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Let 9In denote the variety of abelian groups of exponent dividing n, and let p
be an arbitrary prime. In this paper all non-nilpotent, join-ireducible subvarieties
of the product variety ?Ip?lp2 are determined. The proper subvarieties of this
kind in fact form an infinite ascending chain 0>i cz3 2 c ••-, and an arbitrary
proper subvariety 33 of 3tp3lp2 is either nilpotent or a join 3 k V £, where £ is
nilpotent and k is uniquely determined by 23.

1. Introduction

Notation and terminology generally follows Neumann's book [11]; in par-
ticular 5l0

 o r 5t is u s e d to denote the variety of all abelian groups and 23n, %„
and 9lc denote respectively the varieties of all groups of exponent dividing n, all
abelian groups of exponent dividing n, and all nilpotent groups of class at
most c. Unless otherwise stated, p denotes an arbitrary prime.

If 93 is any variety, the set of all subvarieties of 93 forms a lattice with respect
to the inclusion ordering. This lattice of subvarieties will be denoted by lat(93),
"Determining" lat(93) shall mean determining all subvarieties of 93 and describ-
ing the inclusion ordering on them.

The work reported here relates to the general problem of determining lat^Ul).
By Cohen [4] this lattice has minimum condition, and so every metabelian
variety 933 can be expressed as the irredundant join of finitely many join-irreducible
subvarieties. Since the lattice is not distributive (Kovacs and Newman (unpublished)
—see also [2]), not every 2B has a unique expression of this kind, but nevertheless
a classification of all join-irreducible metabelian varieties would clearly provide
a great deal of information about lat(?C2t). In this direction Kovacs and Newman
[6] have already classified the infinite exponent ones, and those of finite composite
exponent have been considered by Bryce, who has obtained a powerful reduction
theorem ([3], 6.1.8 and 4.2.33(i)). The prime-power exponent case has also been
attacked, notably by Brisley [1] and Weichsel [13], who have determined
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A23P« A 9tp-i) for all a1, and by Kovacs and Newman [7] who have
determined lat(5lpa^Ip) for all a. (In fact in [6] Kovacs and Newman determine
lat(5X9I,,) for all square-free n.) This paper is concerned with another prime-
power exponent case, namely 3IP9IP2, but unfortunately a complete determination
of all subvarieties, or even of all join-irreducible ones, is not achieved here. Part
of the difficulty is that, in contrast to lat(9IUl A«8 , . A 9 t P - i ) and lat(9Ip.9Ip),
latC2Ip9lp2) is not distributive (see [2]). Moreover, again in contrast to the other
two cases mentioned, 5Ip9Ip2 contains infinitely many non-nilpotent join-irreducible
subvarieties (see 1.2 below).

What will be proved is the following:

1.1 THEOREM. The varieties 3 t , fc = 1,2,•••, defined by

P2lp2 A 9tt2lp A 23P2, if l ^ f c g p - i

the following properties:
a) A proper subvarietyW o/5Ip9lp2 is non-nilpotent if, and only (/,2B=3k \/2

for some fee {1,2, •••} and some nilpotent variety 2.
b) If 2 and 2* are nilpotent subvarieties ofHp'Hp2 and 3 t V £ = 3 t * V&*,

then k = k*.

There is an immediate corollary.

1.2 COROLLARY. The 3j. form a properly ascending chain of subvarieties of
5Ip5tp2, and this chain, with ?IP3IP2 itself adjoined, makes up a complete list
of the non-nilpotent join-irreducible subvarieties o/?lp2Ip2.

Some remarks on the theorem follow:
1) The theorem says that an arbitrary non-nilpotent proper subvariety 2C

of ?Ip?Ip2 can be expressed in the form 2B = 3 t V £• > where 2 is nilpotent and fc
is uniquely determined by 2C. Clearly, however, 2 is not uniquely determined by
2B; for example, it can always be enlarged by adjoining a nilpotent subvariety
of 2C with sufficiently high class. Nevertheless, since lat(fi) has minimum con-
dition (by Lyndon [9]), there does exist a nilpotent variety, 2min say, such that
2B - 3fc V £«;„ but SB 7̂  3 t V fii for any fit < £,„,•„. The question naturally
arises as to whether such a "minimal nilpotent component" is uniquely deter-
mined by 2B. The answer is no: it was shown in [2] that, for p = 3 at least, there
exists a subvariety 2B of 9tp9Ip2 such that 2B = 3 P V 2 = 3 P V £*, where 2
and 2* are distinct nilpotent varieties each minimal with respect to the property
that its join with 3 p is 2C.

1 Brisley can now deal with class p + 1; see his "Varieties of metabelian p-groups of class
p,p + 1" in this Journal, 12, 53-62.
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[3] On varieties of metabelian groups 131

2) Minimum condition (which lat(5Ip5lp2) satisfies by Cohen) is not used in
the proof of 1.1, and in fact the converse situation obtains: minimum condition
on lat(5Ip$tp2) is a consequence of 1.1 by virtue of Lyndon's theorem mentioned
above and the fact that minimum condition is always satisfied by a modular
lattice in which every element is a join of finitely many join-irreducibles and the
set of join irreducibles has minimum condition. This last fact was proved by
Kovacs in [5] for join-continuous modular lattices, and just recently a much
simpler proof, which does not use join-continuity, has been given by Newman
[12].

3) Theorem 1.1 shows that the non-nilpotent join-irreducible subvarieties
of 5lp9lp2 can be obtained in a rather simple manner from certain nilpotent join-
irreducible varieties of smaller exponent, for it may be easily verified that
%k = 3*%, A 9lp9Ip2 for all k, where the varieties % are defined by

* ~ \%%m if P^

and are all join-irreducible by Kovacs and Newman[7]. It would be interesting
to know what statements along these lines can be made about non-nilpotent
join-irreducible subvarieties of 9Ip9l/ for arbitrary ft, especially in view of Bryce's
Theorem 4.2.33 in [3].

The bones of a proof of 1.1 are given in §4. Sections 2 and 3 are preparatory
for this and sections 5 to 10 fill in the details.

This paper constitutes a revised and abbreviated version of the principal
part of the author's Ph.D. thesis (Australian National, University 1968). I grate-
fully acknowledge both the help given me by my supervisors, Dr. L. G. Kovacs
and Dr. M. F. Newman, and the financial support of the University.

2. Preliminaries: commutator calculus

Standard notation will be used for left-normed commuta tors : If hi,h2,---

are elements of a group H, then

(i) lhlth2-] = h;1h;1hlh2;
(ii) for fc > 2, [hi,h2,---,hk] = [[h1,-~,hk-1'],hk];
(iii) [/i!,0/i2] = hi and |>i,r/j2] = \_[h1,(r-l)h2],h2'] for r > 0; and
(iv) for non-negative integers r2, •••, rk with k > 2,

[h1,r2h2,---,rkhk'] = [[hl,r2h2,---,rk-1hk-1']>rkhk~].

