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TRACE OF FROBENIUS ENDOMORPHISM OF
AN ELLIPTIC CURVE WITH COMPLEX MULTIPLICATION

NOBURO ISHII

Let E be an elliptic curve with complex multiplication by R, where R is an order
of discriminant D < — 4 of an imaginary quadratic field K. If a prime number p is
decomposed completely in the ring class field associated with R, then E has good
reduction at a prime ideal p of K dividing p and there exist positive integers u and
v such that 4p = u2 — Dv2. It is well known that the absolute value of the trace af

of the Probenius endomorphism of the reduction of E modulo p is equal to u. We
determine whether ap = u or ap = — u in the case where the class number of R is 2
or 3 and D is divisible by 3,4 or 5.

1. INTRODUCTION

Let K = Q(\/—Tn) be an imaginary quadratic field, where m is a square-free positive

integer. Let R be an order of K of conductor f0 with a basis {1, u>} over Z. We denote

by d(R) and h(R) the discriminant and the class number of R respectively. Let / be the

smallest positive integer such that f\J—m € R- Then we have / = / 0 / 2 if m = 3 mod 4

and /o is even, otherwise / = /o. Let E be an elliptic curve with complex multiplication

by R and denote by j(E) the j-invariant of E. We may assume that E is defined by a

short Weierstrass equation: y2 — x3 + Ax + B, A, B G F — Q(j(E)). First, we introduce

the notation used in the following. For an endomorphism A of E, the kernel of A is

denoted by E[X}. For a prime ideal p of F, we denote by lp the relative degree of p over

Q. If E has good reduction at p, then we denote by Ev the reduction of E modulo p.

For a point P of E we denote by P~ the reduction of P modulo p. Further we denote by

tpp the Frobenius endomorphism of Ep and by ap(E) the trace of ip9. By F,, we denote

the finite field of ^-elements. If Ep is defined over F,, then Ep(Wq) denotes the group of

F,-rational points of Ep.

Now let p be an odd prime number and p a prime ideal of F dividing p. Let us

assume that p and p satisfy the following condition:
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126 N. Ishii [2]

(1) p splits completely in K, p is prime to f, and E has good reduction at p.

Then by complex multiplication theory (see [11, Chapter III]), we know that E has
ordinary good reduction at p and the endomorphism ring of Ep is isomorphic to R (see
[6, Theorem 12, 13.4]). Further K(j(E)) is the ring class field of if of conductor f0 (see
[3, Section 9]). Since p is of relative degree £f, there exist positive integers up and vp such
that

4p*» = u2 + mf2v2
p, (up + v,fV=m)/2 6 R, {up,p) = 1.

By the assumption, we may write ipp = (dp{E) + bp(E)fy/—m)/2 = a + /3LJ, where

bp(E),a and 0 are integers. It is known that the group Ep(¥pte) is of order NP(E)
= p1' + 1 — ap(E) and is isomorphic to the group Z/(Np(E)/d)Z © Z/dZ, where d is the
greatest common divisor of a — 1 and /3. On the other hand, if d(R) < -4 , then we
have easily ap{E) = £pup, where ep = 1 or — 1. It is easy to find up for a given number
4p*p such that Ap1' = up + mf2v2, (up,p) - 1. Therefore if we determine ep, then we
can compute the numbers NP(E) and d quickly. The problem of determining ep in the
case h(R) — 1 has been solved by Rajwade, Joux and Morain and others. See [5] for
the references to their results. In the case h(R) — 2, this problem is solved for only one
case of the order of discriminant —20, by Leprevost and Morain ([7]), using the results
of [1, 2] for the character sum of Dickson polynomial of degree 5.

The purpose of this article is to determine ep for an elliptic curve E having complex
multiplication by R and for prime ideals p of F satisfying (1), where R is an order such
that h(R) = 2 or 3 and m/2 is divided by 3,4 or 5. Thus R are orders of discriminant

d{R) = -15, -20, -24, -32, -35, -36, -40, -48, -51 , -60, -64, -72,

- 75, -99, -100, -108, -112, -115, -123, -147, -235, -243, -267.

Further we assume that j(E) is real to avoid tedious computation.
Our idea to solve the problem is as follows (for details see Section 2). Let s be a

divisor of f2m and assume s > 3. We find a F-rational cyclic subgroup Cs of E[f^/-m\
of order s and take a generator Q of Cs. Consider the Frobenius isomorphism of ap of p.
Then F-rationality of Cs shows Q"' = [rp](Q) for an integer rp. Using Q~ e Ep [f\/-m\
and (Q"<')~ = <pp(Q~), we have

This shows that af(E) = 2rp mod s. Therefore the number ep is determined by the
condition epup = 2rp mod s. This argument reduces our original problem to a problem
of finding a point Q and of determining rp for a given prime ideal p. In Section 2, we give
auxiliary results to find the cyclic subgroup C3 and a generator Q. If s is an odd prime
number, then we show, in Proposition 2.8 of Section 2, that the s-division polynomial
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$s(x,E) of E has a unique F-rational factor HiiE{x) of degree (s — l ) /2 and that the
point Q is obtainable from a solution of Hi^ix) = 0. In Section 3 we determine rp in the
case f2m is divided by 3 or 4 and in Section 4 in the case f2m is divided by 5. Though we
deal with a specified elliptic curve E for each order R, a similar result is easily obtained
for any elliptic curve E' of the j-invariant j(E), because E' is a quadratic twist of E and
ap(E') is the product of a9{E) and the value at p of the character associated with the
twist.

