
ANZIAM J. 57(2016), 299–318
doi:10.1017/S1446181115000231

BOUNDS ON PRICES FOR ASIAN OPTIONS VIA
FOURIER METHODS

SCOTT ALEXANDER) 1, ALEXANDER NOVIKOV1 and NINO KORDZAKHIA2

(Received 14 November, 2014; accepted 13 May, 2015; first published online 19 February 2016)

Abstract

The problem of pricing arithmetic Asian options is nontrivial, and has attracted much
interest over the last two decades. This paper provides a method for calculating bounds
on option prices and approximations to option deltas in a market where the underlying
asset follows a geometric Lévy process. The core idea is to find a highly correlated,
yet more tractable proxy to the event that the option finishes in-the-money. The paper
provides a means for calculating the joint characteristic function of the underlying
asset and proxy processes, and relies on Fourier methods to compute prices and deltas.
Numerical studies show that the lower bound provides accurate approximations to prices
and deltas, while the upper bound provides good though less accurate results.
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Keywords and phrases: Asian option, lower bound, characteristic function, Fourier
transform, inverse Fourier transform, exponential damping.

1. Introduction

In this paper, we consider the problem of finding approximations to the price of
arithmetic Asian-style options via lower and upper bounds. Asian options have a
payoff that depends on the average price of the underlying asset over the term of the
contract. This average may be calculated in a variety of ways under either discrete or
continuous monitoring. The averaging feature provides these options with attractive
features including resistance to market manipulation in thinly traded markets. These
characteristics make them attractive to hedgers and speculators and result in them
being one of the most actively traded exotic options in the world.
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Asian-style options have been studied extensively in the literature from many
different angles, including:

• moment matching by Milevsky and Posner [24], Stace [29], Forde and
Jacquier [12], Novikov et al. [26];
• recurrent integration by Fusai and Meucci [16], March [22];
• Laplace transform and series expansion by Geman and Yor [17], Dufresne [11],

Dassios and Nagaradjasarma [10], Cai and Kou [6];
• partial differential equation (PDE) and partial integro-differential equation

(PIDE) by Rogers and Shi [28], Alziary et al. [2], Večeř [31], Fouque and
Han [14], Foufas and Larson [13];
• Monte Carlo method by Boyle [4], Kemna and Vorst [18], Boyle and

Potapchik [5];
• chaos expansion by Funahashi and Kijima [15];
• upper and lower bounds by Curran [9], Rogers and Shi [28], Thompson [30],

Lord [20], Lemmens et al. [19].

For a thorough survey, we refer the reader to the paper by Cai and Kou [6].
We follow the work of Thompson [30], who, building on the work of Curran [9]

and Rogers and Shi [28], investigated the problem where the underlying asset
followed a geometric Brownian motion (GBM). However, it is well known that some
characteristics of financial assets cannot be replicated under GBM. For example, the
implied volatility surfaces of options under GBM are flat, unlike the “smiles” and
“skews” exhibited in the market (see Cont and Tankov [8, Sections 1.1–1.2]). This
has prompted the use of more sophisticated models including stochastic volatility
and exponential Lévy processes that better reproduce these market characteristics.
Lemmens et al. [19] proposed a method to calculate bounds on prices of discretely
monitored fixed-strike Asian options, where the underlying asset was modelled by
exponential Lévy processes.

Here, also in the framework of exponential Lévy processes, we follow a different
approach to calculate lower bounds. The suggested method is presented for discretely
and continuously monitored options with both fixed and floating-strike payoff features.
Our numerical studies show that the price approximations provided by the lower bound
are close to the true prices of these options, obtained by using the considerably more
time consuming Monte Carlo method.

2. The Asian option pricing problem

Consider a stock price process S = (S t, 0 ≤ t ≤ T ), a maturity time T and a filtered-
probability space (Ω,F ,Q, {Ft}t≥0) on which it is assumed that all random variables
in this paper are defined. In its general form, the price CT of an arithmetic Asian call
option can be written as

CT = E[e−RT FT (S )], (2.1)

https://doi.org/10.1017/S1446181115000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000231


[3] Bounds on prices for Asian options via Fourier methods 301

where the payoff function F is given by

FT (S ) =

(∫ T

0
S u µ(du) − g(S T )

)+

(2.2)

=

(∫ T

0
(S u − g(S T )) µ(du)

)+

(2.3)

if we demand that
∫ T

0 µ(du) = 1. Here Rt =
∫ t

0 ru du, where r is a nonnegative, possibly
random process, x+ = max(x, 0) and g is a positive function which is typically given by
g(S T ) = K (fixed-strike) or g(S T ) = S T (floating-strike). The price of a put option can
be expressed in a similar fashion or can be obtained through put–call parity formulae
(see, for instance, Večeř [31]). Below, we adopt the notation

h =

∫ T

0
hu µ(du), h ∈ H,

where H is the class of adapted and integrable processes h = (ht, 0 ≤ t ≤ T ). This
allows the option price given by (2.1)–(2.3) to be expressed as

CT = E[e−RT (S − g(S T ))+] (2.4)

= E[e−RT (S − g(S T ))
+
]. (2.5)

By changing the definition of µ, various flavours of this type of option can be
defined. For instance, a continuously monitored arithmetic Asian option can be priced
by taking

µ(du) =
1
T

du (2.6)

and a discretely monitored option by setting

µ(du) =
1
N

N∑
j=1

δt j (du), (2.7)

where δ is the Dirac measure, and the set of monitoring times {t1, . . . , tN} satisfies
0 = t0 < t1 < · · · < tN = T .

