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TRACE OF FROBENIUS ENDOMORPHISM OF
AN ELLIPTIC CURVE WITH COMPLEX MULTIPLICATION

NoOBURO IsHII

Let E be an elliptic curve with complex multiplication by R, where R is an order
of discriminant D < —4 of an imaginary quadratic field K. If a prime number p is
decomposed completely in the ring class field associated with R, then E has good
reduction at a prime ideal p of K dividing p and there exist positive integers u and
v such that 4p = u2 — Dv?. It is well known that the absolute value of the trace a,
of the Frobenius endomorphism of the reduction of E modulo p is equal to u. We
determine whether a, = u or ay = —u in the case where the class number of R is 2
or 3 and D is divisible by 3,4 or 5.

1. INTRODUCTION

Let K = Q(/—m) be an imaginary quadratic field, where m is a square-free positive
integer. Let R be an order of K of conductor fo with a basis {1,w} over Z. We denote
by d(R) and h(R) the discriminant and the class number of R respectively. Let f be the
smallest positive integer such that fv/—m € R. Then we have f = fo/2if m =3 mod 4
and f, is even, otherwise f = f;. Let E be an elliptic curve with complex multiplication
by R and denote by j(E) the j-invariant of E. We may assume that E is defined by a
short Weierstrass equation: y2 = 2% + Az + B, A, B € F = Q(j(E)). First, we introduce
the notation used in the following. For an endomorphism A of E, the kernel of X is
denoted by E[A]. For a prime ideal p of F', we denote by ¢, the relative degree of p over
Q. If E has good reduction at p, then we denote by ENp the reduction of £ modulo p.
For a point P of E we denote by P~ the reduction of P modulo p. Further we denote by
¢ the Frobenius endomorphism of E,, and by a,(E) the trace of ¢,. By F,, we denote
the finite field of g-elements. If E~,, is defined over F,, then EN,,(IFQ) denotes the group of
F,-rational points of £~7,.

Now let p be an odd prime number and p a prime ideal of F' dividing p. Let us
assume that p and p satisfy the following condition:
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(1) p splits completely in K, p is prime to f, and E has good reduction at p.
Then by complex multiplication theory (see [11, Chapter III]), we know that E has
ordinary good reduction at p and the endomorphism ring of ﬁ, is isomorphic to R (see
(6, Theorem 12, 13.4]). Further K (j(E)) is the ring class field of K of conductor f, (see
[3, Section 9]). Since p is of relative degree £,, there exist positive integers u, and v, such
that

4p% = uf, +mf2v§, (up + v,,fﬁ)ﬂ € R, (up,p) =1

By the assumption, we may write @, = (a,(E) + b,(E)fv/-m)/2 = a + Bw, where
b,(E),a and S are integers. It is known that the group ENP(]sz,) is of order N,(E)
= p% + 1 — ay(F) and is isomorphic to the group Z/(N,(E)/d)Z & Z/dZ, where d is the
greatest common divisor of @ — 1 and 8. On the other hand, if d(R) < —4, then we
have easily a,(E) = €,up, where e, =1 or — 1. It is easy to find u, for a given number
4p% such that 4p = ul + mf22, (up,p) = 1. Therefore if we determine ¢,, then we
can compute the numbers N,(E) and d quickly. The problem of determining ¢, in the
case h(R) = 1 has been solved by Rajwade, Joux and Morain and others. See [5] for
the references to their results. In the case h(R) = 2, this problem is solved for only one
case of the order of discriminant —20, by Leprévost and Morain ([7]), using the results
of [1, 2] for the character sum of Dickson polynomial of degree 5.

The purpose of this article is to determine ¢, for an elliptic curve E having complex
multiplication by R and for prime ideals p of F satisfying (1), where R is an order such
that h(R) = 2 or 3 and mf? is divided by 3,4 or 5. Thus R are orders of discriminant

d(R) = —15,—20, —24, —32, —35, —36, —40, —48, —51, —60, —64, —72,
— 75,-99, —100, —108, —112, —115, —123, —147, —235, —243, —267.

Further we assume that j(E) is real to avoid tedious computation.

Our idea to solve the problem is as follows (for details see Section 2). Let s be a
divisor of f>m and assume s > 3. We find a F-rational cyclic'subgroup C, of E[f/—m]
of order s and take a generator @ of C,. Consider the Frobenius isomorphism of o, of p.
Then F-rationality of C, shows Q°° = [ry](Q) for an integer r,. Using Q~ € 15,, [fv=m]
and (Q°%%)~ = pp(Q™), we have

[2([)(@) ™ = [2(Q"")™ = [2]ws(Q™)
= [(ap(E) + bp(E)fV=m)](Q) = [a,(E)}(Q").

This shows that a,(E) = 2r, mod s. Therefore the number ¢, is determined by the
condition g,u, = 2r, mod s. This argument reduces our original problem to a problem
of finding a point @ and of determining r, for a given prime ideal p. In Section 2, we give
auxiliary results to find the cyclic subgroup C, and a generator Q. If s is an odd prime
number, then we show, in Proposition 2.8 of Section 2, that the s-division polynomial
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VU, (z, E) of E has a unique F-rational factor Hy g{(z) of degree (s — 1)/2 and that the
point Q is obtainable from a solution of H, g(z) = 0. In Section 3 we determine 7, in the
case f2m is divided by 3 or 4 and in Section 4 in the case f?m is divided by 5. Though we
deal with a specified elliptic curve E for each order R, a similar result is easily obtained
for any elliptic curve E’ of the j-invariant j(F), because E’ is a quadratic twist of E and
ap(E') is the product of ay(E) and the value at p of the character associated with the
twist.