In the following, we assume any elliptic curve is defined by a short Weierstrass
equation.

2. T H E SUBGROUPS OF E[fy/-m\ AND DECOMPOSITION OF DIVISION POLYNOMIALS

2.1. Let E be an elliptic curve with complex multiplication by R. By the definition of
/ , we have fy/—m € R.

PROPOSITION 2 . 1 . T i e group E[fy/-m\ is cyclic of order f2m.

PROOF: By [8, Proposition 2.1], we know E[fy/—m\ is isomorphic to R/fy/-mR.
Let / be odd and m = 3 mod 4. Then R = Z©/wZ, where u = (1 + v/ zm)/2. Further
f^/^ER = /(2w - 1)Z © /2(w - (m + 1)/2)Z. Put £ = fu - f(mf + l)/2 € fyf=mR.
Then we have /(2w - 1) = 2£ + m/2, /2(w - (m + l)/2) = / £ + ( / - l) /2m/2. This
shows that {f2m, £} is a basis of j\J—mR over Z. Since {l,f} is a basis of Zl over Z,
R/fy/—mR is a cyclic group of order f2m. The assertion for the other case is easily
obtained. D

LEMMA 2 . 2 . Let r be a fixed prime Dumber. Then there exist infinitely many
prime numbers of the form u2 + v2f2m, where u and v are integers and v is prime to r.

PROOF: Consider the ideal groups Go and PQ of K such that

Go = {a | a is prime to 2rfm}, Po = {(a) | a = 1 mod 2rf\/—m}.

Then Po is a subgroup of Go of finite index and by Tshebotareff's density theorem, in each
factor class there exist infinitely many prime ideals of degree 1. Let 7 = uo + v^fyf—m
such that ideal (7) 6 Go and uo,vo € Z and further v0 is prime to r. Then every integral
ideal of the class ("y)Po has a generator of the form u\ + vify/—m {ui,v\ € Z,r \ v\).
Thus we have our assertion. D

In the following, let p be an odd prime number and p a prime ideal of F dividing p
and assume that p and p satisfy the condition (1).

LEMMA 2 . 3 . Let s be an odd prime number dividing f2m. Let q =pe". Assume
that q = u2 + v2f2m, (v, ps) = 1 or Aq = u2 + v2f2m, (v, 2sp) = 1. Then we have

Ep[s} n Ep[fy/^ \ {0} = {P = (a, p) G Ev\s) \ s \ [F,(a) : F,] },

where [F,(a) : F,] denotes the degree of the Geld F,(a) over Wq.
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PROOF: By the assumption, Ep is defined over F,. First we assume the Frobenius

endomorphism tpp is given by ipp = (u + vf\/-m)/2, if necessary, after replacing u by -u

or v by -v. Let P = (a, /?) G Ef[s\. If P G Ep[fy/=m\, then, for h=(s- l)/2, we have

Vp([2h](-P)) = KK-P)- Since 2h,uh = ±1 mod s, we have <p$(P) = ±P. This shows

[F,(o) : F,] ^ (s - l) /2. Conversely let P - (a, 0) G Ep[s],s \ k = (F,(a) : F,] and

r = g*. Since y*(P) = (ar,0r) = (a,/3r) = eP {e = ±1), we have [{u + vf-J=m)/2)k

- e] (P) = 0. Since P G £?p[s] and s | f2m, we have [(u* - 2ke) + kuk-lvf^m\ (P) = 0
and [(ufc - 2ke)2 + (ku^vffm] (P) = 0. Thus [(u* - 2*e)2] (P) = 0. Since the order of
P is s, we see [(uk — 2ke)\ (P) = 0 and [kuk~lvf\/-m\{P) = 0. By the assumption, k, u

and v are prime to s. Therefore we conclude [f\Z—m\(P) = 0. Hence P G Ep[fy/—m\.
In the case (pp = u + vfy/—m, the same argument holds true. D

COROLLARY 2 . 4 . Let V3(x,Ep) be the s-division polynomial of Ep. Then

^s(x, Ep) is the product of two Fq-rational polynomials h\(x) and h2{x) such that hi(x)

is of degree (s — l)/2 and the degree of every irreducible factor ofh2(x) is divided by s.

Further the solutions ofhi(x) = 0 consist of all distinct x-coordinates of non-zero points

in Ep[s]nEp[fy/=m\.

PROOF: Since p is prime to /2m, by Proposition 2.1, Ep[s] n Ep[fy/—m\ is a
F,-rational cyclic group of order s. Thus if we put hi(x) = Y[(x — a)> where a runs

a

over all distinct x-coordinates of non-zero points in Ep[s] n Ep[fy/—m\, then h\{x) is
F,-rational and of degree (s — l)/2. The assertion for /i2(x) follows immediately from
Lemma 2.3. D

LEMMA 2 . 5 . Let 4 | f2m and q = pl> = u2 + v2f2m, (v, 2) = 1. Let Qx be a

point of order 4 of Ep[f\/-m\ and Q2 a point of Ep such that [2](Qi) = [2](Q2) and

Q2 7̂  ±<9i- Then the x-coordinates xi and x2 of Q\ and Q2 are all Wq-rational solutions

of il!i{x,Ep)/y = 0. Furthermore let y2 — h(x) be the equation of Ep. Assume that

(pp = u + vjyj—m. Then, of two elements x\ and x2, only Xi satisfies the relation

(/i(xi)/p) = (—l)'""1^2,where ( /p) denotes tie Legendre symbol for p.