3. Lower and upper bounds
In this section, we derive lower and upper bounds for arithmetic Asian options. The

core idea is to replace the event that the option finishes in-the-money with a highly
correlated yet more tractable proxy, and then to optimise over the parameter triggering
this proxy event.

Theorem 3.1. The option price given by (2.4) or (2.5) can be written as
CT = sup

z∈R,h∈H
E[e−RT (S − g(S T ))I

{h>z}] (3.1)

= inf
h∈H

E[e−RT (S − g(S T )(1 + h − h))+], (3.2)

where both the supremum and the infimum are attained by choosing hu = S u/g(S T )
and z = 1.
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Proof. We slightly modify the arguments of Novikov and Kordzakhia [25], who
looked only at the fixed-strike case, to cater for a wider variety of Asian options. To
prove (3.1), we begin with (2.4) and note that for any h ∈ H,

CT = E[e−RT (S − g(S T ))+]

≥ E[e−RT (S − g(S T ))+I
{h>z}]

= E[e−RT (S − g(S T ))I
{h>z} + (S − g(S T ))−I

{h>z}]

≥ E[e−RT (S − g(S T ))I
{h>z}], (3.3)

where the first inequality is due to the indicator function I{y>x} taking the values zero or
one, and the second inequality is due to the nonnegativity of x− = max(−x, 0). These
are similar arguments to those made by others who have studied lower bounds. Taking
hu = S u/g(S T ) and z = 1 in the right-hand side of (3.3) gives

E[e−RT (S − g(S T ))I
{S/g(S T )>1}]

= E[e−RT (S − g(S T ))I
{S>g(S T )}]

= E[e−RT (S − g(S T ))+]
= CT .

So, we can claim that CT = supz∈R,h∈H E[e−RT (S − g(S T ))I
{h>z}], which is (3.1), where

the supremum is attained with the aforementioned choices for h and z.
For (3.2), we again start with (2.4) and write

CT = E[e−RT (S − g(S T ))+]

= E[e−RT (S − g(S T )(1 + h − h))+]

= E[e−RT (S − g(S T )(1 + h − h))+]

= E[e−RT (S − g(S T )(1 + h − h))+]

≤ E[e−RT (S − g(S T )(1 + h − h))+], (3.4)

where the second equality is due to 1 + h − h = 1 and the inequality is due to the
convexity of x+ via Jensen’s inequality. Substituting hu = S u/g(S T ) into the right-hand
side of (3.4), we get

E[e−RT (S − g(S T )(1 + S/g(S T ) − S/g(S T )))+]

= E[e−RT (S − g(S T )(1 + S/g(S T ) − S /g(S T )))+]

= E[e−RT (S − g(S T ))+]

= E[e−RT (S − g(S T ))+]
= CT ;

this yields CT = infh∈H E[e−RT (S − g(S T )(1 + h − h))+], which is equation (3.2) with
the infimum attained for the same choice of h as for the supremum. �
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The supremum forms the basis for the lower bound and the infimum for the upper
bound. Numerical studies in the case of asset prices driven by GBM demonstrate that
the upper bound provides option price approximations that are close to that of the true
price (see Novikov and Kordzakhia [25]). However, the lower bound (LB) produces
more accurate results; therefore, we concentrate on the lower bound for the remainder
of the paper.

4. Exponential Lévy processes

Obviously, if the distribution of S is known, there is no need to resort to
Theorem 3.1. Unfortunately, except for the case where r is constant and S follows
a GBM (see Geman and Yor [17]) or a square-root process (see Dassios and
Nagaradjasarma [10]), this distribution is not known. However, if we consider the
processes Xt = log(S t/S0) and Yt = Xt − XT , it turns out that in many cases we can find
the joint characteristic functions of (Xt,X) and (Xt,Y), respectively. The reason for our
interest in these processes will be made clear shortly.

In this section, we consider the cases of fixed and floating-strike arithmetic Asian
options corresponding to the choices of g(S T ) = K and g(S T ) = S T , respectively, in
Theorem 3.1.

Definition 4.1. Let the stock price process be modelled via S t = S0eXt , with the market
having the following properties:

(1) Xt is a Lévy process on (Ω,F ,Q, {Ft}t≥0);
(2) E[|Xt |], E[|X|] <∞ for t ∈ [0,T ];
(3) the interest rate r is constant and Rt = rt;
(4) a constant dividend rate q is paid continuously and Qt = qt;
(5) S t satisfies the martingale condition E[S t] = S0eRt−Qt [27, page 481];
(6) the pricing of continuously monitored Asian options uses the choice of µ in (2.6);
(7) the pricing of discretely monitored options with the set of monitoring times
{t1, . . . , tN} satisfying 0 = t0 < t1 < · · · < tN = T uses the measure µ in (2.7);

(8) the joint characteristic functions of (Xt, X) and (Xt, Y), where Y = X − XT , can
be inverted.

4.1. Fixed-strike options The following theorem suggests a choice of the process
h suitable in the case of fixed-strike options.

Theorem 4.1. Assume that Definition 4.1 applies. By choosing hu = aXu, a ∈ R, the
bounds can be written as

CT ≥ LB = S0 sup
z∈R

E
[
e−RT

(
eX −

K
S0

)
I
{X>z}

]
, (4.1)

CT ≤ UB = S0 inf
a∈R

E
[
e−RT

(
eX −

K
S0

(1 + aX − aX)
)+]
.

Proof. Use g(S T ) = K and hu = aXu in Theorem 3.1. �
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4.1.1. Lower bounds We adapt the two-step procedure of Thompson [30] to
perform the optimisation in (4.1):

• Step 1 – calculate the optimal value of z, z;
• Step 2 – use z to evaluate the expectation.

The next theorem provides the means for calculating the optimum value of z, z
(Step 1).