In the following, we assume any elliptic curve is defined by a short Weierstrass
equation.

2. THE SUBGROUPS OF E[f./—m] AND DECOMPOSITION OF DIVISION POLYNOMIALS

2.1. Let E be an elliptic curve with complex multiplication by R. By the definition of

f, we have f\/—m € R.

PROPOSITION 2.1. The group E[f\/—m] is cyclic of order f*m.

PRrooF: By [8, Proposition 2.1}, we know E[f\/—m] is isomorphic to R/f/—mR.
Let f be odd and m =3 mod 4. Then R = Z&® fwZ, where w = (1++/—m)/2. Further
fv-mR = f(2w—-1)Z& f(w— (m+1)/2)Z. Put £ = fw— f(mf +1)/2 € f/-mR.
Then we have f(2w — 1) = 26 + mf2, f2(w— (m+1)/2) = f€+ (f — 1)f*m/2. This
shows that {f?m, &} is a basis of f\/~mR over Z. Since {1,£} is a basis of R over Z,
R/f\/—mR is a cyclic group of order f>m. The assertion for the other case is easily
obtained. 0

LEMMA 2.2. Letr be a fixed prime number. Then there exist infinitely many
prime numbers of the form u? + v?f?m, where u and v are integers and v is prime to .

Proor: Consider the ideal groups Gy and Py of K such that
Go = {a| ais prime to 2rfm}, Py={(@)|a=1 mod 2rfv—-m}.

Then P, is a subgroup of G of finite index and by Tshebotarefl’s density theorem, in each
factor class there exist infinitely many prime ideals of degree 1. Let v = ug + vofv/—m
such that ideal (v) € Gq and ug, vp € Z and further vy is prime to . Then every integral
ideal of the class (y)P, has a generator of the form u; + v; fv/—=m (uy,v; € Z,7{v1).
Thus we have our assertion. 0

In the following, let p be an odd prime number and p a prime ideal of F dividing p
and assume that p and p satisfy the condition (1).

LEMMA 2.3. Let s be an odd prime number dividing f>m. Let ¢ = p%. Assume
that ¢ = ©® +v2f?m, (v,ps) = 1 or 4q¢ = u* + v?f?m, (v,2sp) = 1. Then we have

E,[s]N E,,[fM] \ {0} = {P = (a,B) € Epls] | st []F'q(a) : IEi‘q] },

where [Fy(a) : F,] denotes the degree of the field Fy(a) over F,.
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PROOF: By the assumption, ENp is defined over FF,. First we assume the Frobenius
endomorphism g, is given by ¢, = (u+vf\/—m)/2, if necessary, after replacing u by —u
orv by —v. Let P=(o,8) € EN,,[s]. IfPe li,[ﬁ/%, then, for h = (s — 1)/2, we have
ok ([2*)(P)) = [w"])(P). Since 2",u" = £1 mod s, we have @}(P) = +P. This shows
[Fo(a) : Fq] < (s —1)/2. Conversely let P = (o, 8) € gp[s],s t k = [Fy(e) : F,] and
r = ¢*. Since Q¥(P) = (o, ") = (o, 87) = ¢P (¢ = *1), we have [(u + vfv/—m)/2)*
—€}(P) =0. Since P € Ep[s] and s | f%m, we have [(u* — 2¥¢) + ku*~lvf/=m](P) = 0
and [(u* — 2¥e)? + (kuF~'v)2 f2m] (P) = 0. Thus [(uf — 2*¢)?](P) = 0. Since the order of
P is s, we see [(uf — 2%¢)](P) = 0 and [ku"“vf\/W(P = 0. By the assumption k,u
and v are prime to s. Therefore we conclude [f\/—m](P) = 0. Hence P € Ep[ f \/__]
In the case g, = u+ vfy/—m, the same argument holds true

COROLLARY 2.4. Let \I/,(I,E,,) be the s-division polynomial of E,. Then

¥, (z, Ep) is the product of two F-rational polynomials hy(z) and hy(z) such that h,(z)
is of degree (s — 1)/2 and the degree of every irreducible factor of hy(z) is divided by s.
Further the solutions of hy(z) = 0 consist of all distinct z-coordinates of non-zero points

in Ep[s] N ﬁp[f\/—ml.

PROOF: Since p is prime to f?m, by Proposition 2.1, E,,[s] N E~,,[f\/—m| is a
F,-rational cyclic group of order s. Thus if we put h;(z) = [[(z — @), where « runs
3

over all distinct z-coordinates of non-zero points in I*?,,[s] N ENp[ fv/—m], then hy(z) is
F,-rational and of degree (s — 1)/2. The assertion for hy(z) follows immediately from
Lemma 2.3. 1}

LEMMA 2.5. Let4|f2mandq—p"’—u +112f2 (®,2) = 1. Let Q, be a

point of order 4 of E,,[f\/—ml and Q)2 a point of E,, such that [2](@:1) = [2)(Q.) and
Q2 # £Q1. Then the z-coordinates T, and z; of Q, and @), are all F,-rational solutions

of \II4(:I:,1§,,)/y = 0. Furthermore let y* = h(z) be the equation of 5,,. Assume that
¢p = u+ vfy/—m. Then, of two elements z, and z,, only x; satisfies the relation
(h(z1)/p) = (—=1)®~1/2 where ( /p) denotes the Legendre symbol for p.

