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ABSTRACT. There are many advantages to formulating an ice-sheet model in terms of a variational
principle. In particular, this applies to the specification of boundary conditions, which might otherwise
be problematic to implement. Here we focus primarily on the frictional basal sliding boundary condition
in a non-Newtonian Stokes model. This type of boundary condition is particularly difficult because it is
heterogeneous, requiring both a Dirichlet (no-penetration) condition normal to the bed, and a Neumann
(frictional sliding) condition tangential to the bed. In general, Neumann conditions correspond to
natural boundary conditions in a variational principle; that is, they arise naturally in the variational
formulation and thus need not be explicitly specified. While the same is not necessarily true of Dirichlet
conditions, it is possible to enforce a no-penetration condition using Lagrange multipliers within the
variational principle so that the Dirichlet condition becomes a natural boundary condition. Thus, in the
case of ice sheets, all relevant boundary conditions may be incorporated in the variational functional,
making them particularly easy to discretize. For the Stokes model, the resulting basal boundary
condition is valid for arbitrary topographic slopes. Here we apply the same methodology to the Blatter–
Pattyn higher-order approximate model, which is ordinarily limited to small basal slopes by the small-
aspect-ratio approximation. We introduce a modification that improves on the accuracy of the standard
Blatter–Pattyn model for all values of the basal slope, as we demonstrate in the slow sliding regime for
which analytical results are available. The remaining error is due to the effects of the small-aspect-ratio
approximation in the Blatter–Pattyn model.

1. INTRODUCTION
A significant issue in ice-sheet modeling concerns the basal
sliding boundary condition. This boundary condition is
complicated by the fact that it involves two different types of
conditions: a no-penetration condition in the normal
direction, which is a Dirichlet boundary condition, and
specification of the sliding stress in the tangential direction,
which is essentially a Neumann condition. Further, it may be
complicated in practice to accurately specify the required
normal and tangential directions. In the past, this issue has
been avoided, particularly in connection with approximate
ice-sheet models, by assuming small basal slopes (e.g.
Hutter, 1983; Van der Veen and Whillans, 1989). However,
basal slopes can be significant in practice. For reference, we
note that a preliminary �12 000 km2, high-resolution
(�1 km) basal topography dataset of the Jakobshavn region
in Greenland (https://www.cresis.ku.edu/data/greenland)
shows that �14% of the bed area has slopes in the range
5–108, �6% has slopes of >108 (this includes the majority of
the subglacial trench containing Jakobshavn Isbræ), and
maximum slopes are as large as �438. Thus, errors associ-
ated with a small slope approximation can be expected to
impact ice-sheet simulations, and in particular those that
aim to exploit high-resolution datasets of bed topography.

Various attempts have been made to account for the
effects of finite bed slope in approximate models (e.g.
the shallow-ice approximation (SIA)) that implicitly make the
low-aspect-ratio approximation � ¼ d=L � 1 (where d is a
vertical scale on the order of the ice-sheet thickness and L is a
characteristic horizontal length scale) and that also assume
small bed slopes, @zb=@xj j � 1 (where zb is the vertical

coordinate of the bed surface). For example, Morland (2000)
and Schoof (2003) consider shallow-ice dynamics driven by
upper-surface perturbations, which permit local flow on
much smaller length scales over ‘bumps’ in bottom topog-
raphy. These models require explicit integration of the
equations over the short topography length scales. Schoof
(2003), on the other hand, considers the problem of
parameterizing the effects of significant basal topography
for use in the original approximate models that depend on
the small-basal-slope assumption.