Theorem 4.2. Under the conditions of Definition 4.1, the value of z, z that maximizes
the LB (4.1) for a fixed-strike arithmetic Asian option satisfies

1
π fX(z)

∫ T

0

∫ ∞

0
<(ϕ(−i, ζ; u)e−iζz) dζ µ(du) =

K
S0
, (4.2)

where ϕ(ξ, ζ; t) = E[eiξXt+iζX] is the characteristic function of (Xt, X) and fX(y) =

(1/π)
∫ ∞

0 <(ϕ(0, ζ; T )e−iζy) dζ is the density of X .

Proof. We reproduce the proof of Alexander et al. [1]. Let fX,X and fX be the densities
of (Xt, X) and X, respectively. Following the lead of Thompson [30], we differentiate
the expression to be maximised in (4.1) with respect to the parameter z.

∂

∂z
S0E

[
e−RT

(
eX −

K
S0

)
I
{X>z}

]
=
∂

∂z
S0E

[
e−RT

∫ T

0

(
eXu −

K
S0

)
µ(du)I

{X>z}

]
= S0e−RT

∂

∂z

∫ T

0
E
[(

eXu −
K
S0

)
I
{X>z}

]
µ(du)

= S0e−RT
∂

∂z

∫ T

0

∫ ∞

−∞

∫ ∞

−∞

(
ex −

K
S0

)
I{y>z} fX,X(x, y; u) dx dy µ(du)

= S0e−RT

∫ T

0

∂

∂z

∫ ∞

z

∫ ∞

−∞

(
ex −

K
S0

)
fX,X(x, y; u) dx dy µ(du)

= −S0e−RT

∫ T

0

∫ ∞

−∞

(
ex −

K
S0

)
fX,X(x, z; u) dx µ(du)

= −S0e−RT fX(z)
∫ T

0

∫ ∞

−∞

(
ex −

K
S0

) fX,X(x, z; u)

fX(z)
dx µ(du)

= −S0e−RT fX(z)
∫ T

0
E
[(

eXu −
K
S0

)∣∣∣∣∣X = z
]
µ(du),

the use of Fubini’s theorem being justified by Definition 4.1(2). Setting this to zero
gives ∫ T

0
E[eXu |X = z] µ(du) =

K
S0

(4.3)
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by the integrability condition on µ. As shown by Lemmens et al. [19], the conditional
expectation can be recovered from the characteristic function ϕ as

E[eXu |X = z] =
1

2π fX(z)

∫ ∞

−∞

ϕ(−i, ζ; u)e−iζz dζ. (4.4)

Letting x∗ be the complex conjugate of x and using the relationship eix = (e−ix)∗, the
integrand in (4.4) can be re-written as

ϕ(−i, ζ; u)e−iζz = e−iζz
∫ ∞

−∞

∫ ∞

−∞

fX,X(x, z; u)eix(−i)eiyζ dx dy

= (eiζz)∗
∫ ∞

−∞

∫ ∞

−∞

fX,X(x, z; u)eix(−i)(e−iyζ)∗ dx dy

= (eiζz)∗
(∫ ∞

−∞

∫ ∞

−∞

fX,X(x, z; u)eix(−i)eiy(−ζ) dx dy
)∗

= (eiζz)∗(ϕ(−i,−ζ; u))∗

= (ϕ(−i,−ζ; u)eiζz)∗.

Using this symmetry, we can re-write (4.4) as

E[eXu |X = z] =
1

π fX(z)

∫ ∞

0
<(ϕ(−i, ζ; u)e−iζz) dζ,

providing advantages for numerical evaluation. So, (4.3) becomes

1
π fX(z)

∫ T

0

∫ ∞

0
<(ϕ(−i, ζ; u)e−iζz) dζ µ(du) =

K
S0

and fX can be recovered from its characteristic function ϕX via

fX(y) =
1

2π

∫ ∞

−∞

ϕX(ζ)e−iyζ dζ

=
1
π

∫ ∞

0
<(ϕX(ζ)e−iyζ) dζ

=
1
π

∫ ∞

0
<(ϕ(0, ζ; T )e−iyζ) dζ,

where the second equality follows from similar reasoning. This completes the proof
of the theorem. �

With the optimal z, z, being the solution of the inverse problem in Theorem 4.2
(Step 1), we now devise a procedure to calculate the expectation in (4.1) (Step 2), and
thereby arrive at the lower bound. To do so, we apply a two-dimensional version of the
exponential damping method of Borovkov and Novikov [3], a general idea introduced
by Carr and Madan [7].

Theorem 4.3. Let fX,X be the joint density of (Xt, X) and assume that we can find

α1 > 0, α2 < −1 and β < 0 such that E[e−α1Xt−βX] and E[e−α2Xt−βX] are finite for all
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t ∈ [0, T ]. Under the conditions of Definition 4.1, the lower bound (4.1) of a fixed-
strike arithmetic Asian option can be expressed as

LB =
e−RT S0

2π2

∫ T

0

∫ ∞

−∞

∫ ∞

0
<(ĥ1(ξ, ζ; z)ϕ(−ξ + iα1,−ζ + iβ; u)

+ ĥ2(ξ, ζ; z)ϕ(−ξ + iα2,−ζ + iβ; u)) dξ dζ µ(du), (4.5)

where

ĥ1(ξ, ζ; z) =

( K
(α1 + iξ)S0

−
1

α1 + 1 + iξ

)ez(β+iζ)

β + iζ
,

ĥ2(ξ, ζ; z) =

( 1
α2 + 1 + iξ

−
K

(α2 + iξ)S0

)ez(β+iζ)

β + iζ
,

ϕ(ξ, ζ; t) = E[eiξXt+iζX]

and z has been calculated from (4.2) of Theorem 4.2.