PROOF: Since E,,[ fv-m]is a lF,,-rational~cyclic group, we see z; and z, are F,
-rational. Let o be a Fg-rational root of W4(z, E,)/y = 0 and put S = (&, 8). Then S is

a 4-division point of ép and we have
©p(S) =[u+ vfV/-m|(S) = (o, %) = (o, £8) = [€](S), (e = £1).

Thus we have [(u —€) + vfy/~=m](S) = 0. This shows [(u —€)? +v2f?m](S) = 0. Since
the order of S is 4, u — ¢ is divided by 2. Thus [fv/=m]([2]5) = 0. Since [2](Q.) is the
only one point of degree 2 in E,[f+/—m], we have [2])(S) = [2](@:). This shows that S
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equals to one of £0), and Q2. Therefore a equals to z; or z;. Let P = (z, y) be a point
of E, of order 4 such that z € F,. Then

0p(P) = (%,y%) = (z,yh(z)"™D/?) ,
= [(h(z)/p)](P) = [u](P) + [vf V-m](P).

Therefore we have (h(z)/p) =u mod 4 if and only if P € Ep[f\/ -m). 0

2.2. Let s be a positive divisor of f2m and s > 3. By Proposition 2.1, there exists
a unique subgroup C, of E[f+/=m] of order s. Let Q = (zg,yo) be a generator of C,.
Consider the fields L = F(zq) and M = F(Q). Since E[f\/—m)] is F-rational, C, is
F-rational and the field M is an Abelian extension over F. By class field theory, the
Galois group G of M over F is isomorphic to an ideal class group & of F. For an ideal
class € € B, let o¢ be the isomorphism of G corresponding to €. Then we have

THEOREM 2.6. Let € be the class represented by p and Q°¢ = [r¢](Q). Then we
have a,(F) = 2r¢ mod s. Further if a,(E) is even, then we have a,(E)/2 =r¢ mod s.

PROOF: Let @, = (ay(E) + by(E) fv/—m) /2. Since (Q7¢)™~ = ¢,(Q"~), we see

21([re)(@))™ = [21(Q7%)™ = [2](Q™)
= [(ap(E) + b,(E) fV-m)] (@) = [as(B)] (@)

Since p is prime to 5, Q™ is of order s. Thus ay(E) = 2re mod s. If a,(E) is even,

then @, = (a,(E)/2) + (b,(E)/2) f/—m. By a similar argument we have [a,(E)/2](Q™)
= [r¢J(@™). This shows the remaining assertion.

PROPOSITION 2.7. Let s be an odd prime divisor of f*m. If p* =1 mod s,

then )

ap(E) = 2(%)9) mod s

PROOF: Since we have 4p% = a,(E)?+b,(E)?f?m, Theorem 2.6 shows that r¢ = 1
mod s. Thus z3j € F,. By the similar argument in the last part of Lemma 2.5, we have
our assertion. 0

PROPOSITION 2.8. Let s be an odd prime divisor of f>m and ¥,(z, E) the
s-division polynomial of E. Then V,(z, F) is the product of two F-rational polynomials
H, p(z) and Hy g(z) such that H, g(z) is of degree (s — 1)/2 and every irreducible factor
of Hy g(x) is of degree s. Further the solutions of Hy g(z) = 0 consist of all distinct
z-coordinates of non-zero points of C,.

PROOF: Let Hy g(z) = H(z — t), where t runs over all distinct z-coordinates

t
of non-zero points of C,. Since C, is F-rational, we see H; g(z) is F-rational of de-
gree (s — 1)/2 and clearly it divides ¥,(z, E). By Lemma 2.2, we can choose an odd
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prime p and a prime ideal p dividing p such that they satisfy (1) and p is of the form
p = u? + v2f?m, (v,s) = 1, and further the reduction of ¥,(z, E) modulo p is equal
to \Il,(z,ﬁ,,). Take a point P € E[s] \ C, and put Q = [fv/—m](P). Clearly, we have
Q € E[fV/=m] and E[s] = (P)®(Q). Let G, be the Galois group of F(E[s]) over F. By
the representation of G, on E|[s] with the basis {P,Q}, G, is identified with a subgroup

of the group
I a 0 X
Go—{(b ia) |ae]F,,belF,}.

Consider the subgroups of Gy:

a={(5 L) Jaemf ={(; ) [pem}.

Then we see Gy = HN, Go> N and HNN = {1,}, where 1, is the unit matrix. Since the
order of N is s and s is prime, we know that Gy D N or G NN = {1,}. Let Q be the set
of all subgroups of order s of E[s]. Then Q consists of s + 1 elements and G, operates on
2. By Corollary 2.4, the degree of every irreducible factor of Hy g(z) = ¥,(z, E)/H, g(z)
is divided by s. Thus we know C, is one and the only one fixed point of G;. First let
us consider the case G; O N. Then we have Gy = HiN, H, = HNG,;. Since H; is the
fixed subgroup of (P}, the orbit of (P) consists of s elements. Therefore 2 decomposes
into two orbits. In particular, for each n, 1 < n < (s — 1)/2, the z-coordinate of [n]P
has s conjugates over F. Thus every irreducible factor of H, g(z) is of degree s. Next
consider the case Gy N N = {1;}. Then the order of G, is a divisor of 2(s — 1) and is

prime to s. Since the order of a matrix Z 2 , (b # 0) is divided by s, G, dose not

contain the matrices of this form. Therefore there exists an element A € F, such that G,
is contained in the subgroup

<a-12, ()1\ _01) | aG]F;‘>.