If HUH2 are subgroups of a group H then [i?! ,H2] = gp([hi,h2]\hieHi)
and for r IS 0 \UX, rH2~\ is defined recursively as (iii) above. The cth term of the
lower central series of a group H will usually be denoted by HM; that is
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The proof of Theorem 1.1 consists largely of a detailed investigation of two
parameters, called "weight" and "p-complexity" (see §4), which will be assigned
to elements, that is products of commutators, in the abelian derived group of
G = -FccC&p'&pi). These parameters in fact belong more properly to the manner
in which the elements are expressed, so in order to avoid ambiguity it is necessary
to construct a one-to-one correspondence between elements of G' and words in
the language used to express them. This is accomplished firstly by denning "pseudo-
commutators" in 2.2 below, and secondly by obtaining, as a special case of
Theorem 3.1, a basis for G ' . The following well-known result provides some
motivation for Definition 2.2:

2.1 LEMMA (34.51 in [11]). If H is a metabelian group and hl,---,hkeH
with k^2, then

{hl,h2,h3,---,hk] = [huh2,h3a,---,hkK]

for every permutation n of {3,---,k}.

2.2 DEFINITION. Let H be a metabelian group. A degree function on H is a
function 8: H -+ {0,1,2, •••} whose support

supp<5 = {heH\3(h) ^ 0}

is a finite but non-empty set. A pseudo-commutator in H is an ordered triple
p = (h^hj,?)) in which <5 is a degree function on H and hl,h2 esupp^. The
pseudo-commutator p will be called trivial if hl = h2. For any heH, the
integer 8(h) will be called the degree of h in p. If 6(h) # 0 then h will be called
an entry in p, and the weight of p is defined to be the sum of the degrees of its
entries. Thus the set of entries in p is supp<5, and the weight of p, which will be
denoted by wt(p), is given by

wt(/>) = I S(h) = I S(h).
h € supp d eH

If supp(5 = {hu---,hk} then the element

will be called the value of p = (h1,h2,8)and will be denoted by [/»] = \huh2,b"\.
(Lemma 2.1 ensures that \_p~\ is well-defined.) The set of all pseudo-commutators
in H will be denoted by P(H).

The following well-known and easily verifiable commutator expansion rules
for an arbitrary metabelian group H will frequently be used without explicit
mention:

(i) If a,b,ceH, then
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[ab,c~] = \_a,c][b,c][a,c,b~\
and

(i i ) I f h1,h2,--,EH a n d cuc2, ••-, eH', t h e n

(iii) If a,beH, then, for any k ^ 1 ,

[a*, 6] = n[fl)b,(i-l)a](?)n
c = l

and

(iv) ( T h e J a c o b i iden t i ty ) I f 5 is a deg ree f u n c t i o n o n H a n d hu---,hke supp<5

for fc ^ 1 , t h e n

[hk,h1,5-\[huh2,d-][h2,h3,5^---[hk-1,hk,d] = 1.

Using the laws [x", / ] and [x, y, z"] together with the above expansion rules
it is a routine matter to establish the following lemma, which is needed for the
proof of Theorem 3.1:

2.3 LEMMA. Let ife?Im?In (n # 0) and let a,b,ceH.

a) [a,*)"1] = fllajby^.
i= 1

b) For any positive integer k there exist integers eo(k), • • •, en_ i(k) such that

( = 0

c) / / a ^ b , 6* is a degree function on H and, for i,j = l , - - - ,n , <50- is the

degree function defined by 5tj(a) = i, 5lV(b) = j and 8u(d) = 5*(d) for all

deH\{a,b}, then

[ f l ,b,u= n n[«.&.^-] j •
i = l J = l
i + j <2n

d) If S* is a degree function on H with a ,cesupp5, and if for i = l,---,n
the degree function 5t is defined by S^b) = i and S^d) = 5*(d)for all deH\{b],
then
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3. The derived group of FJ$JK.n)

In this section the structure of the derived group F'^CHJH^ of F^JH^
is investigated. Since 3It is the variety of trivial groups, -F^(9tm9tn) is trivial if
m or n is 1. On the other hand, for n = 0 the structure of i^(2Im9In) is more
complicated than can be handled by the methods presented here. Consequently,
throughout this section let m and n be arbitrary but fixed non-negative integers
with m # 1, n > 1, and let G = Fao{%m%y Although Theorem 3.1 below is
needed only for the case m = p, n = p2, it is given for general m, n as this does
not make the proof any more difficult.

Let g be a fixed ordered free generating set for G, say g = {gltg2, •••} with
gi ^ gj if and only if i ^ j . The aim is to prove the following:

3.1 THEOREM, a) The derived group G' of G is free abelian of exponent m.
b) If B is the set of those non-trivial pseudo-commutators p = (a,b,8) in

G which satisfy the five conditions below, then the valuation mapping p i-» [p~\
of B into G is one-to-one, and its image B is a basis for G'.

Condition (1): supp<5 s g.
(2): 8(c)<n for all ceq\{a,b}.
(3): 5(a) ^ n, S(b) ^ n and 5(a) + S(b) < In.

" (4): b = minsupp<5 (i.e., b is the least element in suppd).
" (5): If S(b) = n, then a = maxsuppd.

For each positive integer r , let Gr be the subgroup of G generated by
0, = {gi»-,gr} £ 8 (so that Gr s F,($„%,)). Part a) of 3.1 is an immediate
consequence of

3.2 LEMMA. Ifr^.2, then Gr' is free abelian of exponent m: its rank is
(r-l)(n'-l).

Proof. Let Fr be an absolutely free group of rank r . Since Fr/An(Fr) ^ FrC$tn),
it follows using Schreier's formula that

An(Fr)!Am(An(Fr)) s F(r_ 1)nr+ , ( « J .

Also, it is clear that ^n(FrC2tmn) s i\.(9Im), which means that

From these two isomorphisms it follows that

which is what the lemma asserts.

Now set Br = B n P(Gr). For the proof of 3.1 b) it is clearly sufficient to
show that, for all r ^ 2, the valuation mapping/: i-> [/>] of Br into Gr is one-to-one
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[7] On varieties of matabelian groups 135

and that the image Br of this mapping is a basis for G'r. But a straightforward

numerical computation shows that Br has the right order for this, namely

(r — l)(nr— 1), so it remains to prove

3.3 LEMMA. Ifr ^ 2 , then Br is a generating set for Gr'.

PROOF. A sketch will be sufficient:

By definition, G'r is generated by {[w,u] | u,ve Gr}. By writing u = Mj •••«,(„),

v = Vy ••• vl(r), where each u,, Vj is either a member of gr or the inverse of such,

and by making multiple applications of (i) the commutator expansion rules for

metabelian groups and (ii) part a) of Lemma 2.3, it can clearly be shown that

[u ,u] can be expressed as the product of left-normed commutators all of whose

entries come from g r . Thus [S r ] = {[p~]\peSr} generates G'r, where

Sr = {(a, b, 5) e P(Gr) | supp d c gr} .

To show that any member of \_Sr] can be written as the product of elements of
[5 r ] ; and, hence that Br generates G'r, simply requires the appropriate applications
of parts b), c) and d) of Lemma 2.3.

4. A skeleton proof

This section comprises a series of lemmas which culminate in the proof of
Theorem 1.1. In the interests of simplicity of presentation the proofs of six funda-
mental lemmas are postponed until later sections, but apart from these the
argument is complete.