Proof. We repeat the proof of Alexander et al. [1]. Using z from (4.2) in (4.1) yields

LB = e−RT S0 sup
z∈R

E
[(

eX −
K
S0

)
I
{X>z}

]
= e−RT S0E

[∫ T

0

(
eXu −

K
S0

)
µ(du)I

{X>z}

]
= e−RT S0

∫ T

0
E
[(

eXu −
K
S0

)
I
{X>z}

]
µ(du)

= e−RT S0

∫ T

0

∫ ∞

−∞

∫ ∞

−∞

(
ex −

K
S0

)
I{y>z} fX,X(x, y; u) dx dy µ(du)

= e−RT S0

∫ T

0
Ψ(u; z) µ(du), (4.6)

where

Ψ(u; z) =

∫ ∞

−∞

∫ ∞

−∞

(
ex −

K
S0

)
I{y>z} fX,X(x, y; u) dx dy,

the use of Fubini’s theorem being justified by Definition 4.1(2).
Since we are integrating over all of x, we must split the integral into two and damp

each piece separately. So, write

Ψ(u; z) = Ψ1(u; z) + Ψ2(u; z),

where

Ψ1(u; z) =

∫ ∞

−∞

∫ ∞

−∞

(
ex −

K
S0

)
I{x<0}I{y>z} fX,X(x, y; u) dx dy

and

Ψ2(u; z) =

∫ ∞

−∞

∫ ∞

−∞

(
ex −

K
S0

)
I{x>0}I{y>z} fX,X(x, y; u) dx dy.
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Next, define the exponentially damped functions

h1(x, y; z) = eα1 x+βy
(
ex −

K
S0

)
I{x<0}I{y>z}

and
h2(x, y; z) = eα2 x+βy

(
ex −

K
S0

)
I{x>0}I{y>z},

where α1 > 0, α2 < −1 and β < 0 guarantee that these functions are absolutely
integrable and, therefore, their Fourier transforms exist. For instance, the Fourier
transform ĥ1 of h1 is

ĥ1(ξ, ζ; z) =

∫ ∞

−∞

∫ ∞

−∞

h1(x, y; z)eixξ+iyζ dx dy

=

∫ ∞

−∞

∫ ∞

−∞

eα1 x+βy
(
ex −

K
S0

)
I{x<0}I{y>z}eixξ+iyζ dx dy

=

( K
(α1 + iξ)S0

−
1

α1 + 1 + iξ

)ez(β+iζ)

β + iζ
,

which is readily shown through direct integration. The Fourier transform of h2, ĥ2, can
be found in a likewise fashion.

It will also be convenient to define the subsidiary functions

H1(x, y; u) = e−α1 x−βy fX,X(x, y; u)

and
H2(x, y; u) = e−α2 x−βy fX,X(x, y; u),

which are also absolutely integrable by the assumptions made at the beginning of the
theorem. The Fourier transforms of these functions can be written in terms of the joint
characteristic function ϕ as

Ĥ1(ξ, ζ; u) = ϕ(ξ + iα1, ζ + iβ; u)

and
Ĥ2(ξ, ζ; u) = ϕ(ξ + iα2, ζ + iβ; u).

Now

Ψ1(u; z) =

∫ ∞

−∞

∫ ∞

−∞

(
ex −

K
S0

)
I{x<0}I{y>z} fX,X(x, y; u) dx dy

=

∫ ∞

−∞

∫ ∞

−∞

h1(x, y; z)H1(x, y; u) dx dy

=

∫ ∞

−∞

∫ ∞

−∞

1
4π2

∫ ∞

−∞

∫ ∞

−∞

ĥ1(ξ, ζ; z)e−ixξ−iyζ dξ dζH1(x, y; u) dx dy

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

ĥ1(ξ, ζ; z)
∫ ∞

−∞

∫ ∞

−∞

H1(x, y; u)e−ixξ−iyζ dx dy dξ dζ
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=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

ĥ1(ξ, ζ; z)Ĥ1(−ξ,−ζ; u) dξ dζ

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

ĥ1(ξ, ζ; z)ϕ(−ξ + iα1,−ζ + iβ; u) dξ dζ, (4.7)

where the application of the Fourier inversion theorem to ĥ1 is justified as ĥ1 is
absolutely integrable (see Alexander et al. [1] for details). As in Theorem 4.2, we
can exploit some symmetries of the integrand in (4.7) to provide advantages when
evaluated numerically. Because ĥ1 is the Fourier transform of a real-valued function,
we immediately have

ĥ1(ξ, ζ; z) = (ĥ1(−ξ,−ζ; z))∗,
while for ϕ, note that

ϕ(−ξ + iα1,−ζ + iβ; u) =

∫ ∞

−∞

∫ ∞

−∞

fX,X(x, y; u)eix(−ξ+iα1)+iy(−ζ+iβ) dx dy

=

∫ ∞

−∞

∫ ∞

−∞

fX,X(x, y; u)e−α1 x−βye−ixξe−iyζ dx dy

=

∫ ∞

−∞

∫ ∞

−∞

fX,X(x, y; u)e−α1 x−βy(eixξ)∗(eiyζ)∗ dx dy

=

∫ ∞

−∞

∫ ∞

−∞

fX,X(x, y; u)e−α1 x−βy(eixξeiyζ)∗ dx dy

=

(∫ ∞

−∞

∫ ∞

−∞

fX,X(x, y; u)eix(ξ+iα1)+iy(ζ+iβ) dx dy
)∗

= (ϕ(ξ + iα1, ζ + iβ; u))∗,
using the relationship e−ix = (eix)∗. Thus, the integrand in (4.7) satisfies

