≪ γ ≪ ε0 ≪ 1 and N1 large enough such that max{τ1 , τ2} < 0.
_erefore, the sum is convergent for n ≥ 100, and we ûnish the proof of Lemma 2.4,
thus proving _eorem 1.1(ii).
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