In this paper, we consider the specification of arbitrary-
slope basal boundary conditions in large-scale, three-
dimensional (3-D) models incorporating non-Newtonian
Stokes flow dynamics. These models, which do not involve
the low-aspect-ratio approximation, are becoming feasible
with the increasing availability of supercomputing capabil-
ities (e.g. Zwinger and others, 2007). Although the analytic
specification of various types of boundary conditions is
relatively straightforward, this is not so in the case of discrete
models, particularly when the boundary is not smooth as, for
example, when it has to conform to a discrete grid. In this
regard it is noteworthy that non-Newtonian ice-sheet or
glacier dynamics may be described in terms of a variational
principle. A variational formulation of this kind has many
advantages over a standard partial differential equation
(PDE) formulation (Dukowicz and others, 2010, henceforth
referred to as DPL. The present paper is a companion paper
to DPL. It is intended to be read independently; however,
access to the earlier paper may be helpful). In particular, a
variational formulation has considerable advantages for the
specification of boundary conditions, especially when
applied to numerical modeling. Many boundary conditions,
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Neumann boundary conditions in particular, are inherently
contained within the variational principle, and these so-
called natural boundary conditions need not be specified
separately, i.e. outside the variational principle. Such
boundary conditions are particularly advantageous from
the numerical point of view because it is only necessary to
discretize the variational functional and not the boundary
conditions themselves. The discretization of the functional is
relatively straightforward because it is a scalar quantity that,
in general, involves lower-order derivatives than the
differential equations or the boundary conditions. Dirichlet
boundary conditions, on the other hand, typically are not
natural boundary conditions and must be specified sepa-
rately from the variational principle. In particular, the no-
penetration basal boundary condition suffers from this
problem. There are various possible ways of implementing
Dirichlet boundary conditions, some briefly discussed by
DPL. For example, in the finite-element method this is
commonly accomplished by the use of penalty functions.
Many of these methods either are approximate or specify
such boundary conditions outside the variational principle.
Our preference is to incorporate all boundary conditions
into the functional in order to preserve the advantages of a
variational formulation. It is indeed possible to do this for
Dirichlet boundary conditions, and specifically for the exact
no-penetration boundary condition, by means of the method
of Lagrange multipliers (i.e. by treating the Dirichlet
boundary condition as an additional constraint). This trans-
forms the no-penetration condition into a natural boundary
condition with all the above-mentioned advantages as a by-
product. Further, no small-slope approximation is required.

Frequently, however, a simpler and less expensive
approximate model of Stokes flow may be appropriate. In
particular, the commonly used first-order or Blatter–Pattyn
approximate model (Blatter, 1995; Pattyn, 2003) is Oð�Þ
accurate within the low-aspect-ratio approximation of the
Stokes system (Schoof and Hindmarsh, 2010; hereafter
referred to as SH). However, the specification of discrete
boundary conditions is again problematic, just as in the
Stokes model. Furthermore, the associated basal boundary
conditions implicitly assume a small bed slope,
@zb=@xj j � 1, as in the SIA. Fortunately, the Blatter–Pattyn
model also possesses a variational principle (see Schoof,
2010; DPL). This allows us to apply the Lagrange multiplier
method to incorporate the no-penetration boundary condi-
tion into the functional, resulting in boundary correction
terms that are second-order accurate with respect to the
basal topographic slope. This modification, which we call
the ‘modified Blatter–Pattyn model’, improves the accuracy
of the standard Blatter–Pattyn model for finite basal slopes. It
does not, however, remove the error entirely.

2. THE BASIC STOKES MODEL
We begin with the variational principle for the basic Stokes
model whose action functional is given by

AS ui, P½ � ¼
Z
V

(
G _"2

� �� �giui � P
@ui
@xi

� �)
dV , ð1Þ

where ui 2 u, v,wf g is the velocity vector, xi 2 x, y, zf g is
the position vector, gi is the gravitational acceleration vector,
typically gi ¼ ð0, 0, � gÞ, � is the ice density, assumed
constant, and _"2 ¼ _"ij _"ij is the second invariant of the full

Stokes strain-rate tensor,
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2
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� �
,
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@x
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" #

:

ð2Þ

We define

G _"2
� � ¼ 2n

n þ 1
�n _"2

� �
_"2, ð3Þ

where

�n _"2
� � ¼ �0ð�Þ _"2

� �ð1�nÞ=2n
, ð4Þ

is the effective Glen’s law viscosity, typically used with
exponent n= 3, and �0(�) is a temperature-dependent
coefficient. The variable, P, in Equation (1), although
commonly identified as the isotropic pressure, is actually a
Lagrange multiplier for enforcing incompressibility,
@ui=@xi ¼ 0. The volume integral includes the entire ice
sheet. Note that we are using Cartesian tensor notation and,
where appropriate, the summation convention on repeated
indices. In general, tensor indices are 3-D, i.e.
i, j, � � � 2 x, y, zf g, except that an index appearing in paren-
theses wi l l denote the hor izonta l plane, i .e .
ðiÞ, ðjÞ, � � � 2 x, yf g. For example, uiui ¼ u2 þ v2 þw2 and
uðiÞuðiÞ ¼ u2 þ v2.