PROOF: Since Ep[fy/—m\ is a F,-rational cyclic group, we see Xi and x2 are F,

-rational. Let a be a Fg-rational root of ^4(1, Ep)/y — 0 and put 5 = (a, ft). Then 5 is

a 4-division point of Ep and we have

<pp(S) = [u + vJsf^m\{S) = (a', /3«) - (a, ±0) = [e)(S), (e = ±1).

Thus we have [(u -E) + vfy/-m\ (S) = 0. This shows [(u - e)2 + v2f2m] (S) = 0. Since
the order of 5 is 4, u - e is divided by 2. Thus [/N/=m]([2]5) = 0. Since [2](Qi) is the

only one point of degree 2 in Ep[fy/—m\, we have [2](5) = [2](Qi). This shows that 5
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equals to one of ±Q\ and ±Q2- Therefore a equals to xx or x2- Let P = (x, y) be a point

of £p of order 4 such that x € F , . Then

= [(h(x)/p)](P) = M(P) + [vfV

Therefore we have (h(x)/p) = u mod 4 if and only if P e Ep[Jy/—m\. D

2.2. Let s be a positive divisor of f2m and s ^ 3. By Proposition 2.1, there exists
a unique subgroup Cs of E[fy/-m\ of order s. Let Q = (ZQ,J/Q) be a generator of Cs.
Consider the fields L = F(XQ) and M = F(Q). Since £[/V—m\ is F-rational, C3 is
F-rational and the field M is an Abelian extension over F . By class field theory, the
Galois group G of M over F is isomorphic to an ideal class group (3 of F . For an ideal
class £ € 0 , let ere be the isomorphism of G corresponding to <£. Then we have

THEOREM 2 . 6 . Let € be the class represented by p and Q""- = [rz]{Q). Then we

have af(E) = 2rc mod s. Further if ap(E) is even, then we have ap(E)/2 = r c mod s.

P R O O F : Let tpp = (ap{E) + bp{E)fy/=m)/2. Since (Qa')~ = <pp(Q~), we see

Since p is prime to s, Q~ is of order s. Thus ap{E) = 2r<r_ mod s. If ap(i?) is even,
then (pp = (ap(E)/2) + (bp(E)/2)fy/=m. By a similar argument we have [op(E)/2]{Q~)

— [rc]{Q~)- This shows the remaining assertion. D

PROPOSITION 2 . 7 . Let s be an odd prime divisor of f2m. Ifpe* = 1 mod s,
then

= 2 (^ ) mod s

PROOF: Since we have 4p'» = ap(E)2 + bp(E)2f2m, Theorem 2.6 shows that r c = ±1
mod s. Thus xg € F, . By the similar argument in the last part of Lemma 2.5, we have
our assertion. D

PROPOSITION 2 . 8 . Let s be an odd prime divisor of f2m and Va{x,E) the

s-division polynomial of E. Then tys(x, E) is the product of two F-rational polynomials

HI,E{X) and H2,E{X) such that HhE(x) is of degree (s - l ) /2 and every irreducible factor

of H2E(X) is of degree s. Further the solutions of Hiys(x) — 0 consist of all distinct

x-coordinates of non-zero points ofCs.

PROOF: Let HitE(x) — J J ( z - t), where t runs over all distinct x-coordinates
t

of non-zero points of Ca. Since Ca is F-rational, we see HiyE{x) is F-rational of de-

gree (s - l ) /2 and clearly it divides *4(x, E). By Lemma 2.2, we can choose an odd
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prime p and a prime ideal p dividing p such that they satisfy (1) and p is of the form
p — u2 + v2pm, (v,s) — 1, and further the reduction of ^a(x,E) modulo p is equal
to ^B(x,Ep). Take a point P € E[s)\Cs and put Q = [f^m\(P). Clearly, we have
Q G E[fy/-m] and E[s] = (P)©(Q) . Let Gi be the Galois group of F(E[s\) over F. By
the representation of Gi on E[s] with the basis {P, Q}, Gi is identified with a subgroup
of the group

' 'a 0

Consider the subgroups of Go:

H =

Then we see Go = HN, Go>N and H(~\N = {12}. where 12 is the unit matrix. Since the
order of N is s and s is prime, we know that Gi D N or Gi n N = {l2}- Let fl be the set
of all subgroups of order s of E[s]. Then fi consists of s + 1 elements and Gi operates on
fi. By Corollary 2.4, the degree of every irreducible factor of H2iE(x) = * s (x , E)/HiiB{x)
is divided by s. Thus we know C3 is one and the only one fixed point of G\. First let
us consider the case Gi D N. Then we have Gt = HiN, Hi = H n G\. Since Hi is the
fixed subgroup of (P), the orbit of (P) consists of s elements. Therefore Cl decomposes
into two orbits. In particular, for each n, 1 ̂  n < (s — l) /2 , the z-coordinate of [n]P
has s conjugates over F. Thus every irreducible factor of H2iE(x) is of degree s. Next
consider the case Gi C\ N = {l2}. Then the order of Gi is a divisor of 2(s — 1) and is

prime to s. Since the order of a matrix I I , (b ̂  0) is divided by s, Gi dose not

V V
contain the matrices of this form. Therefore there exists an element A € F3 such that Gi
is contained in the subgroup

/ /1 n \

a € F , x

This shows (P + (A/2)Q) is a fixed point. Thus we have a contradiction. D

PROPOSITION 2 . 9 . Let 4 | f2m. HQ is a point of order 4 in E[fyf^m\ and

T is a point of E such that [2](Q) = [2](T) and T / ±Q, then the x-coordinates xQ and

xT ofQ and T are all F-rational solutions of^i{x, E)/y = 0.