ĥ1(ξ, ζ; z)ϕ(−ξ + iα1,−ζ + iβ; u) = (ĥ1(−ξ,−ζ; z))∗(ϕ(ξ + iα1, ζ + iβ; u))∗

= (ĥ1(−ξ,−ζ; z)ϕ(ξ + iα1, ζ + iβ; u))∗,
allowing us to re-write Ψ1 as

Ψ1(u; z) =
1

2π2

∫ ∞

−∞

∫ ∞

0
<(ĥ1(ξ, ζ; z)ϕ(−ξ + iα1,−ζ + iβ; u)) dξ dζ

and, using similar arguments, to write Ψ2 as

Ψ2(u; z) =
1

2π2

∫ ∞

−∞

∫ ∞

0
<(ĥ2(ξ, ζ; z)ϕ(−ξ + iα2,−ζ + iβ; u)) dξ dζ.

Making the substitution of the re-worked inner double integral Ψ = Ψ1 + Ψ2 in (4.6)
completes the proof. �

Remark 4.1. By differentiating (4.5) with respect to S0, an approximation to the delta
of the option price can be calculated.

4.1.2. Joint characteristic function Theorems 4.2 and 4.3 give us the means to
calculate the lower bound (4.1) in Theorem 4.1 whenever we can find the joint
characteristic function of (Xt, X). The following general result provides a means for
doing so.
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Theorem 4.4. Let X be per Definition 4.1. Define the characteristic exponent

ψ(ξ) =
1
t

log(E[eiξXt ]), ξ ∈ R,

and set

G(t) =

∫ t

0
µ(du)

as a left-continuous nonrandom function of finite variation. Then, for ζ ∈ R,

E[eiξXt+iζX] = exp
{∫ T

0
ψ(ξI{t≥u} + ζ(G(T ) −G(u))) du

}
.

Proof.

E[eiξXt+iζX] = E
[
exp

{
iξXt + iζ

∫ T

0
Xu µ(du)

}]
= E

[
exp

{
iξ

∫ T

0
I{t≥u} dXu + iζ

∫ T

0
Xu dG(u)

}]
= E

[
exp

{
iξ

∫ T

0
I{t≥u} dXu + iζ

(
XTG(T ) −

∫ T

0
G(u) dXu

)}]
= E

[
exp

{
iξ

∫ T

0
I{t≥u} dXu + iζ

∫ T

0
(G(T ) −G(u)) dXu

}]
= E

[
exp

{
i
∫ T

0
(ξI{t≥u} + ζ(G(T ) −G(u))) dXu

}]
= E

[
exp

{
i
∫ T

0
f (u) dXu

}]
,

where f (u) = ξI{t≥u} + ζ(G(T ) −G(u)). But, if f is nonrandom and continuous [21] or
left-continuous [8, Lemma 15.1], then

E
[
exp

{
i
∫ T

0
f (u) dXu

}]
= exp

{∫ T

0
ψ( f (u)) du

}
. (4.8)

Substituting f into (4.8) completes the proof. �

Corollary 4.1. The joint characteristic functions of (Xt, X) for fixed-strike options
with continuous monitoring and discrete monitoring are given by

ϕ(ξ, ζ; t) = exp
{∫ t

0
ψ
(
ξ + ζ

T − u
T

)
du +

∫ T

t
ψ
(
ζ

T − u
T

)
du

}
and (4.9)

ϕ(ξ, ζ; t j) = exp
{ j∑

k=1

ψ
(
ξ + ζ

N + 1 − k
N

)
(tk − tk−1) +

N∑
k= j+1

ψ
(
ζ

N + 1 − k
N

)
(tk − tk−1)

}
,

(4.10)

respectively, where the set of monitoring times {t1, . . . , tN} satisfies 0 = t0 < t1 < · · · <
tN = T.
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Proof. For the continuous case, taking µ(du) = (1/T ) du in Theorem 4.4 gives (4.9).
Unfortunately, if we take µ(du) = (1/N)

∑N
j=1 δt j (du) in Theorem 4.4, then G, and

thereby f , is right-continuous. This is because we demand that
∫ t j

t j−1
Xuδt j (du) = Xt j ;

that is, we treat all integrals involving Dirac measures as right-continuous. So, the
theorem cannot be used. Instead, we prove this case separately. First note that

iξXt j + iζX = iξXt j + iζ
1
N

N∑
k=1

Xtk

= iξ
j∑

k=1

(Xtk − Xtk−1 ) + iζ
1
N

N∑
k=1

(Xtk − Xtk−1 )(N + 1 − k)

= i
j∑

k=1

(Xtk − Xtk−1 )
(
ξ +

N + 1 − k
N

ζ
)

+ i
N∑

k= j+1

(Xtk − Xtk−1 )
N + 1 − k

N
ζ.