The variational principle states that the dynamical system
is to be found at the extremum of the action, Equation (1),
with respect to functional derivatives relative to velocity, ui,
and pressure, P, as follows:

�AS

�ui
¼ 0,

�AS

�P
¼ 0: ð5Þ

This yields the following Euler–Lagrange equations:

(a) a 3-D momentum equation,

@�ij

@xj
þ �gi ¼

@�ij

@xj
� @P
@xi

þ �gi ¼ 0, ð6Þ

where �ij ¼ �ij � P�ij is the Cauchy stress tensor and
�ij ¼ 2�n _"2ð Þ _"ij is the deviatoric stress tensor,

(b) the continuity equation for incompressible flow,

@ui
@xi

¼ 0, ð7Þ

and

(c) stress-free boundary conditions over the entire surface, S,
that surrounds the ice-sheet volume, V,

�ijnj ¼ �ijnj � Pni ¼ 0: ð8Þ
DPL provide details of the derivation.

As shown by Equation (8), the action, Equation (1), in-
corporates only stress-free boundary conditions. For present
purposes we assume that the surface, S, is composed of an
upper surface, S(s), given by z ¼ zsðx, yÞ, and a basal surface,
S(b), given by z ¼ zbðx, yÞ, that is in contact with the bed:
S= S(s) + S(b). The corresponding outward-pointing unit nor-
mal vectors are given by
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(i) Upper surface nðsÞ
z > 0

� 	
:

nðsÞ
i ¼ nðsÞ

x , nðsÞ
y , nðsÞ

z

� 	T
¼ �@zs=@x, � @zs=@y, 1ð ÞTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @zs=@xð Þ2 þ @zs=@yð Þ2
q ,

ð9Þ
(ii) Basal surface nðbÞ

z < 0
� 	

:

nðbÞ
i ¼ nðbÞ

x , nðbÞ
y ,nðbÞ

z

� 	T
¼ @zb=@x, @zb=@y, � 1ð ÞTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @zb=@xð Þ2 þ @zb=@yð Þ2
q :

ð10Þ
The action must be modified to include basal sliding, with or
without frictional slip, and we do this in two steps. First, we
incorporate a frictional stress force in the functional, as
follows:

AS½ui, P � ¼
Z
V

G _"2
� �� �giui � P

@ui
@xi

� �
dV�

Z
SðbÞ

�jðuÞnj dS:

ð11Þ
Note that the surface integral covers only the basal surface,
S(b); it is assumed that the frictional force acts only on S(b) so
that there is no contribution from the stress-free upper
surface. For simplicity, as in DPL, we assume that
�jðuÞ ¼ ��uiuinj=2, which represents a linear frictional
sliding law with constant coefficient, � (��0). Other
frictional laws may be easily accommodated, as in Schoof
(2010), for example. The variational principle applied to
Equation (11) gives the following boundary conditions:

(d) a stress-free condition on S(s):

�ijnj ¼ 0, ð12Þ
and

(e) a frictional condition on S(b):

�ijnj ¼ ��ui: ð13Þ
Both of these conditions are natural boundary conditions
associated with the variational principle since they are
contained within the variational functional.

In actuality, the basal condition involves sliding along the
bed. This means that we must require the no-penetration
condition,

uini ¼ 0, ð14Þ
in addition to Equation (13), which then becomes a
tangential boundary condition. Note that Equation (14) is a
Dirichlet boundary condition since it specifies the normal
velocity, while Equations (12) and (13) are Neumann-type
conditions since they specify velocity gradients.