From now on, G always denotes the group F^OKp^Ipi); that is, m = p and
n = p2 throughout §4-§10. Theorem 3.1 says, then, that G' is free abelian of
exponent p and that [5] is a basis for it, where B is the set of basic pseudo-com-
mutators in G—those pseudo-commutators (a, b, 8) in G for which (1) supp<5
£ g; (2) 8(c) < p2 for all ceg\{a,fe}; (3) S(a) ^ p2, 8(b) g p2 and
8(a) + S(b) < 2p2; (4) b = minsuppd; and (5) if 5(b) = p2, then a = maxsupp<5.
A non-trivial element w of G' will be said to be expressed in normal form when
written w = b\* ••• be

s* with bu •••, bs pairwise distinct basis elements (i.e. members
of [2?]) and e1,---,es integers not congruent to 0 modulo p.

A basic pseudo-commutator s = (a,b,d) in G with a = g2, fc = gi a n d
<5(gi) = <5(g2) = 1 wiH t>e termed special, and its p-complexity, comp(i), is
defined by

00

comp(.f) = 1 + X int. part (5(gf)/p),
; = i

where int. part (SigD/p) is the unique integer jt satisfying jt ^ <5(g )jp < j ; + 1 .
(To see what p-complexity measures, read 4.1 and parts (a) and (b) of Lemma D
(4.5) and then compare Lemma 4.11 with Lemma A (4.2).)
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4.1 DEFINITION. Let w be a non-trivial element of G' expressed in normal form
by w = [ £ i ] e 1 - - [£s]

c*, where, of course, B1,---,bseP. The weight of w, denoted
by wt(vv), is defined to be min,-(wt(5,-) | j = 1, •••,s). If each bj is special, then w
is itself termed special, and its p-complexity, denoted by comp(w), is defined
to be minJ(comp(SJ) | j = l , - - - ,s ) . The trivial element is also considered to be
special, but both its weight and its p-complexity are taken as greater than that
of every non-trivial element; say wt(l) = comp(l) = a>.

Note that for wl,w2eG'

wt(w1w2) Si min(wt(w1)wt(w2)),

and that this inequality can be strict. Also, if wt and w2 are both special, then so
is w1w2, and

comp(w1w2) Si

where again the inequality can be strict.
Throughout this and all subsequent sections let Gp and M denote the Sp 2-

and 3Ip-subgroups of G respectively; Gpl = Bpi{G) and M — AP(G). (Thus M
is the unique maximal verbal subgroup of G and also the Frattini subgroup of G.
Note that M(c) is the S t ^ ^ - s u b g r o u p of G, and so in particular it is the 3c_i-
subgroup of G if c> p.) The six fundamental lemmas on which the proof of
Theorem 1.1 depends are stated below. The proofs of these lemmas occupy §5
to §10.

4.2 LEMMA A. / / k Si 2 and w e G(k), then wt(w) ^ k.

4.3 LEMMA B. If C ^ 1, then [M(c),pG] ^ M ( c + 1 ) .

4.4 LEMMA C. / / c Si 2 and e Si 0, then M(c) £ [M( c_D,eG].

4.5 LEMMA D. Let x: G ^ G be the endomorphism induced by the mapping
Sj •-* gj + 2for ail j , and, for each k Si 1, let xk: G -» G be f/re endomorphism
induced by the mapping gk ^ g&[g2, gi] anrf gy- •-> gjfor all j 9^ k. Let weG'
and for each ie{l,2.---} let w(i) = (WTKJ + 2 ) ( W T ) " 1 .

a) w(l) is special for all i.
b) If w is non-trivial, then so is w(1) for at least one value of i.
c) Ifw is non-trivial, c — min(comp(w(1)) i = 1,2, •••) and

d = max(0, wt(w) — cp),

then w e [M(c), dC].

4.6 LEMMA E. Ifw is a non-trivial special element of G' with comp(w) = c
and if W is the fully invariant closure of {w}, then WSi \_M(c), eG~\ for some
eSi 0.

4.7 LEMMA F. M(P) Si Gp2DG'.
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The remainder of this section is devoted to the proof of Theorem 1.1 on
the basis of Lemmas A-F.

4.8 NOTATION. Let lat(G) be the lattice of fully invariant subgroups of G
with respect to the inclusion ordering. If U e lat(G), then let id(U) denote the
ideal in lat(G) generated by U; i.e. id(l/) = {Ve lat(G) | V <; U}. In addition,
let id#([/) = id([/)\{{l}}. Lastly, for any element weG, let <w> denote the
fully invariant closure of w in G.

4.9 LEMMA. If weG', w ^ l , then there exists an e ^ 1 such that

M(c) ^ <w> 2: [M(c), eG], where c = min(comp(w(0) i = 1,2, •••).

PROOF. It is immediate from the definition that w^e^w} for all i. Tn
particular, choosing an integer iw such that

comp(w('w)) = min(comp(w<0)| i = 1,2, •••) = c,

it follows that <w> ^ <iv(lw)> and hence, from Lemma E, that <w> 2; [M((.),eG]
for some large enough e. On the other hand, Lemma D specifies an integer d
such that w e [M(c), dG], and so, a fortiori, w e M(c). Hence M(c) ^ <w> and
the lemma is proved.

4.10 LEMMA. Let Weid*(G'). Then there exist positive integers c,e such

that M(c) ^ W^ [M( c ) ,eG].

PROOF. Let {wA|AeA} be the complete set of nontrivial elements of W.
By 4.9, to each ). e A there exist cA, ek such that M ( C A ) ^ <wA> ^ [M(CA)) efi~\, and
since W = U i e A < W i > it follows that UXeAMM^ W ^ UieA[M(r j l ) ,eAG].
Now choose I e A such that cx = min(cx | / e A) and write c = ci and e = e~k.
Then, clearly, M(c) ^ W ^ [M(c), eG].

4.11 LEMMA. IfweM(k) n C , k ^ 1, f/7en min(comp(w(0) | i = \,2,---)^k.

PROOF. If w = 1 the lemma is immediate, so assume w 5̂  1. Then by 4.9 there
exists an e such that <w> ^ [M( k 0, eG], where k' = min(comp(w(l)) | i = 1,2, • • • ) .
From this it follows that M(k) ^ [ M ( n , e G ] , but unless k' ^ k this contradicts
Lemma C.

4.12 LEMMA. [M(c),eG] ^ M ( c ) n G(cp+e)for all positive integers c and e.

PROOF. It is sufficient to show that every non-trivial element of M(c)r\G(cp+e)

is a member of [M(r), eG]. So let w be any such element. Then by Lemma A
and 4.11 there exist non-negative al and a2 such that wt(w) = cp + e + at and
min(comp(w(i>)| i = 1,2,---) = c +a2. Hence by Lemma D we [M((.+a2),dG]
where d = max(0,cp + e + aj^—ic + a2)p) = max(0,e + at — a2p). Now it follows
from Lemma B that [M(c+(12), dG~\ ^ [M(c), (d + a2p)G~\ and thus we\_M(c),d'G~\
where
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d' = d + a2p = max(0, e + ax — a2p) + a2p

= max(a2p, e + a t )

^ e + tfx ^ g.

This shows that w e [M(c), eG] , as required.