PROOF: Using Lemma 2.5 instead of Lemma 2.3 and tracing the argument in the
first part of Proposition 2.8, we have the assertion. D

In Section 4, to study the ideal class groups of F corresponding to the Abelian

extensions L and M, we must determine conductors \L and ]M of L and M over F. In

next lemma, we shall give some results for the conductors. For a prime ideal q and an
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integral ideal a of F, we denote by eq(a) the maximal integer m such tha t m ^ 0 and qm

dividing a.

LEMMA 2 . 1 0 . Let Q be a point of E of order s. Assume that s is an odd prime
number, s > 3 and Q generates a F-rational subgroup (Q). Let L,M,$L and fM be
defined for Q as above. Ifq is a prime ideal of F prime to (2s), then eq(fi,) ^ eqtfM) and
eq(fw) > 0 implies eq(ft) > 0. farther if E has good reduction at q, then eq(fAf) = 0.

PROOF: Since L is a subfield of M, clearly eq(f£,) ^ eq(fA/)- If E has good reduction
at q, then Neron-Ogg-Shafarevich criterion ([10, Proposition 4.1, Chapter VII]) shows
that eq(fM) = 0. We shall prove eq(fM) > 0 implies eq(fx,) > 0. Assume that q is ramified
in M and is unramified in L. Let Q be a prime ideal of M dividing q and Ma the
completion of M with respect to £3. Further we denote by kM the residue field of Q. Let
Eo, Ei and Ens be the groups defined in [10, Chapter VII]. Since E has additive reduction
at q, by [10, Theorem 6.1, Chapter VII] we have [E(MQ) : E0(MQ)] = w ^ 4. Since Q
has order s, by replacing Q by [w]Q if necessary, we can assume that Q € EQ{MQ). Let a
be a non trivial element of inertia group of Q. Then since XQ = XQ, we have Q" = —Q.

By considering the reduction modulo q, we have Q~ = —Q~. Therefore Q~ G Ens(kM)
and [2](Q~) = 0. Since the characteristic of kM is prime to 2, by [10, Propsositions 2.1
and 5.1, Chapter VII ], we know Q~ = 0, thus, we have Q 6 £ I ( M Q ) . Consequently, by
[10, Proposition 3.1, Chapter VII], we have Q = 0. This contradicts that Q ^ 0. D

Finally for s = 3,4,5, we list s-division polynomials ^s(x, E):

(x, E) = 3x4 + 6Ax2 + l2Bx - A2,

(XE) + 20Bx3 - 5A2x2 - AABx - 8B2 - A3,x
4y

5{x, E) = 5x12 + 62Ax10 + 38QBx9 - 105A2xs + 240ABx7

-(30QA3 + 2AQB2)x6 - 696A2Bx5 - (125A4 + 1920AB2)xi

-(160053 + S0BA3)x3 - (50A5 + 240A2B2)x2

-{640AB3 + 100A4B)x + A6 - 32B2A3 - 256B4.

3. THE CASE f2m is DIVIDED BY 3 OR 4

Let s = 3 or 4. Assume that s \ f2m. Let Q — (xQ,yQ) be a point of E[j\/—m\
of order s. By Propositions 2.8 and 2.9, we know XQ € F. We may write J/Q = MI2OLE

such that w £ F*, as is an integer of F and ideal {as) has no square factors. In the
following, let p be an odd prime number and p a prime ideal of F dividing p and assume
they satisfy the condition (1). Then there exist positive integers up and vp such that
4p'p = u2 + mf2v2, (up + Vpf\f—m)/2 e R, (up,p) = 1. If up is even, then clearly we
have pl> = (up/2)2 + mf2{vp/2)2.
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THEOREM 3 . 1 . Let up and vp be as above. If we choose ep € {±1} such that
ep(up/2) = (aE/p) mod s, then we have ap(E) = epup.

PROOF: Since F{Q) = F(y/a£), we have Q"' = [(aE/p)](Q). Thus by Theorem 2.6,
we have our assertion. It is noted that up can be odd only in the case s = 3. D

Let Eo be an elliptic curve defined by a Weierstrass equation: y2 = x3 + Aox
+ Bo (A0,B0 6 F). If Eo is isomorphic to E over an extension Fo over F, then there
exists an element 6 E Fo such that AQ = 6* A, Bo = S6B. Since j(E) ^ 0,1728, we know
that A,B,A0 and Bo are not 0 and 62 6 F. Therefore we may put aEo = S2aE- In
particular we obtain

THEOREM 3 . 2 . Let E* be the twist ofE deSned by the equation y2 = x3 + Aa%
+ BaE. Further assume that E* has good reduction at p. Let up and vp be as above. If
we choose ep G {±1} such that ep(up/2) = 1 mod s, then we have ap(E*) = epup.