This shows (P + (1/2)Q) is a fixed point. Thus we have a contradiction. 0

PROPOSITION 2.9. Let4| f?m. IfQ is a point of order 4 in E[f\/—m] and
T is a point of E such that [2)(Q) = [2)(T) and T # +Q, then the z-coordinates zq and
z7 of Q and T are all F-rational solutions of ¥4(z, F)/y = 0.

PROOF: Using Lemma 2.5 instead of Lemma 2.3 and tracing the argument in the
first part of Proposition 2.8, we have the assertion. 0

In Section 4, to study the ideal class groups of F corresponding to the Abelian
extensions L and M, we must determine conductors f; and fu of L and M over F. In
next lemma, we shall give some results for the conductors. For a prime ideal q and an
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integral ideal a of F, we denote by e4(a) the maximal integer m such that m > 0 and q™
dividing a.

LEMMA 2.10. Let Q be a point of E of order s. Assume that s is an odd prime
number, s > 3 and ) generates a F-rational subgroup (Q). Let L,M,f§; and §ps be
defined for @ as above. If q is a prime ideal of F prime to (2s), then eq(f1) < eq(fu) and
eq(far) > 0 implies eq(fr) > 0. Further if E has good reduction at q, then eq(fps) =0

PROOF: Since L is a subfield of M, clearly e4(f.) < eq(far). If E has good reduction
at g, then Néron-Ogg-Shafarevich criterion ({10, Proposition 4.1, Chapter VII]) shows
that eq(far) = 0. We shall prove eq(far) > 0 implies e4(f.) > 0. Assume that q is ramified
in M and is unramified in L. Let 9 be a prime ideal of M dividing q and My the
completion of M with respect to . Further we denote by kjs the residue field of Q. Let
Ey, E1 and E’m be the groups defined in [10, Chapter VII]. Since E has additive reduction
at g, by [10, Theorem 6.1, Chapter VII] we have [E(MQ) : EQ(MQ)] =w < 4. Since Q
has order s, by replacing @ by [w]Q if necessary, we can assume that Q € Eo(Mp). Let o
be a non trivial element of inertia group of 2. Then since z{ = zq, we have Q7 = —Q.

By considering the reduction modulo q, we have @~ = —Q~. Therefore Q~ € Z?m(kM)
and [2](Q~) = 0. Since the characteristic of kjs is prime to 2, by [10, Propsositions 2.1
and 5.1, Chapter VII |, we know @~ = 0, thus, we have @ € F;(My). Consequently, by
[10, Proposition 3.1, Chapter VII], we have @ = 0. This contradicts that @ # 0. 0

Finally for s = 3,4, 5, we list s-division polynomials ¥,(z, E):

4

Us(z, F) = 32* + 6A22 + 12Bx — A?

2“(;’—19) = 1% + 5Az* + 20Bz® — 54%2% — 4ABz — 8B% — A%,
Us(z, E) = 52'2 + 62Az'° + 380Bz° — 1054228 + 240ABz”

— (30042 + 240B2)z® — 696A2Bz° — (125A* + 19204 B2)z*
—(1600B2 + 80BA%)z? — (504° + 240A2B?)z?
—(640AB3 + 100A4%B)z + A® — 32B2A% — 256B*.

3. THE CASE f>m IS DIVIDED BY 3 OR 4

Let s = 3 or 4. Assume that s | f>m. Let Q = (zq,y¢) be a point of E[fyv—m]
of order s. By Propositions 2.8 and 2.9, we know zo € F. We may write yé = w?
such that w € F*, ag is an integer of F and ideal (ag) has no square factors. In the
following, let p be an odd prime number and p a prime ideal of F dividing p and assume
they satisfy the condition (1). Then there exist positive integers u, and v, such that
4t = u2 + mf2?, (up+v,fV-m)/2 € R, (up,p) = 1. If up is even, then clearly we
have p% = (up/2)2 + mf(vp/2)2.

ag
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THEOREM 3.1. Let u, and v, be as above. If we choose €, € {£1} such that
£p(up/2) = (ag/p) mod s, then we have ay(E) = e,u,.

PROOF: Since F(Q) = F(,/ag), we have Q°* = [(ag/p)](Q). Thus by Theorem 2.6,
we have our assertion. It is noted that u, can be odd only in the case s = 3. 0

Let Ey be an elliptic curve defined by a Weierstrass equation: > = z% + Ayz
+ By (Ao, By € F). If Ey is isomorphic to E over an extension Fy over F, then there
exists an element § € Fy such that Ay = §*4, By = §°B. Since j(E) # 0,1728, we know
that A, B, Ay and By are not 0 and 62 € F. Therefore we may put ag, = 6%ag. In
particular we obtain

THEOREM 3.2. Let E* be the twist of E defined by the equation y? = 2%+ Ad%
+ Ba3,. Further assume that E* has good reduction at p. Let u, and v, be as above. If
we choose €, € {£1} such that ep(up/2) =1 mod s, then we have a,(E*) = €,u,.