4.13 LEMMA. / / Weid*(G') then there exist integers c ^ 1 and d ^ 2
suc/i f/iar W = M(c) n L w/iere Lelat(G) w/f/i L 2: G(d). Moreover if
W = M(c»)OL* is any oi/ier SMC/Z expression for W (say with L* 2; G^.j) f/ien
c = c*.

PROOF. By 4.10 and 4.12 there exist positive integers c and e such that
M(c) ^ W ^ M ( c ) nG ( c p + e ) . Setting d = cp + e and L = W.G(d) this gives

W = W(MMnGw) = MMnW.Gw = M(c)nL,

the middle equality holding because of the modularity of lat(G). Now suppose

Mic)nL = M(ct)r>L*,

and assume without loss of generality that c* 2: c. If in fact c* > c, then, clearly,
it follows that

M(c.) ^ A f w n G w ^ [M(

and this contradicts Lemma C. Thus c = c*.

4.14 L E M M A . MM = M (c). G"2 n G' for all ce{2,--,p}-

PROOF. Let ce{2,—,p}. Then G' ^ M(c) ^ M(p), and M ( p ) ^ G p 2 n G '
by Lemma F. Hence, using modularity,

M(c) = M( c ) . (G
p2 n G') = M( c ) . G"2 n G'.

4.15 LEMMA. Gp2 = M(p).G"2nG(d).G
p2for some d.

PROOF. It is easy to check by routine induction on r that if a e G, b e G' and
r ^ 1, then

(ab)T= ar Yl[b,(i-l)a-fl).
i = i

In particular, setting a = g3, b = [g2, g t ] and r = p2, and noting that G' has
exponent p and that (p2) = 0 mod p for all i e { l , - - - , p 2 - l } , this shows that

2 2

and it follows that w = [g2,g!,(p2 —l)g3] eGp 2 . By inspection, w is special
and has p-complexity p, so by Lemma E <w> ^ [M(p),eG] for some e ^ 0.
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Setting d = pz + e it follows from 4.12 that Gp2 ^ M(p)nG(d). But by 4.14
M(p) = M(p). G

p2 n G', and so, using modularity,

Gp2 = Gp2. (M(p) n GW)) = Gp2(M(p) .G
p2nG'n Gw)

= M(p).G
p2nG(d).G

p\

4.16 LEMMA, a) 3 t = 9Ip9lp. 7n particular, 3 j is non-nilpotent.
b) 7/2B is a non-nilpotent proper subvariety o/9IpSIp2, and SB «as exponent

p3, then there exists a unique ke{l,2,---} such that SB = 3k\/ 2 for some
nilpotent variety £ .

c) %P%P2 A23p2 = 3 P _ ! V fio /of some nilpotent variety £ 0 .

PROOF, a) By definition, 3 t = 5Ip5Ip2 A 9tStp A93P2, so it is clear that
3X ^ $IpStp. On the other hand, it is easy to check that the five words
[[x,.y], [z, w]], [x,y]p, [xp,yp~\, [x, > ,̂zp] and xp2 form a basis for the laws of
$IP9IP, and since the first two of these words are laws of ^ ^ 2 , the third and
fourth are laws of ?!<}Ip and the fifth is a law of 23p2, it follows that %% ^ 3 t .
Thus 7t = ?tpQIp. It is well-known that 9Ip5Ip is non-nilpotent (see 24.34 in [11],
for example). That 3 t is non-nilpotent can also be proved directly from 4.13
and 4.14.

b) For k = 1,2, ••• let Ik be the 3rsubgroup of G:

G"2 f o r ke{l,-,p-l}

LetSC be as described in the statement of the lemma and let Wbe the 2B-subgroup
of G: W = W(G). The fact that 2B has exponent p3 implies that 2B ^ 9tp3 and
therefore that W ^ 4̂P3(G) = A(G) = G'. Since 2B is a proper subvariety of
2IP?IP2, this means that Weid#(G'). Hence by 4.13 there exist integers c ̂  1
and d ̂  2 such that Tf = M y H l ! where LielatCG) with Lx ̂  G(d). Since
M(1) ^ G' ^ G(d), it is clear that c ^ \, for otherwise W ^ Gw contrary to
the assumption that 2B is non-nilpotent. Also if ce {2, ••-,/>}, then by 4.14
M(c) = M(c).G

p2nG', and so in this case Wean also be expressed in the form
W = M(c).G

p2nL2, where L2 = L^G' ^ G(d). It is thus established that
W = JkOLfor some ke {1,2, •••} and some Lelat(G) with L ^ G(d) for some d.
But this means that 2C = 3 t V £, where £ is the variety corresponding to L
and is therefore nilpotent. If also 2B = 3 t , V fi* with fi* nilpotent, then, since
Ikr\G' = M(k + 1) for all k = 1 ,2 , - - ,

M ( t + 1 ) n L = ikr\Lc\G' = / j , n t * n G ' = M ( t . + 1 ) nL* ,

and by the second part of 4.13 this implies that k = k*. Thus k is uniquely deter-
mined by SB.

c) This is an immediate consequence of 4.15.
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Theorem 1.1 is an almost immediate consequence of this last lemma. Since
by Meier-Wunderli's result in [10] every metabelian variety of exponent p is
nilpotent, it is clear that all that remains to prove is that statement b) of 4.16
remains valid when "exponent p 3 " is replaced by "exponent p2". So let 2B be
a non-nilpotent exponent p2 subvariety of %p%p

2. Then, since

2B =2BV2V =2BV(«P3 A»P2) = (2BV?IP3) A»P2,

parts b) and c) of 4.16 ensure the existence of a k' e {1,2, •••} and nilpotent varieties
2' and 20 such that

2B = (3V V £') A (3,-1 V £o) = 3* V 2,

where k = min(/c',p-l) and 2 is either 20 A (3* V 2') or £ ' A(3P_, V-Co)
but in any case is nilpotent. If also 2B = 3** V £*» then

2B V t̂P3 = 3* V (fi V %*) = 3*. V (£• V H^),

and so k = k*.

5. Proof of Lemma A

The fact that G' has exponent p, coupled with the fact that (p?) = 0 modp
for all ie {1, •••,p2 — 1}, leads to the following lemma, which helps to simplify
commutator calculus in G:

5.1 LEMMA. Let (a,b,6) be a pseudo-commutator in G.

a) Any one of the following conditions implies that [a, fo,<5] = 1.
(i) 5(a)^p2 + l.
(ii) S(b) ^ p2 + 1.

(iii) <5(c) ^ />2 for some c${a,b).

(iv) <5(a) = 5(ft) = p * .

b) Jfd(b) = p 2 fAen [a,b,S] = [c,fc,(5]/or a//

PROOF, a) If ueG' and veG then

so any one of the conditions (i) — (iii) implies [a, b,5] = 1. That condition (iv)
also implies [a, b, 5~\ = 1 is immediate from part c) of Lemma 2.3.

b) This is immediate from 2.3 d).

Lemma 5.1 is needed in the proof of

5.2 LEMMA. / / (a1,a2,$) is a (not necessarily basic) pseudo-commutator
in G with supp<5 ̂  g and non-trivial value, then wt([a1,a2><5]) = wt((a1;a2,5)).
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PROOF. Let supp<5 = {au•••,«,}, where s ^ 2 since ax^a2. By 5.1a)
<5(at) ^ P2; &(fli) ^ P2; <5(a_,-) < p2 for ; e { 3 , - , s } ; and 5(at) and <5(a2) are not
both p 2 .