Then, using the properties of independence and stationarity of increments,

ϕ(ξ, ζ; t j) = E[eiξXt j +iζX]

= E
[
exp

{
iξXt j + iζ

1
N

N∑
k=1

Xtk

}]

= E
[
exp

{
i

j∑
k=1

(Xtk − Xtk−1 )
(
ξ +

N + 1 − k
N

ζ
)

+ i
N∑

k= j+1

(Xtk − Xtk−1 )
N + 1 − k

N
ζ
}]

=

j∏
k=1

E[ei(Xtk−Xtk−1 )(ξ+((N+1−k)/N)ζ)]
N∏

k= j+1

E[ei(Xtk−Xtk−1 )((N+1−k)/N)ζ]

=

j∏
k=1

eψ(ξ+((N+1−k)/N)ζ)(tk−tk−1)
N∏

k= j+1

eψ(((N+1−k)/N)ζ)(tk−tk−1)

= exp
{ j∑

k=1

ψ
(
ξ + ζ

N + 1 − k
N

)
(tk − tk−1) +

N∑
k= j+1

ψ
(
ζ

N + 1 − k
N

)
(tk − tk−1)

}
,

which is (4.10). We point out that a similar formula was also derived by
Lemmens et al. [19]. �

4.2. Floating-strike options Now we echo the last section for the floating-strike
case, starting with the bounds.

Theorem 4.5. Assume that Definition 4.1 applies. Letting Yt = Xt − XT and choosing
hu = aYu, a ∈ R, the bounds are
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CT ≥ LB = S0 sup
z∈R

E
[
e−RT

(
eX −

S T

S0

)
I
{Y>z}

]
, (4.11)

CT ≤ UB = S0 inf
a∈R

E
[
e−RT

(
eX −

S T

S0
(1 + aY − aY)

)+]
.

Proof. Use g(S T ) = S T and hu = aYu in Theorem 3.1. �

4.2.1. Lower bounds The following theorem facilitates the calculation of the
optimal z for the floating-strike case.

Theorem 4.6. Under the conditions of Definition 4.1, the value of z, z, that maximises
the LB (4.11) for a floating-strike arithmetic Asian option satisfies∫ T

0

∫ ∞

0
<(ϕ(−i, ζ; u)e−iζz) dζ µ(du) =

∫ ∞

0
<(ϕ(−i, ζ; T )e−iζz) dζ, (4.12)

where the characteristic function of (Xt,Y) is

ϕ(ξ, ζ; t) = E[eiξXt+iζY ].

Proof. The proof is similar to that of Theorem 4.2 and can be found in
Alexander et al. [1]. �

Having calculated the optimal value of z, z, we can now evaluate the expectation
in (4.11) and thereby the lower bound. The next theorem allows us to do so.

Theorem 4.7. Let fX,Y be the joint density of (Xt, Y) and assume that we can find

α1 > −1, α2 < −1 and β < 0 such that E[e−α1Xt−βY ] and E[e−α2Xt−βY ] are finite for
t ∈ [0,T ]. Under the conditions of Definition 4.1, the lower bound (4.11) of a floating-
strike arithmetic Asian option can be expressed as

LB =
e−RT S0

2π2

(∫ T

0

∫ ∞

−∞

∫ ∞

0
<(ĥ1(ξ, ζ; z)ϕ(−ξ + iα1,−ζ + iβ; u)

+ ĥ2(ξ, ζ; z)ϕ(−ξ + iα2,−ζ + iβ; u)) dξ dζ µ(du)

−

∫ ∞

−∞

∫ ∞

0
<(ĥ1(ξ, ζ; z)ϕ(−ξ + iα1,−ζ + iβ; T )

+ ĥ2(ξ, ζ; z)ϕ(−ξ + iα2,−ζ + iβ; T )) dξ dζ
)
, (4.13)

where

ĥ1(ξ, ζ; z) =
−1

α1 + 1 + iξ
ez(β+iζ)

β + iζ
,

ĥ2(ξ, ζ; z) =
1

α2 + 1 + iξ
ez(β+iζ)

β + iζ
,

ϕ(ξ, ζ; t) = E[eiξXt+iζY ],

α1 > −1, α2 < −1, β < 0 and z has been calculated from (4.12) of Theorem 4.6.
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Proof. The proof is similar to that of Theorem 4.3 and can be found in
Alexander et al. [1]. �

Remark 4.2. By differentiating (4.13) with respect to S0, an approximation to the delta
of the option price can be calculated.

4.2.2. Joint characteristic function Next, a general method that allows the
calculation of the joint characteristic function of (Xt, Y) for the floating-strike case
is presented.

Theorem 4.8. Let X be per Definition 4.1. Define the characteristic exponent

ψ(ξ) =
1
t

log(E[eiξXt ]), ξ ∈ R

and set G(t) =
∫ t

0 µ(du) as a left-continuous nonrandom function of finite variation.
Then, for ζ ∈ R,

E[eiξXt+iζY ] = exp
{∫ T

0
ψ(ξI{t≥u} + ζ(G(T ) −G(u) − 1)) du

}
.

Proof. The proof is similar to that of Theorem 4.4. �

Finally, we provide formulae for the calculation of the joint characteristic function
of (Xt,Y).

Corollary 4.2. The joint characteristic functions of (Xt, Y) for fixed-strike options
with continuous monitoring and discrete monitoring are given by

ϕ(ξ, ζ; t) = exp
{∫ t

0
ψ
(
ξ − ζ

u
T

)
du +

∫ T

t
ψ
(
−ζ

u
T

)
du

}
and (4.14)

ϕ(ξ, ζ; t j) = exp
{ j∑

k=1

ψ
(
ξ + ζ

1 − k
N

)
(tk − tk−1) +

N∑
k= j+1

ψ
(
ζ

1 − k
N

)
(tk − tk−1)

}
,

respectively, where the set of monitoring times {t1, . . . , tN} satisfies 0 = t0 < t1 < · · · <
tN = T.