As discussed by DPL, a variational principle, such as one
based on Equation (1) or (11), incorporates Neumann
boundary conditions as natural boundary conditions but
not necessarily Dirichlet boundary conditions. Leaving aside
penalty-function methods, Dirichlet boundary conditions
may be incorporated in the functional in two ways. First,
velocities may be restricted to those that satisfy the Dirichlet
boundary conditions. In practice, this option is feasible only
in the discrete case where velocities are expanded in local
basis functions that satisfy the specific Dirichlet boundary
conditions. In the ice-sheet problems that we are consider-
ing, all boundary conditions are Neumann conditions except
for the basal no-penetration boundary condition, which

specifies only one component of the basal velocity. This
situation may be problematic to specify in terms of local basis
functions. The second alternative is to enforce Dirichlet
boundary conditions as constraints by means of Lagrange
multipliers. This alternative is attractive because variational
principles are well suited to the use of this method, including
the situation when only one component of velocity is
specified, and also because all boundary conditions then
become natural boundary conditions that are inherently part
of the variational principle. As a result, boundary conditions
become easier to implement in the discrete case. Accord-
ingly, we pursue the second alternative here.

To accommodate the second option, we modify the
action (Equation (11)) as follows:

AS ui, P �½ � ¼
Z
V

G _"2
� �� �giui � P

@ui
@xi

� �
dV

þ
Z
SðbÞ

�uini þ 1
2
�uiui

� �
dS,

ð15Þ

where the first term in the surface integral has been added to
enforce the no-penetration constraint at the basal surface,
uini=0, by means of the Lagrange multiplier, �. As before,
taking the variation of Equation (15) with respect to velocity
components ui and the Lagrange multipliers, P and �, we
obtain the same Euler–Lagrange equations and stress-free
boundary condition on the upper surface, S(s), as before,
except that at the basal surface, S(b), we have

(f) the no-penetration condition,

uini ¼ 0, ð16Þ
and

(g) a constrained basal stress condition,

�ijnj þ �ui þ �ni ¼ �ijnj þ �ui þ ð�� PÞni ¼ 0: ð17Þ
So far, we have mostly omitted the superscript notation
denoting upper and basal surfaces when discussing boundary
conditions, taking for granted that this should be clear from
the context. Note that we have added a new variable, �, and
an additional boundary equation, Equation (16). However,
this new variable appears only locally at the basal boundary
and, as a result, the two basal boundary equations (16) and
(17) are easily solved for the combination � –P, as follows:

�� P ¼ �ni�ijnj � �niui ¼ �ni�ijnj : ð18Þ

Substituting this in Equation (17), we have

�ijnj � nk�kjnj
� �

ni þ �ui ¼ 0: ð19Þ

This is exactly the tangential stress sliding boundary
condition for the Stokes system written out in detail by
DPL, except that now it is incorporated in the action as a
natural boundary condition. The basal slope is not restricted.
Note that Equation (19) specifies only the tangential com-
ponents; the normal component of this equation vanishes
because of Equation (16). Thus, Equations (16) and (17) are
an alternative (and equivalent) way of specifying the basal
frictional sliding boundary condition.

3. A MODIFIED BLATTER–PATTYN MODEL
The commonly used first-order or Blatter–Pattyn approxi-
mate model (Blatter, 1995; Pattyn, 2003) is specified by the
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following equations:

@

@x
2�BP 2

@u
@x

þ @v
@y

� �� �
þ @

@y
�BP

@u
@y

þ @v
@x

� �� �

þ @

@z
�BP

@u
@z

� �
¼ �g

@zs
@x

,

ð20Þ

@

@x
�BP

@u
@y

þ @v
@x

� �� �
þ @

@y
2�BP

@u
@x

þ 2
@v
@y

� �� �

þ @

@z
�BP

@v
@z

� �
¼ �g

@zs
@y

,

ð21Þ
where in the case of Glen’s law the effective Blatter–Pattyn
viscosity, �BP, is given by