There are two cases to consider.
(i) Suppose min{al,---,as} = aj ; where a^^ a^ a2. By the Jacobi identity

[a1 )a2 ,5] = [ a ^ a i ^ J t a j . a ; , ^ ] " 1 , and it follows from the restrictions on the
values of the 5{aj) that the pseudo-commutator (a t , ah8) is basic unless <5(a2) = p2,
in which case [a1,ah5] = 1 (by 5.1a), case (iii)). A similar statement holds for
(a2, a,, 5), so the expression in normal form for [al5 a2, <5] involves only the values
of basic pseudo-commutators with degree function 5. Thus wt([a1?a2,5])

(ii)The alternative case occurs when min{au---,as} is al or a2. In fact it
may be assumed to be a2> for clearly wt((a1; a2,8)) = wtCCaj,^!, <5)) and wt([a1,a2i5])
= wt^aj .a! ,^]"1) = wt([a2,a1;(5]). Similarly, if S(a2) = p2 then by 5.1 b) it
may be assumed that ra.2ix{a1,-",as} = « i . But these assumptions imply that
(a1,a2,<>) is basic, which means that there is nothing left to prove.

There is an immediate corollary:

5.3 COROLLARY. If (a1,a2,d) is a pseudo-commutator in G with supp<5 £ g
and non-trivial value, then

wt([[a1>fl2,5],a]) S wt([ai,fl2,5]) + 1
for all a eg.

More generally . . .

5.4 LEMMA. IfweG', w ^ 1, and veG, then wt([w,u]) ^ wt(w) + 1.

PROOF. For u = 1 the result is trivial, so assume o / l . Then, since G has
finite exponent, v = a ia j - ' -a j for some a1,--- ,aseg(not necessarily all distinct).
The proof uses induction on 5.

To deal with the case s = 1 first express w in normal form by
w = b\l---be

t' s a y , a n d n o t e t h a t <x> > vft(bj) ^ w t ( w ) f o r e a c h j e { l , - - - , t } .

Then
wt([w,ai]) =

al'])\ j = l . - . t )

^ min(wt(^.) + 1 j j = l , - , t ) (by 5.3)

= min(wt(bJ)| ; = 1, •••,!) + 1 = wt(vv) + 1.
j

The inductive step is routine, and is therefore omitted.

Since G(k+1) = [G(t), G] for all k ^ 1, Lemma A (4.2) easily follows from
5.4 by induction on k.
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6. Proof of Lemma B

6.1 NOTATION. For c 2: 1 and e ^ 0 let U(c, e) and V(c, e) be the verbal
subgroups of G defined by

U(c,e) = {[y<i,-,yp
c,Zl,-,ze-]}(G)

and
V(c,e) = {[x1,x2,y

p
2,--,y

p,z1,---,ze']}(G).

The following lemma facilitates the proof of Lemma B (4.3) and will also
be used in §9 to help with the proof of Lemma E (4.6):

6.2 LEMMA. For all c ^ 1 and all e ^ 0, [M(c),eG] = U(c, e). V(c, e).

Proof. Clearly

[M(c), eG] = gp([m1,--- ,mc,w1,--- ,wj | m1,---,mceM; wu—,wee G),

so the inclusion [M(c),eG] ^ U(c,e). V(c,e) is immediate. Since any meM
can be expressed in the form m = vpv' for some veG and v' e G', it is sufficient
for the reverse inclusion to prove that

for all vl,---,vc,w1,weeG and all D / . - . D / E C . The proof of this fact is
a routine exercise in commutator calculus.

To prove Lemma B (4.3) first note that for any u,veG

Hence

U(c,p) = gp(\yp,---,vf!,w1,---,wp]\v1,---,vc,w1,---,wpeG)

^ gp(Oi> •••,vp
c,pvc+1]\ vu---,vcJrleG)

= g p ( K , - - - , ^ + 1 ] | t ; 1 , - - , t ) c + 1 e G ) = l / ( c + 1 , 0 ) ,

and similarly V(c,p) ^ V(c + 1,0). So, using 6.2,

[M(c),pG] = U(c,p). V(c,p) ^ U(c + 1,0). V(c + 1,0) = M ( c + 1 ) ,

which proves Lemma B (4.3).

7. Proof of Lemma C

The ideas for this section are due to L. G. Kovacs.
Let c 2: 2 and e S; 1 be chosen arbitrarily and then fixed. Let G* be the

wreath product of finite p-groups defined by G* = Rwr(S x T) , where
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R = gp(r| r" = 1)

S = 5, x ••• x Sc_2; St = gp(s;|sf2 = 1), ie{l,-,c-2)

T = To x ••• x T e ; T = g p ( f , | t f = 1) , ; e {(),•••,e},

and of course S = { l } i f c = 2. The base group of G* will be denoted by K,
and is to be considered as consisting of all functions from S x T into R, with
multiplication denned component-wise. Additionally, for each i e {1, •••,c — 2},
j e{0,---,e}, notation will be abused to the extent of considering St and 7} (and
so also S and T) as subgroups of G* via the standard embedding.

Denote the 9Ip-subgroup of G* by M*; M* = Ap(G*). Two facts about
M* will be needed, and both follow from results of Liebeck [8].

7.1 LEMMA. M * ( ( C _ 2 ) ( P _ 1 ) + 2 ) = {1}.

PROOF. Clearly M* ^ K.S" = M* say. Now from the proof of 22.14 in
[11] it follows that M* S RfvjrSp where # f denotes the direct product of
| (S x T)/S"\ copies of R. Thus, from [8] Theorem 5.1, M* has nilpotency class
(c —2)(p—1) + 1 and the conclusion follows.

7.2 LEMMA. If keK is defined by Jfc(l) = r and k(v) = 1 for all
ve(S x T)\{1},

PROOF. It follows from part (a) of the proof of Theorem 5.1 in [8] that

[fc,(p2-l)s, ,- ,(p2-l)sc_2,(p-lK,-,(p-l)te] * 1

and hence, a fortiori, that

[k,(p~l)psu---,(p-l)psc_2,t0,--,te'] ^ 1.

Since [u,py] = [u,up] for all u,veG*, this is equivalent to

lk,(p-l)s[,-,(p-l)s^2,t0,tu--,te-] jt 1.

This establishes the lemma, for by 5.7 in [8] an alteration to the order of entries
occurring after k leaves the commutator unchanged.

Since G* e 9tp9Ip2 it is clear that Lemma C (4.4) is an immediate conse-
quence of

7.3 LEMMA. M*C) £ [M*_ 1 ) ; eG*] .

PROOF. With k defined as above let w = [fe,fo,Si,---,sf_2,f1, • • • , f j . Since
clearly we[M*(c_1),eG*], the lemma will be proved once it is shown that
w$M*M. Suppose to the contrary that weM*(c). Then it follows that
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[ w , ( p - 2 K , - " , ( p - 2 ) s c
p _ 2 J e M * ( c + ( c _ 2 ) ( p _ 2 ) ) ,

i.e. that

\_k,to,(p-l)sp
1,-",(p-lX_2,t1,--;te~]eM*((c_2)(p_1) + 2).