The j-invariants of elliptic curves with complex multiplication by R are solutions
of the class equation Higg)(z) = 0 of discriminant d(R) (see [3, Section 13]). In the
following, we shall use the table of class equations prepared by M.Kaneko. We shall
gives a canonical elliptic curve E with complex multiplication by R and compute ag in
subsections 3.1 and 3.2 for the cases s = 3 and 4 respectively.

3.1. THE CASE s = 3. We shall explain the process to obtain a canonical elliptic curve
E in the case d(R) = —15. At first we take a solution j; = (~191025 + 859951/5)/2 of
the equation:

His(z) = x% 4 191025z — 121287375 = 0.

Let E; be the elliptic curve defined by the equation: y* = z% + A;z + B;, where A,
= —1/48 — 36/(j1 — 1728), B, = 1/864 + 2/(j; — 1728). Then the j-invariant of E, is
equal to j;. By considering twists of E; by elements \/n (n € F = Q(\/g)), we find an
elliptic curve E such that coefficients A and B of an equation y? = 23 + Az + B of E are
integers of F' and further the absolute value of the norm of the square factor of A4 is as
small as possible. In this case, we take n = 2237(4 + v/5)/(V/5(4 — V/5)). Therefore we
see A= Ajn® =105+ 48v/5, B = Bin® = —784 — 350/5 and :

Us(z, E) = 3(z® + 622 + 3v/52% + (291 + 132v/5)z + 590 + 265V/5) x (z — 6 — 3V/5).

This shows zg = 6 + 3v/5 and y3 = 2*((1 + \/5)/2)11. Finally we have
PROPOSITION 3.3. Let F be the elliptic curve defined by the equation

y? = 2° + (105 + 48V/5)z — 784 — 350V/5.

Then E has complex multiplication by the order of discriminant —15. Further we have

ag = (1+V5)/2.
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REMARK 3.4. For another root j, = (—191025—85995v/5)/2 of H5(z) = 0, we consider
the conjugate elliptic curve E of E over Q and we have o = (1 — V/5)/2.

ExXAMPLE 3.5.
(1) Let p = 61. Then (—15/p) = (5/p) = 1. Thus ¢, = 1. Choose the
prime ideal p such that p 3 /5 — 26. Since (ag/p) = (54/61) = —1 and
dp = 22 + 4215, a,(F) = -2.

(2) Let p = 83. Then (-15/p) = 1,(5/p) = -1. Thus ¢, = 2. Since
(ag/(p)) = —1 and 4p* = 154% + 16% - 15, a(,) = 154.
For other cases, we give only results and data necessary to obtain the results.
For each order R, the data consists of the class polynomial H\qr)(z), a solution j of
Hqry = 0, coefficients A and B of a Weierstrass equation of an elliptic curve E with j(E)
= j, Tq, y5 and ap. We list them in the following format:
d(R) Hy(m))(2)
J
A, B
IQ, y%
(295]

The results and data for the case h(R) = 2.

—24 | 2 — 4834944z + 14670139392
2417472 + 1707264v/2
—21+12v2, — 28+ 222
—3+3v2, 2(1 - V2)5(1 + V?)
1+2
—36 | z2 — 153542016z — 1790957481984
76771008 + 44330496+/3
—120 — 42V/3, 448 + 3361/3
3+3v3, 4(2+ vV3)*(1 + V3)
1+/3
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—48

z? — 2835810000z + 6549518250000

1417905000 + 818626500/3

—1035 — 240v/3, 12122 + 52803

—9+18v/3, 4(2 — V3)*(1 — 2v/3)%(8 + 61/3)

8+6v3

-51

z? + 5541101568z + 6262062317568

—2770550784 — 6719569921/17

—60 — 1217, — 210 — 5617

—6: - 2(4 — \/ﬁ)?

-2

—60

z? — 37018076625z + 153173312762625

(37018076625 + 16554983445/5) /2

(=645 + 20115)/2, 1694 — 924v/5

-(45-15v5)/2, ~ (1= v5)/2)"

-1

—72

z? — 377674768000z + 232381513792000000

188837384000 + 77092288000+/6,

—470 — 360+/6, 19208 + 10080v/6

6+ 9v6, 4(5 — 2v6)2(2 + V6)

2+V6

]

z? + 654403829760z + 5209253090426880

—327201914880 + 146329141248+/5

—~2160 + 408+v/5, 42130 — 10472v/5

—(15+21V5), (=25 — 13V5)(4 = VB (1 +v5)/2) "

-25— 135

—99

z? + 37616060956672z — 56171326053810176

—18808030478336 + 3274057859072+/33

—45012 + 7836v/33, — 5198438 + 904932+/33

—87 +15v/33, —2

-2

-123

z2 + 1354146840576 - 10z + 148809594175488 - 108

—677073420288000 + 105741103104000+/41

—960 + 120v/41, — 13314 + 2240141

—24, —2(32+5V41)?

-2

https://doi.org/10.1017/50004972700035875 Published online by Cambridge University Press

[10]


https://doi.org/10.1017/S0004972700035875

[11] Trace of Frobenius endomorphism 135

—147 | 22 + 34848505552896 - 103z + 11356800389480448 - 106
—17424252776448000 + 3802283679744000+/21
—2520 — 2401/21, — 31724 — 11418v/21
63 + 9v21, (7— v21)((5 + V21)/2)°
7-V21
—267 | x® + 19683091854079488 - 106z +
+531429662672621376897024 - 10°
—9841545927039744000000 + 1043201781864732672000v/89
—37500 + 3180+/89, 3250002 — 371000+/89
150, 2(500 + 53v/89)2
2

The results and data for the case h(R) = 3.