�BP ¼ �n _"2BP
� � ¼ �0ð�Þ _"2BP

� �ð1�nÞ=2n
, ð22Þ

and _"2BP is the approximate Blatter–Pattyn strain-rate
invariant:

_"2BP ¼ @u
@x

� �2

þ @v
@y

� �2

þ @u
@x

þ @v
@y

� �2

þ 1
2

@u
@y

þ @v
@x

� �2

þ 1
2

@u
@z

� �2

þ 1
2

@v
@z

� �2

:

ð23Þ
As before, the boundary conditions used in the Blatter–Pattyn
model are a stress-free condition at the upper surface and a
frictional sliding condition at the bed. These are given by

(a) Stress-free upper surface:

2 2
@u
@x

þ @v
@y

� �
nx þ @u

@y
þ @v
@x

� �
ny þ @u

@z
nz ¼ 0, ð24Þ

@u
@y

þ @v
@x

� �
nx þ 2

@u
@x

þ 2
@v
@y

� �
ny þ @v

@z
nz ¼ 0, ð25Þ

(b) Basal frictional sliding:

�BP 4
@u
@x

þ 2
@v
@y

� �
nxþ �BP

@u
@y

þ @v
@x

� �
nyþ �BP

@u
@z

nz¼ ��u,

ð26Þ

�BP
@u
@y

þ @v
@x

� �
nxþ �BP 2

@u
@x

þ 4
@v
@y

� �
nyþ �BP

@v
@z

nz¼ ��v,

ð27Þ
for the simple case of a linear drag law. This boundary
condition approximates the true horizontal components of
tangential frictional sliding stress at the bed only in the small
slope limit nxj j, ny

�� �� � 1, as we show later. Thus, the
Blatter–Pattyn model is valid only in the small slope limit.
We shall refer to the model that incorporates the above
boundary conditions as the standard Blatter–Pattyn model.
The more general form of the boundary conditions contain-
ing exact unit normal vectors, i.e. Equations (24–27), is
found in Schoof (2010), for example. However, in practice
the model is most commonly used with the Van der Veen
and Whillans (1989) boundary conditions, obtained by
further approximating the unit normal vectors by means of
the small-slope approximation, @zs=@xðiÞ

�� ��, @zb=@xðiÞ
�� �� � 1,

which results in

nðsÞ
x � �@zs=@x, nðsÞ

y � �@zs=@y, nðsÞ
z � 1, ð28Þ

nðbÞ
x � @zb=@x, nðbÞ

y � @zb=@y, nðbÞ
z � �1: ð29Þ

Given the surface and basal boundary conditions, Equa-
tions (20) and (21) determine the horizontal velocities, and
this determines the vertical velocity by means of the
continuity equation:

w ¼ � @

@x

Z z

zb
u dz 0 � @

@y

Z z

zb
v dz 0: ð30Þ

DPL provide more details.
Just as in the Stokes case, the standard Blatter–Pattyn

model is obtainable from a variational principle, this time
associated with the action

ASBP uðiÞ
� 
 ¼ Z

V
G _"2BP
� �þ �guðiÞ

@zs
@xðiÞ

� �
dV

þ
Z
SðbÞ

1
2
�uðiÞuðiÞ dS:

ð31Þ

The action principle associated with Equation (31) is exactly
equivalent to the equations of the standard Blatter–Pattyn
model, Equations (20–27). Essentially the same functional as
Equation (31) has appeared in finite-element ice-sheet
formulations such as Schoof (2010), where it is inferred
from the known Blatter–Pattyn equations. Compared with
the Stokes model, the Blatter–Pattyn model is much simpler
because it only involves horizontal velocities. Furthermore,
Equation (31) is positive-definite and therefore leads to a
symmetric, positive-definite (although nonlinear) matrix
problem. Unlike in the Stokes case, the action principle
now corresponds to an actual minimization problem (rather
than a saddle-point problem). As mentioned earlier,
presupposing that basal slopes are Oð�Þ, SH have shown
that the standard Blatter–Pattyn model is first-order accurate
in the low-aspect-ratio approximation to the Stokes model;
that is, it is accurate to Oð�Þ. This implies that the Blatter–
Pattyn action, Equation (31), and the basal boundary
condition, Equations (26) and (27), are also first-order-
accurate low-aspect-ratio approximations.