Proof. The proof is similar to the proof of Corollary 4.1. �

5. Numerical examples

In this section, we use the lower bound equations given in Theorems 4.3 and 4.7,
and the expressions for the joint characteristic functions provided by Corollaries 4.1
and 4.2, to price fixed and floating-strike arithmetic Asian options for a variety of
underlying processes. We do this for the continuously monitored case (by choosing µ
as in (2.6)) and for the discretely monitored case (taking µ as in (2.7)). The values of
the parameters common for each process are S0 = 100, r = 0.05, q = 0, K = 100 and
T = 1.
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All prices are validated using Monte Carlo methods with 1 000 000 paths each of
500 discretisation points. In the tables displaying the results the term “fixedN” refers
to a discretely monitored fixed-strike Asian option with N ∈ N monitoring points; the
case N = ∞ indicates a continuously monitored option. Floating-strike options are
notated in a similar fashion. For the case N = 10 we have used the monitoring points
t j ∈ {0.1, 0.15, 0.2, 0.45, 0.5, 0.6, 0.8, 0.85, 0.95, 1.0} while for N = 20 and N = 50
equally spaced monitoring points have been used.

Of our three examples, closed form expressions for the joint characteristic functions
of (Xt, X) and (Xt, Y) under continuous monitoring could be found for GBM and
Merton’s jump-diffusion models (see [23]), but not for the exponential normal inverse
Gaussian (NIG) process. This was due to the complexity of the characteristic exponent
and the challenges that this entailed for symbolic integration. In this case, we
performed the integration in (4.9) and (4.14) numerically. This of course was not an
issue in the discretely monitored case, as here the joint characteristic functions involve
sums of the known characteristic exponents.

All expressions for ψ and γ are either directly from, or are small modifications of,
formulae from Chapters 13 and 15 of Pascucci [27].

Example 5.1 (GBM). Let Xt = γt + σWt, where W is a Wiener process. The
characteristic exponent of Xt is

ψ(ξ) = iγξ − 1
2σ

2ξ2

and the martingale condition (see Definition 4.1(5)) requires that

γ = r − q − 1
2σ

2.

For the fixed-strike continuous monitoring case, the joint characteristic function of
(Xt, X) is

ϕ(ξ, ζ; t) = exp
{
iγ

(
tξ +

1
2

Tζ
)
−

1
2
σ2

(
tξ2 + t

2T − t
T

ξζ +
1
3

Tζ2
)}
,

while, for the discrete monitoring case,

ϕ(ξ, ζ; t j) = exp
{ j∑

k=1

(
iγ

(
ξ +

N + 1 − k
N

ζ
)
−

1
2
σ2

(
ξ +

N + 1 − k
N

ζ
)2)

(tk − tk−1)

+

N∑
k= j+1

(
iγ

N + 1 − k
N

ζ −
1
2
σ2

(N + 1 − k
N

ζ
)2)

(tk − tk−1)
}
,

which can be derived via Corollary 4.1. Note that in the case of equidistant monitoring
points, this can be simplified to

ϕ(ξ, ζ; t j) = exp
{
iγ

(
jξ +

N + 1
2

ζ
)T

N
−

1
2
σ2

(
jξ2 + j

2N − j + 1
N

ξζ

+
2N2 + 3N + 1

6N
ζ2

)T
N

}
.
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Likewise, the characteristic function of (Xt, Y) in the floating-strike case under
continuous monitoring can be derived using Corollary 4.2 as

ϕ(ξ, ζ; t) = exp
{
iγ

(
tξ −

1
2

Tζ
)
−

1
2
σ2

(
tξ2 −

t2

T
ξζ +

1
3

Tζ2
)}
,

while for discrete monitoring,

ϕ(ξ, ζ; t j) = exp
{ j∑

k=1

(
iγ

(
ξ +

1 − k
N

ζ
)
−

1
2
σ2

(
ξ +

1 − k
N

ζ
)2)

(tk − tk−1)

+

N∑
k= j+1

(
iγ

1 − k
N

ζ −
1
2
σ2

(1 − k
N

ζ
)2)

(tk − tk−1)
}

simplifies to

ϕ(ξ, ζ; t j) = exp
{
iγ

(
jξ −

N − 1
2

ζ
)T

N
−

1
2
σ2

(
jξ2 − j

j − 1
N

ξζ

+
2N2 − 3N + 1

6N
ζ2

)T
N

}
for equidistant monitoring points.

To demonstrate the method, we now collate the steps for calculating the lower
bound price for discretely monitored fixed-strike options. First, we use (2.7) in (4.2)
of Theorem 4.2 and solve the quadratic optimisation problem

z = argmin
z∈R

( 1
πN fX(z)

∫ ∞

0

N∑
j=1

<(ϕ(−i, ζ; t j)e−iζz) dζ −
K
S0

)2
,

where

fX(y) =
1
π

∫ ∞

0
<(ϕ(0, ζ; T )e−iζy) dζ.

We then use (2.7) in Theorem 4.3 with z from above and calculate the lower bound as

LB =
e−RT S0

2π2N

∫ ∞

−∞

∫ ∞

0

N∑
j=1

<(ĥ1(ξ, ζ; z)ϕ(−ξ + iα1,−ζ + iβ; t j)

+ ĥ2(ξ, ζ; z)ϕ(−ξ + iα2,−ζ + iβ; t j)) dξ dζ,

where

ĥ1(ξ, ζ; z) =

( K
(α1 + iξ)S0

−
1

α1 + 1 + iξ

)ez(β+iζ)

β + iζ
,

ĥ2(ξ, ζ; z) =

( 1
α2 + 1 + iξ

−
K

(α2 + iξ)S0

)ez(β+iζ)

β + iζ

and α1 > 0, α2 < −1 and β < 0. For the results shown in all the tables below, we chose
the parameter values α1 = 1, α2 = −2 and β = −1. The results for the GBM case are
presented in Table 1 using the parameter σ = 0.2. ^
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Table 1. GBM lower bounds.