—108 z3 — 151013228706 - 10322 + 224179462188 - 105z
— 1879994705688 - 10°
31710790944000/4 + 39953093016000/2 + 50337742902000
105v/4 — 90v/2 — 135, — 738v/4 + 7382 + 526
9—32, 4(1 - ¥2) (-1 + V2)
-1+ 2
—243 | 23 + 1855762905734664192 - 10322 — 3750657365033091072 - 105z
+3338586724673519616 - 10°
—618587635244888064000 — 428904711070941184000/3
—297385917043138560000+/9
—1560 + 720/9, 32258 — 11124/3 — 7704/9
42 —18V9, (-2+ ¥9) (-4 +2V9)
—4+2%9

3.2. THE CASE s = 4. In this case, by Lemma 2.5 and Proposition 2.9, we know that
Tg is one of two F-rational solutions of ¥,(z, E)/y = 0 satisfying the condition given in
the last part of Lemma 2.5. We shall explain the case d(R) = —32. We take a solution
§ = 26125000 + 18473000v/2 of H3(z) = 22 — 52250000z + 12167000000 = 0 and consider
an elliptic curve E with j(E) = j, defined by an equation:

v=z)+Az+B (A= -105-90v?2, B =630+ 518v?2).

Then ¥,(z, E)/y = 0 has two F-rational solutions z; = 3 + 5v/2,z, = 9 — V2. Con-
sider a prime number p = 17 = 32 + 222 and a prime ideal p = (1 — 3v/2). Then by
counting the number of points of E?,,(IF,,), we know a,(F) = —6. Since (z2 + Az, + B/p)
= (-3 +3v2/p) = (-2/17) = 1 = (~1)@®B/2-1) we see 29 = z,. Calculating 3,
we may obtain ag = —3 + 3v/2. For the cases d(R) = —64, —112, we know the class
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polynomials are:

Hea(z) = 2° — 82226316240z — 7367066619912,
Hiyyo(z) = 22 — 274917323970000z + 1337635747140890625.

In these cases by similar argument we have (F,ag). We list our results in the next
proposition.

PROPOSITION 3.6.

d(R) | j(E) A zQ
. B [675)
—32 | 26125000 + 18473000v/2 -105-90v2 [9-—+v2

630 + 5182 | —3+3v2
—64 | 41113158120 + 2907139296612 | —91 — 60+/2 54+ 2v/2
462 +308v2 | V2-1
—112 | 137458661985000 —725 — 240v7 | 24 — V7
+ 51954490735875/7 9520 + 36987 | 1

4. THE CASE mf? IS DIVIDED BY 5

We shall consider the orders R of discriminant d(R) = —20, -35, —40, —100, —115,
—235. These orders R are of class number 2. Further for any R, we know F = Q(v/5).
For a given order R, we consider an elliptic curve E, defined over F, with complex
multiplication by R. Proposition 2.8 shows that W¥y(z, F) has only one F-rational factor
H, g(z) of degree 2 and for any solution z; of H, g(z) = 0, a point Q of F with zg =z,
is a generator of the group Cs. Let L = F(zg) and M = F(Q). For a prime number p
satisfying p* =1 mod 5, our problem is rather easy (see Proposition 2.7). For a prime
number p satisfying p» =4 mod 5 and a prime ideal p dividing p, to determine Tp, We
must study the ideal class groups of F' corresponding to the fields L and M. Regarding
conductors of L and M, we have a following result. In Proposition 4.1, we shall use the
notation in Section 2.

PROPOSITION 4.1. Letq be a prime ideal of F prime to (2v/5). Then eq(f)
= eq(fm) and eq(far) < 1. Further if E has good reduction at q, then eq(far) = 0.

PROOF: Since M is a cyclic extension of degree 4 over F', we have eq(far) < 1 (see
[9, Chapters IV and VI]). The other assertion is deduced from Lemma 2.10. 0

As for the prime ideal (v/5), we have ews)(fr) < ews)(fm) < 1. Proposition 4.1
shows, to avoid tedious computation in determining class groups, it is necessary to choose
an elliptic curve E so that the number of prime factors of its discriminant is as small as
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possible. We shall explain the case d(R) = —235, because the other cases can be deduced
from similar but much easier argument. First we take a solution
j = —411588709724712960000 — 184068066743177379840v/5
of the equation:
Hass(z) = 2° + 823177419449425920000z + 11946621170462723407872000 = 0.