The j-invariants of elliptic curves with complex multiplication by R are solutions
of the class equation H^R)\(X) = 0 of discriminant d(R) (see [3, Section 13]). In the
following, we shall use the table of class equations prepared by M.Kaneko. We shall
gives a canonical elliptic curve E with complex multiplication by R and compute aE in
subsections 3.1 and 3.2 for the cases s = 3 and 4 respectively.

3.1. THE CASE S = 3. We shall explain the process to obtain a canonical elliptic curve
E in the case d(R) = -15. At first we take a solution jx - (-191025 + 85995\/5)/2 of
the equation:

Hl5(x) =x2 + 191025a; - 121287375 = 0.

Let Ei be the elliptic curve defined by the equation: y2 — x3 + A\x + B\, where Ai
= -1/48 - 36/(.n - 1728), Bi = 1/864 + 2/(j1 - 1728). Then the j-invariant of Er is
equal to j \ . By considering twists of E\ by elements y/n (n £ F = Q(\/5)), we find an
elliptic curve E such that coefficients A and B of an equation y2 = x3 + Ax + B of E are
integers of F and further the absolute value of the norm of the square factor of A is as
small as possible. In this case, we take n = 2237(4 + \/5)/(\/5(4 — -y/5))- Therefore we
see A = Axn

2 = 105 + 4 8 ^ , B = Bin3 = -784 - 350v^5 and

* 3 ( i , E) = 3(i3 + 6z2 + Zs/bx2 + (291 + 132\/5)z + 590 + 265\/5) x (a; - 6 - 3\/5).

This shows xQ = 6 + 3>/5 and y\ = 24((1 + y/E)/2)n. Finally we have

PROPOSITION 3 . 3 . Let E be the elliptic curve defined by the equation

y2 = x3 + (105 + 48Vb)x - 784 - 350%/S.

Then E has complex multiplication by the order of discriminant -15. Further we have
oB = (1 + VE)/2.
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REMARK 3.4. For another root j 2 = (-191025-85995\/5)/2 of Hl5(x) = 0, we consider
the conjugate elliptic curve E of E over Q and we have a g = (1 — \/5)/2.

EXAMPLE 3.5.

(1) Let p = 61. Then (-15/p) = (5/p) = 1. Thus tp = 1. Choose the
prime ideal p such that p 3 \fh - 26. Since (aE/p) = (54/61) = - 1 and
4p - 22 + 4215, ap(E) = - 2 .

(2) Let p = 83. Then (-15/p) = 1, (5/p) = - 1 . Thus £p = 2. Since
(aE/(p)) = - 1 arid 4p2 = 1542 + 162 • 15, a(p) = 154.

For other cases, we give only results and data necessary to obtain the results.
For each order R, the data consists of the class polynomial H\d(R)\{x), a solution j of
H\d(R)\ = 0, coefficients A and B of a Weierstrass equation of an elliptic curve E with j(E)

= h XQ> VQ a n d OLE- We list them in the following format:

d(R) H\d{R)\(x)

j
A, B

XQ, VQ

CUE

The results and data for the case h(R) = 2.

- 2 4

-36

x2 - 4834944a;
2417472 +

- 2 1 + 12N/2,

-3 + 3 A 2(1
1 +

a;2 - 153542016a;
76771008 +

-120 - 42N/3

3 + 3\/3, 4(2 H

1 +

+ 14670139392

1707264v^
- 28 + 2 2 ^

- \/2)6(l + V2)

- 1790957481984

44330496V3
448 + 336\/3

- \/3)2(l + \/3)
%/3
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- 4 8

- 5 1

- 6 0

- 7 2

- 7 5

- 9 9

-123

x2 - 2835810000a; + 6549518250000
1417905000 + 818626500V3

- 1 0 3 5 - 2 4 0 7 3 , 12122 + 5280\/3
- 9 + 1 8 ^ , 4(2 - v/3)4(l - 2\/3)2(8 + 6>/3)

8 + 6>/3
x2 + 5541101568a; + 6262062317568

-2770550784 - 671956992\/l7

- 6 0 - 1 2 > / l 7 , - 2 1 0 - 5 6 v
/ 1 7

- 6 , - 2 ( 4 - v / l 7 ) 2

- 2

x2 - 37018076625a; + 153173312762625
(37018076625 + 16554983445v/5)/2
(-645 + 20lV5)/2, 1694 - 924v^5

- (45 - 15V5)/2, - ( ( l - v / 5 ) / 2 ) 1 0

- 1

x2 - 377674768000x + 232381513792000000
188837384000 + 77092288000\/6,
-470 - 360V6, 19208 + 10080\/6

6 + 9N/6, 4(5 - 2\/6)2(2 + V&)
2 + V6

x2 + 654403829760a; + 5209253090426880
-327201914880 +146329141248\/5
-2160 + 4 0 8 A 42130 - 10472-/5

- (15 + 21v/5), (-25 - 13>/5)(4 - N/5) 2 ( (1 + \/5)/2))14

-25 - 13v^5

x2 + 37616060956672x - 56171326053810176
-18808030478336 + 3274057859072 \/33

-45012 + 7836\/33, - 5198438 + 9 0 4 9 3 2 ^
-87 + 1 5 ^ , - 2

- 2

x2 + 1354146840576 • 103x + 148809594175488 • 106

-677073420288000 +105741103104000^/41
-960 + 120>/41, - 13314 + 2 2 4 0 ^ 1

-24, - 2(32 + 5\/4l)2

- 2
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-147

-267

x2 + 34848505552896 • 103x + 11356800389480448 • 106

-17424252776448000 + 3802283679744000V21
-2520 - 240\/21, - 31724 - 11418V21

9y/2l, ( 7 -
7-v /21

x2 + 19683091854079488• 106z +
+531429662672621376897024•106

-9841545927039744000000 + 1043201781864732672000v/89
-37500 + 3180\/89, 3250002 - 371000V89

150, 2(500 + 53V89)2

The results and data for the case h(R) = 3.