Lower bound Monte Carlo
Type Price z Price Standard error
fixed10 6.2324 −2.1329E−03 6.2283 4.2187E−03
fixed20 5.9986 −2.0947E−03 5.9925 4.0621E−03
fixed50 5.8571 −2.0429E−03 5.8560 3.9774E−03
fixed∞ 5.7627 −2.0044E−03 5.7765 3.9245E−03
floating10 3.0017 −1.7396E−03 3.0049 2.4269E−03
floating20 3.2906 −1.9086E−03 3.2908 2.6601E−03
floating50 3.3594 −1.9779E−03 3.3604 2.7143E−03
floating∞ 3.4044 −2.0201E−03 3.3995 2.7438E−03

Example 5.2 (Merton jump diffusion). Let

Xt = γt + σWt +

Nt∑
j=1

Z j,

where W is a Wiener process, Nt is a Poisson process with intensity λ and Z j ∼ N(m, θ)
and independent. In this instance, the characteristic exponent of Xt is

ψ(ξ) = iγξ − 1
2σ

2ξ2 + λ(eimξ−θ2ξ2/2 − 1),

where
γ = r − q − 1

2σ
2 − λ(em+θ2/2 − 1).

The joint characteristic function of (Xt, X) is

ϕ(ξ, ζ; t) = E[eiξXt+iζX]

= exp
{
iγ

(
tξ +

1
2

Tζ
)
−

1
2
σ2

(
tξ2 + t

(
2 −

t
T

)
ξζ +

1
3

Tζ2
)}

× exp
{
−Tλ + Tλ

√
π

√
2θζ

e−m2/2θ2
(
erf

{
θ2(ξ + ζ) − im

√
2θ

}
− erf

{
θ2(T (ξ + ζ) − tζ) − imT

√
2Tθ

}
+ i erfi

{ m
√

2θ

}
− i erfi

{ i(T − t)θ2ζ + mT
√

2Tθ

})}
,

which can be shown via Corollary 4.1 and with the assistance of a computer algebra
system such as Mathematica. The joint characteristic function of (Xt, Y) has a similar
form and can be derived using Corollary 4.2 (see Alexander et al. [1]). The results
are recorded in Table 2, where we have used the parameter values σ = 0.15, λ = 1.75,
m = −0.1 and θ = 0.02.
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Table 2. Merton lower bounds.

Lower bound Monte Carlo
Type Price z Price Standard error
fixed10 6.2351 −2.1542E−03 6.2411 4.8959E−03
fixed20 6.0000 −2.1175E−03 6.0022 4.6724E−03
fixed50 5.8581 −2.0638E−03 5.8444 4.5513E−03
fixed∞ 5.7634 −2.0241E−03 5.7730 4.4837E−03
floating10 3.0162 −1.7237E−03 3.0191 3.5586E−03
floating20 3.3056 −1.8945E−03 3.3054 3.9099E−03
floating50 3.3748 −1.9643E−03 3.3702 3.9809E−03
floating∞ 3.4207 −2.0069E−03 3.4210 4.0428E−03

Table 3. NIG lower bounds.

Lower bound Monte Carlo
Type Price z Price Standard error
fixed10 6.2121 −2.0568E−03 6.2140 4.3091E−03
fixed20 5.9770 −2.0252E−03 5.9855 4.1544E−03
fixed50 5.8356 −1.9741E−03 5.8324 4.0542E−03
fixed∞ 5.7413 −1.9362E−03 5.7411 3.9994E−03
floating10 2.9820 −1.6723E−03 2.9791 2.4355E−03
floating20 3.2685 −1.8430E−03 3.2645 2.6695E−03
floating50 3.3368 −1.9108E−03 3.3316 2.7219E−03
floating∞ 3.3821 −1.9522E−03 3.3784 2.7560E−03

Example 5.3 (Normal inverse Gaussian). Let Xt = γτt + σWτt , where W is a Wiener
process subordinated by the process τt ∼ IG(t, t2/v). The characteristic exponent of Xt

is

ψ(ξ) =
1 −

√
1 + vξ(−2iγ + ξσ2)

v
and γ = r − q −

1
2
σ2 −

1
2

r2v.

We used σ = 0.2 and v = 0.025 in our example and display the results in Table 3.

6. Conclusions

We provide a framework for calculating prices and deltas of Asian-type options
through lower and upper bound approximations. The core idea in this paper is to
replace the event that the option finishes in-the-money with a highly correlated proxy
that is easier to deal with.

The main result is an extension of the method of Thompson [30] in pricing Asian
options via lower bound approximations. This method can be used for a wide class of
processes and in cases where the relevant joint densities of the underlying asset and the
proxy processes are not known. We provide a means for calculating the characteristic
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functions of these distributions, in both continuously and discretely monitored cases,
and a method involving Fourier techniques to compute the lower bound prices and
delta approximations. These Fourier techniques use a two-dimensional version of the
exponential damping method of Borovkov and Novikov [3]. Our numerical studies
demonstrate higher accuracy compared to Monte Carlo outputs.

We also propose a novel upper bound in the case of GBM, which provides close
approximations to option prices, though these approximations are not as accurate as
the lower bounds. The upper bound is necessarily more complicated than the lower
bound as it involves an “optionality” term analogous to, though easier to deal with
than, the original pricing problem. Developing methods to efficiently compute these
upper bounds is the subject of some future work.

The damping and Fourier methods themselves introduce numerical difficulties
through the oscillatory nature of the integrands they involve. The degree of these
difficulties is likely to be responsive to changes in the values of the damping
parameters. These issues are currently being investigated.

The methodology and notation used to set up the problem are quite general and
can be extended to other average-type options including volume weighted average
price (VWAP) and, through vectorisation, basket options involving European or even
Asian-type payoffs. This work is ongoing.
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