In this regard, DPL have shown that the Blatter–Pattyn
basal boundary condition, Equations (26) and (27), approxi-
mates the correct tangential boundary condition, Equa-
tion (19), only in the limit of small basal slopes, i.e. when
Equation (29) is valid. Note that the low-aspect-ratio and
small-basal-slope approximations are related but do not
necessarily imply one another. It might be expected that a
sufficiently large basal slope will cause the velocity field to
locally violate the low-aspect-ratio approximation, which
requires

@w=@xj j � @u=@zj j, @w=@yj j � @v=@zj j: ð32Þ
However, this does not mean that a small basal slope, one
that satisfies Equation (29), is required, and in fact a
moderately large basal slope may be compatible with
the low-aspect-ratio approximation.

The action, Equation (31), was derived directly from the
Stokes action, Equation (11), by DPL. In this derivation the
no-penetration basal boundary condition was only partially
taken into account, and the small-basal-slope assumption
was not specifically invoked but was presumably implied.
This suggests that explicitly incorporating the no-penetration
boundary condition into the Blatter–Pattyn action might be
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beneficial. Therefore, noting the modifications that were
necessary in the Stokes model, the standard Blatter–Pattyn
action, Equation (31), may be modified as follows:

AMBP ui½ � ¼
Z
V

G _"2BP
� �þ �guðiÞ

@zs
@xðiÞ

� �
dV

þ
Z
SðbÞ

�uini þ 1
2
�uiui

� �
dS,

ð33Þ

where we use the subscript MBP to indicate that this differs
from the standard Blatter–Pattyn action in two ways. First,
just as in the Stokes case, there is a term in the surface
integral imposing the no-penetration condition, and second,
the term specifying frictional stress involves the full 3-D
velocity rather than just the horizontal velocity. As a result,
the variation is to be taken with respect to the 3-D velocity.
Note that the strain invariant has the same form, Equa-
tion (23), as in the standard Blatter–Pattyn model, and we
indicate this by using the notation _"2BP.

Taking the variation of the modified action, Equation (33),
the Euler equations (20) and (21) and the stress-free surface
boundary condition, Equations (24) and (25), are un-
changed. (Note that a more general upper surface boundary
condition can be found in DPL.) The basal boundary
condition, on the other hand, now becomes

uin
ðbÞ
i ¼ 0, ð34Þ

and

�ij
� �

BPn
ðbÞ
j þ �ui þ �nðbÞ

i ¼ 0, ð35Þ
where

�ij
� �

BP ¼ 2�BP

2 @u
@x þ @v

@y

� 	
1
2

@u
@y þ @v

@x

� 	
1
2
@u
@z

1
2

@u
@y þ @v

@x

� 	
@u
@x þ 2 @v

@y

� 	
1
2
@v
@z

0 0 0

2
664

3
775, ð36Þ

is an effective Blatter–Pattyn stress quasi-tensor. Just as in the
Stokes case, we may solve for � by contracting Equation (35)

with nðbÞ
i to obtain

� ¼ �nðbÞ
i �ij

� �
BPn

ðbÞ
j : ð37Þ

Substituting this in Equation (35) and expanding, the
horizontal components become