-108

-243

x3 - 151013228706 • 1 0 V + 224179462188 • 106:r
- 1879994705688 • 109

31710790944000^4 + 39953093016000 s/2 + 50337742902000
105^4-90-^2-135, - 526

9-3^2, 4(1-

x3 + 1855762905734664192 • 103z2 - 3750657365033091072 • 106x
+3338586724673519616 • 109

618587635244888064000 - 428904711070941184000^3
-297385917043138560000v/9

-1560 + 720x^9, 32258-11124^3 - 7704-^9

4 2 - 1 8 ^ 9 , (-2

-4 + :
(-4

3.2. THE CASE s = 4. In this case, by Lemma 2.5 and Proposition 2.9, we know that
XQ is one of two F-rational solutions of #4(2;, E)/y — 0 satisfying the condition given in
the last part of Lemma 2.5. We shall explain the case d(R) — —32. We take a solution
j = 26125000 +18473000\/2 of H32{x) = x2 - 52250000a; +12167000000 = 0 and consider
an elliptic curve E with j(E) = j , defined by an equation:

y2 = x3 + Ax + B (A = -105 - 90\/2, B = 630 + 518^ ) .

Then ^4(x,E)/y - 0 has two F-rational solutions xx - 3 + 5N/2,Z2 = 9 - \/2. Con-

sider a prime number p = 17 = 32 + 222 and a prime ideal p = (1 - 3\/2). Then by

counting the number of points of Ep(¥p), we know ap(E) = —6. Since (x\ + Ax\ + B/p)

= ( -3 + 3\/2/p) = (-2/17) = 1 = (-l)(ME)/2-1), we see xQ = xv Calculating y%,

we may obtain as = — 3 + 3\/2- For the cases d(R) = -64, -112, we know the class

https://doi.org/10.1017/S0004972700035875 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035875


136

polynomials are:

N. Ishii [12]

HM(x) = x2 - 82226316240a; - 7367066619912,

Hn2(x) = x2 - 274917323970000i + 1337635747140890625.

In these cases by similar argument we have (E,CXE)- We list our results in the next
proposition.

PROPOSITION 3.6.

d(R)

- 3 2

- 6 4

-112

3(E)

26125000 + 18473000\/2

41113158120 + 29071392966\/2

137458661985000
+ 51954490735875-^7

A
B
-105 - 9 0 ^
630 + 518%/2
-91 - 60\/2
462 + 308\/2
-725 - 240\/7
9520 + 3698\/7

xQ

OLE

9 - y/2
- 3 + 3N/2
5 + 2 ^

V 2 - 1
2 4 - ^
1

4. THE CASE mf2 is DIVIDED BY 5

We shall consider the orders R of discriminant d(R) = -20, -35, -40, -100, -115,
—235. These orders R are of class number 2. Further for any R, we know F — Q(v/5)-
For a given order R, we consider an elliptic curve E, denned over F, with complex
multiplication by R. Proposition 2.8 shows that 9$(x,E) has only one F-rational factor
HitE{x) of degree 2 and for any solution X\ of H\tB(x) — 0, a point Q of E with XQ = xx

is a generator of the group C5. Let L = F{XQ) and M = F(Q). For a prime number p
satisfying plf = 1 mod 5, our problem is rather easy (see Proposition 2.7). For a prime
number p satisfying p1' = 4 mod 5 and a prime ideal p dividing p, to determine rp, we
must study the ideal class groups of F corresponding to the fields L and M. Regarding
conductors of L and M, we have a following result. In Proposition 4.1, we shall use the
notation in Section 2.

PROPOSITION 4 . 1 . Let q be a prime ideal of F prime to (2\/5). Then eq(fL)
= eq(fM) and eq(fM) ^ 1- Further if E has good reduction at q, then eq(fM) = 0.

PROOF: Since M is a cyclic extension of degree 4 over F, we have eq(fM) ^ 1 (see
[9, Chapters IV and VI]). The other assertion is deduced from Lemma 2.10. D

As for the prime ideal (\/5), we have e^)(fx,) ^ ^(^1){^M) ^ 1- Proposition 4.1
shows, to avoid tedious computation in determining class groups, it is necessary to choose
an elliptic curve E so that the number of prime factors of its discriminant is as small as
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possible. We shall explain the case d(R) — —235, because the other cases can be deduced
from similar but much easier argument. First we take a solution

j = -411588709724712960000 - 184068066743177379840\/5

of the equation:

#235(z) = x2 + 823177419449425920000x + 11946621170462723407872000 = 0.