But from 7.1 and 7.2 this is impossible.

8. Proof of Lemma D

It is clear that for each (fixed) i the mapping w i-> w(i) of G' into itself is an
endomorphism of G'. The first objective, therefore, will be to describe the effect
of these endomorphisms of G' on members of the basis [if] of C .

8.1 NOTATION. For each integer i > 0 and each degree function <5 on G with
g; e suppc) let (5(1) be the degree function on G defined by

<5(i)(g,) = 5<"(g2) = 1,

<5(O(gi+2) = 8(gt)-l,

fl'Kgj) = K&j-i) for all j ^ 3 , j ^ i + 2, and

(5(i)(a) = 0 for all a e G \ g .

Note that (g2, guS
{i)) is always a special pseudo-commutator in G.

A straightforward commutator calculation verifies the following formula:

8.2 LEMMA. / / (a, b,8) is a non-trivial pseudo-commutator in G with
suppd s g then

otherwise.

Now consider part a) of Lemma D (4.5). For w = 1 it is a triviality, so assume
w to be expressed in normal form by w = b\l ••• be

t\ Clearly, w(i) = (b^)'1 •••(b<
i
i))et

for all i, and since a product of special elements is special it is therefore sufficient
to show that if (a,b,5)eB then [a,b,<5](0 is special for all i. If gt$ {a,b} then
[a ,b ,5] ( 0 = lby8.2,sosupposea=gi.Then,againby8.2,[a,fe,5] ( i )=[g2,g1,6( i ) ] .
Since (a, b, S) is basic, it is clear from the definition of 5tl) that (g2, g1; <5(l)) is also
basic unless 5(b) = p2. However, in the event of the latter contingency, case (iii)
of 5.1 a) gives that then [g2,gi,<5(i)] = 1, so that possibility can be dismissed.
Thus [a,b,<5](0 = [ 5 ] , where b = (g2 )g1,5( 0) is basic and special; i.e. [a, b,<5](0

is special. The case b = g; is handled similarly, and part a) of Lemma D is proved.

It is well-known that in any product variety the free group of countably
infinite rank has trivial centre. (By 22.22, 22.32 and 24.23 in [11], any product
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variety is generated by a group with trivial centre. Now use the fact that in a
relatively free group of countably infinite rank the centre is verbal.) Thus G has
trivial centre and therefore part b) of Lemma D (4.5) is an immediate consequence
of the following result:

8.3 LEMMA. Let weG' and let veG. If for each integer i > 0 the image
ofueG under the endomorphism of G induced by the mapping

gi^v, g2 H> g; and gj H> gj_2 for all j ^ 3

is denoted by u(v''\ then there exists an s0 = so(w) such that

for all s>s0. In particular, [w, u ] e < w ( > ) | i = l , 2 , - - - > .

PROOF. It is clearly sufficient to prove the result for w - [£] where
B = (gk,g,,8)eB.

It is no trouble to check that if 5 is any degree function on G with g; G supp 5
then

where xv
 ls t n e characteristic function %v(

v) = 1 > Xv(a) = 0 for all a ^ v. Setting
s0 = max(/c, /) = k, and using 8.2, it follows that for all s ^ s0

Hence, by the Jacobi identity,

It remains to prove part c) of Lemma D (4.5), and unfortunately this is a
rather tedious business. Firstly:

8.4 NOTATION. For any weG' denote mini(comp(w(i))| i = 1,2,•••) by
mic(w).

Call a non-trivial element w of G' well-behaved if w e [M(c), c/G] where
c = mic(w) and d = max(0, wt(vv) — cp). In this terminology part c) of Lemma D
(4.5) says that every non-trivial element of G' is well-behaved. The following
lemma indicates how the task of proving this is reduced:

8.5 LEMMA. Ifw= n* = 1vv,- ^ 1, where
(i) the Wj are well-behaved members of G',
(ii) wt(vv) = m i n / w t ( w y ) | j = l , - - - , s ) , and

(iii) mic(w) = min J (mic (w J ) J j = 1, • • • ,« ) ,

then w is well behaved.
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PROOF. Set c = mic(w), d = max(0, wt(vv) — cp), c} = mic(Wj) and
dj = max(0, wt(vv,-) — Cjp). Condition (i) ensures that Wj e [M(cj), d,G], condi-
tion (ii) ensures that wt(vvy) ^ wt(w) and condition (iii) ensures that Cj ̂  c.
Now by Lemma B (4.3)

so >Vj-e[Af(c), d 'G], where

d' = dj + (Cj-c)p = max(0,-wt(wj) - Cjp) + (cj-c)p

= max((c; — c)p, wt(Wj) — cp) ^ max(0, wt(w) — cp) = d.

Thus Wj e [M(c), dG~] for each j , and consequently w e [M(c), dC]. That is, w is
well-behaved.

It is to be noted that an arbitrary product w = w1---wsj*l with
w1,---,wseG' generally satisfies neither condition (ii) nor (iii) of the above lemma.
Even if Wj = b)1 for j = l,---,s and w is expressed in normal form by
w = b^-'-bl', then, although in that case condition (ii) is satisfied, condition
(iii) may still not be satisfied; for example, if

w = [g2,Pgi,g3][g3>.Pgi,g2]-1

then it is easy to check that mic(w) = 2 whereas

mic([g2,pgi,g3]) = micdgs'PguSiY1) = 1-

Notice that in this example the relevant basic pseudo-commutators have the same
degree function. (The pseudo-commutators concerned here are (g2)gi,<5) and
(g3)gi,<5), where supp(5 = {g1; g2,g3} and 5(gx) = p, S(g2) = <5(g3) = 1.) It is
convenient to give a name to elements of G' like the w of this example. They will
be called elementary: an elementary element of G' is one for which the basic
pseudo-commutators involved in its expression in normal form have a common
degree function. This common degree function will be called the degree of the
elementary element. Clearly every element w e G' is the product of its elementary
parts; w = II s

i = t w; with each of wu •••, ws elementary and the degree functions
of the Wj distinct in pairs. The point of this is:

8.6 LEMMA. Conditions (ii) and (iii) o/8.5 are always satisfied ifwi,---,ws

are the elementary parts of w.

PROOF. Since condition (ii) is obviously satisfied under these circumstances
it is only necessary to establish (iii).

F o r j = 1, ••-,s let the degree function of Wj be Sj. Using 8.2 and case (iii)
of 5.1 a) it is easy to verify that for any j e { l , •••,s} and any ie {1,2, •••} the ele-
ment w*-° is either trivial or is expressed in normal form by
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for some eJt ^ 0 mod p. Consequently, if Jt denotes the set of those j for which
w(ji} jL 1 , the

w
(•) _= n

and as b{^ ^ d)9 whenever j ^ j ' this expresses w(1) in normal form. (Of course
if Jt is empty then w(l) = 1). Since comp(l) = a this shows that

comp(w(l)) = min(comp(uA0) | j = l,---,s),

and from this condition (iii) of 8.5 follows.

In view of Lemmas 8.5 and 8.6, part c) of Lemma D (4.5) will follow when
it is shown that every elementary element of G' is well-behaved. This latter result
will presently be proved as Lemma 8.8, but a preparatory result, Lemma 8.7
that follows now, is needed first.