We consider an elliptic curve E defined by an equation: y* = z® + (—15510 + 2068v/5)z
+ (3200841 — 6494461/5) /4. The discriminant of E is 47°2~4¢*?, j(E) = j and

Hy p(z) = 102? + (3525 — 2115v/5)z + 624160 — 262918V/5,

where e = (1 4+ v/5)/2. By solving the equation H; z(z) = 0, we obtain a generator Q of
Cs given by
Q = (3e~'t +47e71%/2, (2v/5e'%)'n),

where t = /47/5e~1 and 7 = \/476_1(2115 - (211 + 2.3\/5)t). In particular we have
L = F(t) and M = L(7). Next we shall determine conductors and ideal class groups of L
and M. Since the maximal order of L has a basis {1, (1+e7't)/2} over the maximal order
of F, the discriminant of L over F is (e~'t)?. This shows that f, = (47+/5). Since M is real
and has an imaginary conjugate field over Q, Proposition 4.1 shows fas = (2¥ - 47/5)002
for some integer k (0 < k < 2), where 0o, is the infinite place of F corresponding to the
conjugate embedding of F to Q. We have only to determine the 2-exponent k. See [4,
Section 3] for a method to calculate the 2-exponent of conductors. For a moment, we
assume M is defined modulo (4 - 47/5)00;. Let P be the ray class group of F' modulo
(4 - 474/5)005. Denote by B and Par the subgroups of P corresponding to L and M
respectively. Consider the ideal classes g, € and [ of 8 represented by the principal ideals
((1 + 3v/5)/2), (46 + 47V/5) and (471) respectively. Then g is of order 276 and both €
and [ are of order 2 and further

B = (g) x (& x(I) (a direct product).

Let P3; be the ray class group modulo (47\/5) and @ the canonical morphism of ‘B to PB;.
Then B, is a cyclic group generated by 6(g) of order 138 and Ker(0) = (g*3®, ¢, ). Since
fr = (47V/5), P O Ker(#). This shows that P, = (g, ¢, ). Next we shall determine ;.
Let £ be the endomorphism of P defined by £(a) = a%®. Then £ induces an isomorphism
of B/ B to £(B)/E(Pa). Consider the prime numbers g = 251 = 42 + 235, ¢, = 431
= 142+235 and g3 = 239 = 22+235 and prime ideals q, = (16+v/5), 4, = ((43+5V5)/2)
and q3 = ((31 + \/5)/2) of F dividing ¢, g, and g3 respectively. In the following, for
a prime ideal q of F, we denote by C(q) the class of B represented by £(q). Then
we know C(q:),C(q2) and C(q3) belong to El, ¢ and £(g)€ respectively. By counting
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the number of rational points of the reduced elliptic curve of E modulo q;, we have
aq,(E) = —8,0aq,(E) = —28 and ag,(E) = —-4. Therefore, by Theorem 2.6, we know
¢, 1 € Pur and the class £(g)t corresponds to the isomorphism A such that Q* = [3](Q).
Since Py is a subgroup of P, of index 2, we conclude that Py = (g*, &, [). In particular,
Bas does not contain the kernel (g'%¢, ) of the canonical morphism of B to the ray class
group modulo (2 - 47v/5)00,. Therefore far = (4 - 47/5)00,. Since the class m = £(g) is
represented by the ideal (743 + 7561/5), we have

THEOREM 4.2. Let &1 and m be the classes of P represented by the ideals
(46 + 47V/5), (471) and (743 + 756+/5) respectively. Put & = (m, ¢,1) and D = (¢, ). Let
p be an odd prime number and p a prime ideal of F dividing p and assume that they
satisfy (1). Furthermore, let u, and vp be the positive integers such that 4p% = u2+235v2
and (up,p) = 1. If the class C(p) of p*° belongs to m*D (0 < i < 3), and €, € {£1} is
chosen such that eyu, = 2-3* mod 5, then we have a,(E) = £yu,.

REMARK 4.3. C(p) € DUm?D if and only if p» =1 mod 5.

EXAMPLE 4.4.
(i) Let p= 239 = 22+ 235 and p = ((31 + v/5)/2). Then C(p) = mt € mD
and a,(F) = —4.
(i) Let p= 241 = (272 +235)/4 and p = ((33 + 5v/5)/2). Then C(p) =l D
and a,(E) = 27.
(iii) Let p= 719 = 22% + 235 and p = ((59 + 11v/5)/2). Then C(p) = mdel
€ m®*D and qy(F) = 44.

We shall give the data and results for other cases. In the below, put ¢, = /m/ (V5e)
and denote by P the ray class group of conductor fp of F. Further, we denote by p and
p an odd prime number and a prime ideal of F' dividing p such that they satisfy the
condition (1) for the given elliptic curve E.

(I) The case m =5, d(R) = -20

[ Hao(z) = 22 — 1264000z — 681472000,

§(E) = 632000 + 282880+/5,

A = -50/3 — 5v/5, B =100/3 + 280v/5/27,

Tq = 5€2/6 + tm, Yo = (VB)(e+tm)/1+1,1,
L=F(tn),M =L(VIF5), fu = (4V5), fur = (8V5),
[P = (31) x (82), B = (8}, 92), Bur = (dle2),

where g1 and g, are the classes of order of 4 and 2 represented by the ideals ((21+ v5)/ 2)
and (11 + 2v/5).

PROPOSITION 4.5. Let u, and v, be the positive integers such that p*
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= u2 + 502, (up,p) = 1. Choose e, € {+1} such that e,u, = 2° mod 5 if the class
of p belongs to giPu (0 < i < 3). Then we have a,(E) = 2¢pu,.

Choosing a suitable generator of p, p is written in a form p = a? — 5b%, where a and
b are integers satisfying the condition:

{1 mod20 ifp=1 mod 5
a

17 mod20 ifp=4 mod 5,

b

0 modd ifp=1 mod 8
2 mod4d ifp=5 mod 8.