We consider an elliptic curve E denned by an equation: y2 = x3 + (—15510 + 2068%/5)z
+ (3200841 - 649446v/5)/4. The discriminant of E is 4732-4e~42, j(E) = j and

HhE(x) = 10z2 + (3525 - 2115\/5)a: + 624160 - 262918\/5,

where e = (1 + VE)/2. By solving the equation Hits(x) = 0, we obtain a generator Q of
C$ given by

Q = (3e-4 + 47e-10/2,

where t = y/\7y/%e~l and TT = y47c"1(2115 - (211 + 23y/E)t). In particular we have
L = F(t) and M = L(n). Next we shall determine conductors and ideal class groups of L
and M. Since the maximal order of L has a basis {l, ( l+e~1i) /2} over the maximal order
of F, the discriminant of L over F is (e~lt)2. This shows that \i = (47\/5). SinceMisreal
and has an imaginary conjugate field over Q, Proposition 4.1 shows f̂  = (2* • 47\/5)oo2
for some integer k (0 ^ k $J 2), where 002 is the infinite place of F corresponding to the
conjugate embedding of F to Q. We have only to determine the 2-exponent k. See [4,
Section 3] for a method to calculate the 2-exponent of conductors. For a moment, we
assume M is defined modulo (4 • 47\Z5)oo2. Let ty be the ray class group of F modulo
(4 • 47\/5)oo2- Denote by *pt and ^M the subgroups of ^3 corresponding to L and M
respectively. Consider the ideal classes g, I and [ of ^3 represented by the principal ideals
((1 + 3v/5)/2), (46 + 47\/5) and (471) respectively. Then g is of order 276 and both 6
and I are of order 2 and further

<P = (0) x (6) x (I) (a direct product).

Let ^3i be the ray class group modulo (47\/5) and 9 the canonical morphism of ^3 to ^Pi.
Then ^ is a cyclic group generated by 9(g) of order 138 and Ker(0) = (g138,6,1). Since
fL = (47\/5), ?PL D Ker(0). This shows that tyL = (fl2, E, I). Next we shall determine y$M-

Let £ be the endomorphism of ^3 defined by £(a) = a69. Then £ induces an isomorphism
of ty/tyM to £(93) /£ (^3M) . Consider the prime numbers ft = 251 = 42 + 235, q2 = 431
= 142 + 235 and q3 = 239 = 22 + 235 and prime ideals q! = (16 + y/E), q2 = ((43 + 5\/5)/2)
and q3 = ((31 + y/E)/2) of F dividing ft,g2 and q$ respectively. In the following, for
a prime ideal q of F, we denote by C(q) the class of *P represented by £(q). Then
we know C(q1),C(q2) and C(q3) belong to 61, t and f(g)6 respectively. By counting
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the number of rational points of the reduced elliptic curve of E modulo q*, we have
aqi(E) = - 8 , aq2(£) = -28 and aq3(E) = -4 . Therefore, by Theorem 2.6, we know
i,' € VM and the class £(g)6 corresponds to the isomorphism A such that Qx — [3](<2).
Since *#M is a subgroup of ^ of index 2, we conclude that *#M = (fl4, E, 0- ^n particular,
^M does not contain the kernel (g138f, I) of the canonical morphism of ty to the ray class
group modulo (2 • 47x/5)oo2. Therefore fM = (4 • 47\/5)oo2. Since the class m = £(g) is
represented by the ideal (743 + 756\/5), we have

THEOREM 4 . 2 . Let E, I and m be the classes of ^3 represented by the ideals
(46 + 47\/5), (471) and (743 + 756\/5) respectively. Put 6 = (m, t, 1) and S) = <8,1). Let
p be an odd prime number and p a prime ideal of F dividing p and assume that they
satisfy (1). Furthermore, let up and vp be the positive integers such that 4p'" = u^ + 235Vp
and (up,p) = 1. If the class C(p) of p69 belongs to m'S (0 ^ i ^ 3), and ep e {±1} is
chosen such that epup = 2-3* mod 5, tien we have ap(E) = evup.

REMARK 4.3. C(p) € 2) U m22) if and only if p1* = 1 mod 5.

EXAMPLE 4.4.

(i) Let p = 239 = 22. + 235 and p = ((31 + VE)/2). Then C(p) = m£ € m£>

and ap(E) = - 4 .

(ii) Let p = 241 = (272 + 235)/4 and p = ((33 + 5v/5)/2). Then C(p) = I e £>
and ap(E) = 27.

(iii) Let p = 719 = 222 + 235 and p = ((59 + l l \ /5)/2). Then C(p) = m3U
G m3jD and ap(E) — 44.

We shall give the data and results for other cases. In the below, put tm = Jm/(\/Ze)
and denote by ^J the ray class group of conductor ]M of F. Further, we denote by p and
p an odd prime number and a prime ideal of F dividing p such that they satisfy the
condition (1) for the given elliptic curve E.

(I) The case m = 5, d(R) = -20

H20{x) = x2 - 1264000x - 681472000,

j(E) = 632000 + 282880-A

A = -50/3 - 5\/S, B = 100/3 + 280-^/5/27,

xQ = 5e2/6 + tm, yQ = (\/5)(e + t^y/l + t^1,

L = F(tm),M = L ( v / T + C " ) , h = (4v/5), fM = (8>/5),

P̂ = (fll) X (82>, ^L = <02,02),

where 0i and 02 are the classes of order of 4 and 2 represented by the ideals ((21 + \/5)/2)

and (H + 2%/5).

PROPOSITION 4 . 5 . Let up and vp be the positive integers such that p1'
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= u^ + 5v2, (up,p) — 1. Choose ep G {±1} such that epup = 2* mod 5 if the class

ofp belongs to Q\^M (0 ^ i ^ 3). Then we have ap(£) = 2epup.