�BP

"
4
@u
@x

1� nðbÞ
x nðbÞ

x � 1
2
nðbÞ
y nðbÞ

y

� �

þ 2
@v
@y

1� nðbÞ
x nðbÞ

x � 2nðbÞ
y nðbÞ

y

� 	#
nðbÞ
x

þ �BP
@u
@y

þ @v
@x

� �
1� 2nðbÞ

x nðbÞ
x

� 	
nðbÞ
y

þ �BP
@u
@z

1� nðbÞ
x nðbÞ

x

� 	
� @v

@z
nðbÞ
x nðbÞ

y

� �
nðbÞ
z ¼ ��u,

ð38Þ
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"
2
@u
@x

1� 2nðbÞ
x nðbÞ

x � nðbÞ
y nðbÞ

y

� 	

þ4
@v
@y

1� 1
2
nðbÞ
x nðbÞ

x � nðbÞ
y nðbÞ

y

� �#
nðbÞ
y

þ �BP
@u
@y

þ @v
@x

� �
1� 2nðbÞ

y nðbÞ
y

� 	
nðbÞ
x

þ �BP
@v
@z

1� nðbÞ
y nðbÞ

y

� 	
� @u

@z
nðbÞ
x nðbÞ

y

� �
nðbÞ
z ¼ ��v,

ð39Þ

where we have made use of the fact that nðbÞ
i nðbÞ

i ¼ 1 to

eliminate nðbÞ
z nðbÞ

z . This is exactly the same as the correct
tangential component of the sliding boundary condition
derived by DPL for a generic low-aspect-ratio approximate
model, except that now it appears as a natural boundary
condition in the modified Blatter–Pattyn variational princi-
ple. It is clear that these equations reduce to the standard
Blatter–Pattyn boundary condition, Equations (26) and (27)
in the limit of very small basal slopes, as mentioned earlier.
In addition, the modified Blatter–Pattyn action provides the
correct vertical velocity at the basal surface, in contrast to
the standard Blatter–Pattyn action, which specifies only the
horizontal velocities. This simplifies the determination of
internal vertical velocities directly from the continuity
equation, rather than by the use of Equation (30).

4. ANALYSIS OF THE MODIFIED BLATTER–PATTYN
MODEL IN THE SLOW SLIDING REGIME
We now address the extent to which the modified boundary
condition, Equations (38) and (39), improves the accuracy of
the Blatter–Pattyn model compared with the standard
boundary condition, Equations (26) and (27), the models
being otherwise identical. We first simplify by limiting
ourselves to the case of two-dimensional flow in the x-z
plane with constant viscosity, so that, for example, �BP =�, a
constant. The analysis can be done most conveniently for an
essentially horizontal ice sheet in the slow sliding regime,
i.e. where the term @u=@z dominates all other components
in the strain-rate invariant, Equation (2). There are two
advantages of doing this. First, the analysis is straightforward
and can be carried out analytically, and second, this
simplification can be applied to all three models, including
the reference Stokes model, so that a proper evaluation of
the two approximations can be made. Note that this is the
regime in which the SIA applies, although we do not make
the assumption of small basal slope, @zb=@x½ � � 1, that is
commonly made in this case.

From the action principles given earlier, in this regime the
relevant equations for all three cases are given by

�
@

@z
@u
@z

� �
� �g

@zs
@x

¼ 0, ð40Þ

together with the boundary condition at the stress-free
surface,

@u
@z

¼ 0: ð41Þ

However, the basal boundary condition is different for each
model. We have

(a) the standard Blatter–Pattyn model (SBP),

�
@u
@z

nz ¼ ��u, ð42Þ
which is given by Equation (26),

(b) the modified Blatter–Pattyn model (MBP),

�
@u
@z

1� n2
x

� �
nz ¼ ��u, ð43Þ

which is given by Equation (38), and
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(c) the Stokes model (S),

�
@u
@z

1� 2n2
x

� �
nz ¼ ��u, ð44Þ

which is implied by Equation (19).

In each vertical column this system amounts to a simple,
one-dimensional ordinary differential equation with con-
stant coefficients. Its solution is given by

uðx, zÞ ¼ �g
�

@zs
@x

1
2

z2� z2
b

� �� zs z� zbð Þ þ �f nxð Þ
�

zs� zbð Þ
� �

,

ð45Þ
where

f nxð Þ ¼

1� 2n2
x

� �
1� n2

x

� �1=2; in the Stokes (S) case,

1� n2
x

� �
1� n2

x

� �1=2; in the modified BP
(MBP) case,

1� n2
x

� �1=2; in the standard BP
(SBP) case,

8>>>>><
>>>>>:

ð46Þ
and use has been made of the fact that nz ¼ 1� n2

x

� �1=2.
Note that we must have nxj j 	 1, i.e. a maximum basal
slope of 908, far in excess of realistic basal slopes. We
therefore limit consideration to slope inclinations of <458.
Also note that, consistent with this limit, f nxð Þj j 	 1 in
all cases. Given the horizontal velocity, Equation (45),
the vertical velocity, wðx, zÞ, may be obtained from
Equation (30).