For i = 1,2, let p; = a? — 5b? be the prime numbers represented as above. If p, = p,
mod 40, then prime ideals (a; + b,v/5) and (a2 + b2v/5) belong to the same class of
B if and only if a; — a; + 5(b; — b2) = 0 mod 40. Let T = (g?). Then we see if
p = 1 (respectively 9,21,29) mod 40, then the class C(p) of the prime ideal p = (a+b/5)
belongs to T, (respectively g29:%, g%, 81%) and furthermore C(p) € Py if and only if
a + 5b = 1(respectively — 3,11,7) mod 40. Therefore we have

PROPOSITION 4.6. Letp = u? + 5v? = a® — 5b%, where u and v are positive
integers and a and b are integers satisfying the above condition. Then if we choose
€p € {*1}such that

(—1)(@+3-1/205  mod 5 ifp=1 mod 40,
| (~1)(e+sb+3/20g  mod 5 ifp=9 mod 40,
= (—1)@+56-1)/0g  mod 5  ifp=21 mod 40,
(—1)(e+%-7)/205  mod 5 ifp=29 mod 40,
then we have ap(E) = 2¢epu.
(II) 'The case m = 35,d(R) = —-35

( Has(z) = 27 + 117964800z ~ 134217728000,

§(E) = —58982400 — 26378240v/5,

A= —701/5/3, B = (13475 + 980+/5)/108,

{ ©q = (35¢ — 3tm)/6¢%, yq = (2,/26%)/V/5 — (9 + V5)(etm) 1,
L=F(t),M=L (\/\/5 —O+ \/5)(etm)-1) ,

fr = (7V5), fm = (14v/500),

(B = (), Br=(h?), Bu = (b"),

where b is the class of order 12 represented by the ideal (6 + v/5).
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PROPOSITION 4.7. Let u, and v, be the positive integers such that 4p%
= ul + 35v%, (up,p) = 1. Choose &, € {£1} such that eyu, = 2-3' mod 5 if the
class of p belongs to h*Pr (0 < ¢ < 3). Then we have a,(F) = epup.

(ITI1) The case m = 10, d(R) = —40

( Hio(z) = 22 — 425692800z + 9103145472000,

§(B) = 212846400 + 95178240+/5,

A= -125+15v5, B = —200 + 240/5,

dzgo =(10e+tn)/€?, yo = Ze‘ztm\/lfxe-l + (40 - 11V/5)t;),
L=F(t,),M=L (\/15e-1 +(40 — 11\/5)t,—,,1> :

12 = (8V5), fur = (164/5)00z,

[P = (8) x (h) x (), Br=(ah,0), B = (H,1),

where g, b and I are the classes of order 4,4 and 2 represented by the ideals (6 + v/5),
((53 + 3v/5)/2) and ((37 + 7v/5)/2) respectively. :

PROPOSITION 4.8. Let u, and v, be the positive integers such that p
= u2 + 1002, (up,p) = 1. Choose €, € {1} such that e,up, = 2° mod 5 if the class of p
belongs to g'Par (0 < i < 3). Then we have o,(E) = 2¢,u,.

(IV) The case m =1, d(R) = —100

(Hmo(x) = z? — 44031499226496z — 292143758886942437376,
F(E) = 22015749613248 + 9845745509376+/5,

A = -3000 — 805v/5, B = 56000 + 32200+/5,

zTQ = e“2\/5((\/§e)3 +tm),

{ vq = €2v/51/30v/5 + (103 + 11v5)tr,

L=F(ty),M=1L (\/30\/5+ (103 + 11\/5_))1:,,,) ,

fr = (4V/5), fu = (8v/5)002,
P = (&) x (&) x (E3), P = (8,8, 83),
L Bar = (B2, 83),

where &, 8, and ¥ are the classes represented by the ideals ((21 + v/5)/2), (11 + 2/5)
and (58 + \/5) and the order of &, &; and &3 are 4,2 and 2 respectively.

PROPOSITION 4.9. Let u, and v, be the positive integers such that
p% = u + 2502, (up,p) = 1. Choose €, € {1} such that eyu, = 2° mod 5 if the
class of p belongs to &Py (0 < i < 3). Then we have ay(E) = 2e,u,.
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(V) The case m = 115, d(R) = —115

( Hus(z) = 22 + 4278646112256002 + 130231327260672000,
j(E) = —213932305612800 + 95673435586560v/5,

A= —345 — 23v/5, B = —(19573 + 5290/5) /4,

zq = V5t (V5t, + €%)/10,

Lyo = (°12,/10)y/15¢1 + (~85 + 61v5)1;,
L=F(t),M=L (\/15«3-1 + (=85 + 61\/5)t;,1) :

fL = (23\/5)a fM = (92\/5)0027
B = (f1) x (f2) x {fs), Br = (3, f2, f3),
| Bar = (F, 2, Fa),

where 1, f2 and f; are the classes represented by the ideals ((1 + 3v/5)/2), (24 + 23v/5)
and (91) and the order of f;,f, and fs; are 132,2 and 2 respectively. Since the map
& :a — a® of P to itself induces an isomorphism of PB/Par to & (P)/&:(Par) and
fo = 33 is represented by the ideal (423 + 3721/5), we have

PROPOSITION 4.10. Let G = (fo,f2,fs) and D = (fa,f3). Let u, and v, be
the positive integers such that 4p® = w2 + 11502, (up,p) = 1. Choose ¢, € {*1} such
that e;u, = 2-3' mod 5 if the class of p33 belongs to D (0 < i < 3). Then we have
ap(E) = €yup.
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