8.7 LEMMA. Every element weG' whose expression in normal form is
of the kind w = be is well-behaved.

PROOF. Choose b e B and an integer e ^ 0 mod p arbitrarily, and set
w = [ 6 ] e , c = mic(w) and d = max(0,wt(w) — cp). Since it is clear that c and
d are independent of e, it may be assumed without loss of generality that e = 1,
for if be [M(c),dG~] then certainly b e e [M ( c ) , dG] . Let b = (aua2,S) with
supp<5 = {au---,as} say (where, of course, each 0,-eg}, and for j = l,---,s
write dj = g^ and 8(aj) = qjp + rj with 0 ;S r} < p. By employing Lemma
8.2 and the relevant definitions it may be verified that

c =

T.qj+1 if rt ^ 0 ^ r2,
= i

s

£ gy otherwise.

Also, it follows straight from the definition of weight that

wt(vv) = wt(5) = £ S(aj) =p £ qj+ Xrj.
J = l j = l .7 = 1

It is now necessary to consider three cases, delimited according to the values
of rl and r2:

Case 1: Assume that ^ ^ 0 ^ r 2 . By making use of the fact that
[u,pv] = [u,t>p] for all u,veG, the element w may be written in the form
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and from this expression it is immediate that we^M^.^d'G], wherec' = ZJ=1<jiy + 1
and d' = £ * = 1 rj — 2. But by the remarks above c' = c and

d' = wt(vv) - p L <Zy - 2 = wt(vv) - K c - 1 ) - 2
J = I

= (wt(w) - cp) + ( p - 2 ) ^ max(0,wt(w) - cp) = d,

and consequently [M^.^d'C] % [M(c), dG] . Thus w e [M(c), dG]; that is, w is
well-behaved.

Case 2. Assume that either r1 j£ 0 = r2 or rx — 0 ?* r2. Then w may be
written either in the form

vv = [[[>!, a2],qYa"u (q2 - Y)ap
2,q3a%, •••, qsaf], ( r t - l)al5 ( p - l ) a 2 , r3a3, •••, r s a j

or in the form

w = [[[a l 5 a 2 ] , (gx - l)af, g2a5, • • •, ^X]» (P~ Vau (r2 -1)«2> r3«3» • • •» '".aJ •

In any event, it is clear that w e [Af(<..,, d 'G], where c' = 'Lf=lqj and
d' = 2 j- = iO + p - 2 . Here again c' = c, and

s

d' = wt(w)-p I.qj + p-2 = (wt(w)-cp) + (p-2)
J = I

^ max(0, wt(vv) — cp) = d,

and it follows as in case 1 that w is well-behaved.
Case 3: The only remaining possibility for the values of rt and rz is

rt = r2 = 0. In this case w may be written in the form

and so we^M^.^d'C] with c' = X* = 1#y and rf' = 2 ; = !^ . This time not
only c' = c but also

s

d' == wt(vv) - p £ #,- = wt(w) - cp = max(0,wt(w)-cp) = ^ .
J = I

Anyway, w e [M(c), dG~\.
This completes the proof of the lemma.

8.8 LEMMA. Every non-trivial elementary element of G' is well behaved.

PROOF. Let w be a non-trivial elementary element of G', and let 5 be the
degree function of w. Let supp<5 = {al5---,as} and as in the proof of 8.7 write
aj = Sij anc* <5(flj) = <7y£ + 0 ' f ° r •/ = ^'•">s- Let the subscripting of the a/s
be so arranged that w is expressed in normal form by
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for some t in the range 2 ^ t ^ s. If t = 2, then w is well-behaved by 8.7, so
assume t>2. This assumption implies that S(aj) < p2 for each je{l, ••-,$} (if
S(aj) = p2 for some j , then there is only one basic pseudo-commutator with
degree function <5), and this in turn means that (g2, gi,<5(u)) is basic for each j .
Using this last observation in conjunction with 8.2 it is not hard to see that

mic(w) = mm(mic([aj,a1,5']ej)\ j = 2,---,t)
j

unless Yit
j = 2ej = Omodp and comp(g2,g1,^(")) < comp(g2,gi,5llj)) for each

ye {2, ••-,<}; that is, unless
t

(i) X ej = 0 mod p,
j = 2

(ii) rx = 0, and
(iii) i-j.^0 fory = 2, ••-,/.

Note that conditions (i) and (iii) imply that mic(w) = X f= ^ + 1. Now it is im-
mediate from the definition of weight that

s s s

wt(vv) = wtflaj.aj.S]") = I 5(oy) = p S «y + I 0
j = i J = i J = i

for all j e {2, •••, (}, so, in view of 8.5 and 8.7, it remains to prove that if (i), (ii)
and (iii) are satisfied then w e [M(c), dG~\, where c = 1 ^ + 1 and
d = max(0, wt(vv) — cp) = max(0, 2 r,- — p). This is proved as follows, and it
will be noticed that condition (ii) is irrelevant:

The Jacobi identity gives that

[aJ,a1,5~\ = [aj,a2,8'][a2,al,d']

for each ye{2,•••,(}, and it therefore follows from condition (i) that

7 = 3

Condition (iii) allows each factor \_aj,a2,S'] in this product to be written in the
form

and so it is immediate that w e [M(c), d 'G] , where d' = S ry — 2. Since
is obviously no greater than d, this completes the proof.
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9. Proof of Lemma E

Many of the methods employed in this section have their origin in the Ph.D.
thesis of R. A. Bryce (Australian National University 1967).

9.1 LEMMA (c.f. 4.2.5 in [3]). Let wu-,wmeG' and let Weid(G') (i.e. let
Wbe a fully invariant subgroup of G contained in G'). If IT7=i [w,-,t>'] e Wfor
all veG, then K , , C « C = i . - , » i ] e W for all vu-,vmeG.

PROOF. The proof is by induction on m. For m = 1 there is nothing to prove,
so assume the assertion true for m = k — 1 > 0 and consider the case m = k.

Arbitrarily choose v1,---,vkeG and w1,---,wkeG' and assume that
k

(*) [ ] [wj,t/] eW for all v e G.
; = i

The object is to show that [wk,v*,---,v^]eW.
It is a simple exercise in commutator calculus to check that

K-, (ty5)'] = [>,-, i>J] [w,, w'] [w;, »J, $] [w,, »i, w'~ ' r

for all positive j and alls e G. Hence

n ( n ) ( n ] ) f n l f n
1 = 1 \ i = l / \ i = l / Li=l J \ i = l

for all v e G, and so it follows from (*) and the normality of W in G that

By the inductive assumption (i.e. the case m = k — 1) this implies that
[[wt_1 + 1,J>*-1 + 1],i;*lJ, ••-,«!] e W, which finishes the proof.

9.2 LEMMA (c.f. 4.3.1 in [3]). Let wu ••-, w^-i eG' and /et JFeid(G'). / /
n/^T'CwdJ^e Wfora// veG, then for each de{l , --- ,p2- l} f/tere exists a non-
negative integer e = e(d) such that [wd,u"l,---,u^,,v1,---,ve']eW for all
u1,---,udi,v1,---,veeG, where d* = int. part (d/p).