It is important to note that the horizontal variation of the
velocity in Equation (45) is implied by the horizontal
variation of zs and zb (therefore of nx also). Thus, it can
always be arranged for the horizontal gradients of these
quantities to be sufficiently small that the assumption
regarding the dominance of @u=@z is valid. That is,
@u=@zj j 
 @w=@xj j, @w=@zj j, where we make use of the
fact that @u=@xj j ¼ @w=@zj j from the continuity equation.
Note that this implies the standard small aspect ratio
assumption, which only requires @u=@zj j 
 @w=@xj j as in
Equation (32), but not vice versa.

We are now in a position to evaluate the error associated
with the two Blatter–Pattyn models relative to the Stokes
model, at least in the regime where the SIA is valid. From
Equation (45), the basal (or sliding) velocity is given by

ub � u zbð Þ ¼ �gH��1f nxð Þ @zs
@x

, ð47Þ
where H= zs – zb is the ice-sheet thickness. It is convenient
to use this velocity as a metric to evaluate the accuracy of

the two approximate models as a function of the basal slope.
We define a normalized basal horizontal velocity, using
Equation (47), as follows:

ub
ub

¼ f nxð Þ, ð48Þ

where

ub � ub nx¼0j ¼ �gH��1 @zs
@x

, ð49Þ

is the basal velocity for a flat horizontal bed (nx=0). In
Figure 1 we plot the normalized sliding velocity from
Equation (48) as a function of the inclination of the basal

surface (8), given by � ¼ 180=	 tan �1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
x 1� n2

x

� �q
. In this

regime the basal velocity error of the standard Blatter–Pattyn
model relative to the reference Stokes model is quite large,
except at very small basal slopes. The modified Blatter–
Pattyn model cuts this error by approximately a factor of two
for slope inclinations smaller than 458.

From Equation (45), the upper surface velocity is given by

us � u zsð Þ ¼ �gH��1 @zs
@x

f nxð Þ � �H
2�

� �
: ð50Þ

A requirement for being in the slow sliding regime is that
@u=@z dominates all other terms in the strain-rate invariant.
Alternatively, this may be interpreted as requiring that
usj j 
 ubj j, or equivalently, that

f nxð Þ � �H
2�

����
���� 
 f nxð Þj j: ð51Þ

This is always satisfied provided

�H
2�


 1, ð52Þ

because, as we remarked earlier, f nxð Þj j 	 1. Since ice-sheet
viscosity is very high, this is a requirement that � must be
large for the ice sheet to find itself in the slow sliding regime.

5. CONCLUSIONS
We have shown how to extend the variational principle for
the non-Newtonian Stokes model of ice-sheet dynamics so
that all boundary conditions, including various forms of the
sliding boundary condition, are incorporated as natural
boundary conditions in the action functional. This substan-
tially simplifies the formulation of accurate and consistent
discrete models that are amenable to efficient numerical
solution.

We have applied the same methodology to the approxi-
mate Blatter–Pattyn model, normally valid only in the limit
of small basal slopes. Comparing the accuracy of the
standard and modified Blatter–Pattyn models relative to
the Stokes model in the slow sliding regime, we find that the
error of the standard Blatter–Pattyn model can be large, and
this error increases with increasing basal slope. The
modified Blatter–Pattyn model cuts this error approximately
in half, extending the range of validity of this model to
somewhat larger values of basal slope at negligible add-
itional cost. It does not, however, eliminate that part of the
Blatter–Pattyn error associated with the small-aspect-ratio
approximation. Although the analysis presented here applies
only to the slow sliding regime, it suggests that similar results
might be found in other regimes (e.g. fast sliding). This
suggestion, however, remains to be verified numerically.

Fig. 1. Normalized basal velocity in the slow sliding regime
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