Choosing a suitable generator of p, p is written in a form p = a2 — 5b2, where a and
b are integers satisfying the condition:

a =

b =

1 mod 20

17 mod 20

0 mod 4

2 mod 4

if p = 1 mod 5

if p = 4 mod 5,

if p = 1 mod 8

if p = 5 mod 8.

For i = 1,2, let p, = a2 — 56? be the prime numbers represented as above. If pi = P2
mod 40, then prime ideals (ax + &i\/5) and (a2 + 62\/5) belong to the same class of
«P if and only if ax - a2 + 5(&i - 62) ^ 0 mod 40. Let T = {$). Then we see if
p = 1 (respectively 9,21,29) mod 40, then the class C(p) of the prime ideal p = (a+by/E)
belongs to Irrespectively 02011,02^,01^) and furthermore C(p) € *#M if and only if
a + 5b= 1 (respectively - 3,11,7) mod 40. Therefore we have

PROPOSITION 4 . 6 . Let p = u2 + 5v2 = a2 — 5b2, where u and v are positive
integers and a and b are integers satisfying the above condition. Then if we choose
e9 £ {±l}such that

(_l)(a+5t+3)/20a

ifp = 1 mod 40,

ifp = 9 mod 40,
eBu = < .

ifp = 21 mod 40,

ifp = 29 mod 40,(_l)(a+5i.-7)/20a

then we have ap(E) — 2epu.

(II) The case m = 35, d{R) = - 3 5

H35(x) =x
2 + 117964800a; - 134217728000,

j(E) = -58982400 - 26378240%/B",

A = -70%/5/3, B = (13475 + 980\/5)/108,

xQ = (35e - 3tm)/6e
2, yQ =

L = F(tm),M = L

- (9

h = (7y/E), ]M = (14x/5oo2),

V = (It), VL = (I)2), VM - <

where h is the class of order 12 represented by the ideal (6 + y/E).
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PROPOSITION 4 . 7 . Let up and vp be the positive integers such that 4p'p

= Up + 35Up, (up,p) — 1. Choose ep G {±1} such that epup = 2 - 3 ' mod 5 if the
class of p belongs to WM (0 ^ i < 3). Then we have ^(E1) = epup.

(Ill) The case m = 10, d{R) = - 4 0

#4 0(z) = x2 - 425692800a; + 9103145472000,

j(E) = 212846400 + 95178240^5,

A = -125 + 15\/5, B = -200 + 2 4 0 ^ ,

xQ = (lOe + tm)/e2, yQ =

),M = L

(40 -

fL = (8V5), fM = (16v/5)cx32,

q3 = (0> x (h) x ([), <pL = (fl
2, f), I), = (h, I),

where Q, h and I are the classes of order 4,4 and 2 represented by the ideals (6 + y/E),

((53 + 3%/5)/2) and ((37 + 7y/B)/2) respectively.

PROPOSITION 4 . 8 . Let uv and vp be the positive integers such that ptf

= u2 + lOiip, {up,p) — 1. Choose ep 6 {±1} such that epup = 2* mod 5 if the class of p
belongs to g'!)3M (0 ^ i ^ 3). Then we have ap(E) = 2epup.

(IV) The case m = 1, d(R) = -100

H10Q{x) = x2 - 44031499226496i - 292143758886942437376,

j(E) = 22015749613248 + 9845745509376\/5,

A = -3000 - 805>/5, B = 56000 + 32200\/5,

yQ =

L =

h =

where t j , E2 and 63 are the classes represented by the ideals ((21 + v/5)/2), (11 + 2y/b)

and (58 + \fb) and the order of l\, 62 and C3 are 4,2 and 2 respectively.

PROPOSITION 4 . 9 . Let up and vp be the positive integers such that

plv — v2
) + 25v2, {up,p) — 1. Choose ep G {±1} such that epup = 2' mod 5 if the

class of p belongs to 1\*#M (0 < z ^ 3). Then we have ap(£') = 2epup.

(103

, M = L

fM = (8^)002,
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(V) The case m = 115, d(R) = -115

#115(2;) = x2 + 427864611225600a: + 130231327260672000,

j(E) = -213932305612800 + 95673435586560N/5,

A = -345 - 23y/E, B = -(19573 + 5 2 9 0 ^ / 4 ,

xQ = e3V5tm(\/5tm + e4)/10,

yQ = (eH2J10) yjlhe-i + (-85 +

L = F(tm), M = L

h = (23>/5), fM =

V = (fl) X <f2> X (f3),

where fi, f2 and f3 are the classes represented by the ideals ((1 + 3 ^ ) 7 2 ) , (24 + 23\/5)
and (91) and the order of fi,f2 and f3 are 132,2 and 2 respectively. Since the map

a —> a33 of ^J to itself induces an isomorphism of to and
f0 = fj3 is represented by the ideal (423 + 372y/E), we have

PROPOSITION 4 . 1 0 . Let & = (fo,f2,f3> and 2) = <f2,f3>- Let up and up be
the positive integers such that Aptf = u2

p + 115Up, (up,p) = 1. Choose ep € {±1} suci
that epUp = 2 - 3 ' mod 5 if the class of p33 belongs to f{,2) (0 < i ^ 3). Then we have
ap(E) = epup.
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