PROOF. First, two simple observations:
(i) If a j , • • •, am e G' and b e G then it is easy to check by induction on m that

k=l

where, for fc = 1, ••-,m,

and it is to be noted that a'm = am.
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(ii) Because \x, y, z"2] is a law in G it is easy to see that if for some weG'
and some positive integer k with 1 ^ k :g p2 — 1 it is true that [w, vk~\ e W for
all j; e G, then it is also true that [w, uph] e W for all v e G where ph is the highest
power of p which divides k.

Now to the proof proper. The premise is that

(*) f ] K>dt;] e w for a11 r e G •
d = l

By 9.1 and (i), (ii) above it is clear that (*) implies that

[wp2_1,Cp2_1,---,tip2_p+1,i;^_p,up2_p_1,---,v_2p + 1 , t ;^-2 p,---,etc---,u1]e W

for all i i 1 , - ,» J ,2 - 1 eG. Thus (*) implies that

\wpi-uu\, ••-,«£_!,«!, •••,t>p2_p]e JF for all u1)---,up_1,i;1,---,t;p2_;,6 G,

and since int. part ((p2 — \)jp) = p — 1 this establishes the case d = p2 — I. The
remaining cases are handled by induction as follows:

Let r e {l,---,p2— 2} and assume inductively that for each d in the range
r < d < p2 there exists an e = e(d) such that

[wd,u?, •••,uj.,c1,---,pje W for all i i 1 , ' - , i i d . ) r 1 . - , c , £ G .

Since

this inductive assumption implies that there exists a non-negative integer / such
that if r < d < p2 then

(**) [wd,dv,v1,---,vl']eW for all v1,---,vl,vsG.

From (*) and (**) it follows that Wd = 1[\wd,vu---,v^,dv\ e W for all vu---, vhveG,

and, again by 9.1 and (i), (ii) above, this in turn implies that

for all vt, • • •, vt, vx, • • •, vr e G. The case d = r follows, and the induction is complete.

9.3 LEMMA (c.f. 4.3.2 in [3]). Let Weid(G') and let {au---,as} £ g . Let

<J> be the set of all mappings from {1, •••,s} into {0,1 , •••,p2 — 1} and for each

4>e® let w + eG'ngp(g\{fl1 , - ,a ,}) . / /

f/ien for each <j>eQ> there exists a non-negative integer e = e((j>) such that
[w<j,,u"i,---,ul.,vi,---,ve~]eW for all u1,—,u4>t,v1,--,veeG, where cf>* =
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PROOF. For s = 1 the premise reduces to n $l~o
l \wi,dal'\ e W where at is

a free generator of G not "involved" in any wd. Since for any veG (including
v = 1) there exists an endomorphism a of G such that ala = v and wda = wd

for each d, this is equivalent to saying that w0 e W and IT dl~j* [w,,, Ju] e W
for all u e G. At this point 9.2 applies, and the case 5 = 1 of the lemma is estab-
lished.

Now suppose s> 1. For each de{0,---,p2 — !} set

where <E>d = {(j) e <J> 15(̂  = d}. Then, of course, II "dZo\wd, das~] = w e W, and as
with the case s = \ this implies that for each d — {0,---,p2 — l} there exists a
non-negative integer e = e(d) such that [ w j , u J , - , M j ( , c 1 , - , t ) J e ^ for all
U L •••,Md.,t?1,-",i>ee G. Choose «!,-••,«,,», vt,---,ve arbitrarily and for each
set w ,̂ = [w^,,uj,•••,uj»,r1,•••,i;e]. Then

and the obvious inductive step completes the proof.

Now consider Lemma E (4.6). An arbitrary non-trivial special element w
of G' can be expressed in normal form as

where, of course ê  ^ 0 mod p and d/gj) = 5j(g2) = 1 f ° r e a c n J • Suppose that
(Jj- = isupp<5; = {g1,g2,ai, ••-,«,}• If s = 0, then w = [g2,gi]e' and in that
case Lemma E (4.6) reduces to a triviality, so assume s > 0.

Let <J> be as in 9.3 and for each ^ e $ set

f[g2»gi]ej if '<£ = <5/«.) for i = l,---,s,
w<t> = i

rT,, ( . 1 otherwise.
Then

and so 9.3 gives that for each (f> e <D there exists a non-negative integer e = e(<j>)

such that, if FFis the fully invariant closure of w, then [w^ui, •••,u^),,v1,---,ve'\eW

for all u1,---,up*,v1,---,veeG. Now by definition

c = comp(w)

= min 11 + E int.part(5_,-(a,)/p)I j = 1, • • •, t)
j \ i=l I
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and consequently there exists a <j> e <I» and a non-negative integer e such that

^ = [ g 2 , g i ] e j ^ l and

\w<t,,u
P,---,uP,v1,---,ve]eW f o r a l l u2,-;uc,vt,---,veeG.

Clearly, in the notation of 6.1, this means that W^ V(c, e). So for the proof
of Lemma E (4.6) it now only remains to show that V(c, e) ^ [M(c), e'G] for
some e'. In fact, though:

9.4 LEMMA. For all c ^ 1 and alle^Q, V(c,e) ^ [M(c),(e + 1)G] .

PROOF. In view of 6.2 it is only required to show that V(c, e) ^ U(c, e + 1),
and for this it is sufficient to prove that

for all u1,---,uc,v1,---,ve+1eG. But, by the Jacobi identity,

and the result follows.

10. Proof of Lemma F

The proof of Lemma F (4.7) depends on the characterisation of Gp2 n G'
given by the lemma below. The idea for the proof of this lemma was suggested
to me by L. G. Kovacs.

10.1 LEMMA. / / V denotes the fully invariant closure of gl^g^^ig^g^"2

in G, then V= G"2r\G'.

PROOF. Since (g1g2)"
2 = gfgp

2 c for some c e G', it is clear that V g G"2 n G'.
Hence if H denotes the relatively free group G/V, then it is sufficient to prove that
Hp2nH' = {1}.

Let w e Hp2. From the definition of H it is clear that (ab)p2 = a"V 2 = bp2ap2

for all a, b E H, (the second equality holds because [x"\ y"2] is a law in G) and it
follows that w can be expressed in the form

w = aYp2--aa
k
kpl

where al,---,ak are pairwise distinct members of some free generating set §
for H and a l 5 " ' , a t are integers. Now assume additionally that weH'. If for
j = l,--,fc endomorphisms tr,- of H are defined by ajOj = aj and h<jj = 1 for
all he^,\{aj), then it follows that a)'"2 = wajeH' for each j . But, of course,
gp(h)r\H' = {1} for all ft e g and therefore a\ipi = ••• = af"2 = 1, which
means that w = 1. The lemma is proved.

In view of 10.1 it is sufficient for the proof of Lemma F (4.7) to show that
,, or equivalently that (g1g2)"2 s gp2gp2 mod M( p ) . To do
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this, first write (gig2)p = gfg2^> (where, of course, deG') and note that
g\, gp

2,deM. Now M/M(p) is a p-group of class less than p and as such is regular.
Thus

(gigzY1 = (glsW = (gin&yd'mod M(p),

and the result follows since dp = 1. (C has exponent p.)
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