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QUINOLINE SORPTION ON Na-MONTMORILLONITE: CONTRIBUTIONS 
OF THE PROTONA TED AND NEUTRAL SPECIES 
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Battelle, Pacific Northwest Laboratories, P.O. Box 999 
Richland, Washington 99352 

Abstract-Dilute aqueous solutions of quinoline were contacted with Na-montmorillonite to elucidate 
the sorption process of the neutral and protonated species. Sorption occurs via a combination of ion 
exchange and molecular adsorption and yields S-type isotherms, Exchange between the quinolinium ion 
(QH+) and Na can be described by means of Vanselow selectivity coefficients and a thermodynamic 
exchange constant (}("x). Due to the apparent adsorption of the neutral species at high mole fractions (x) 
of the solid phase, the thermodynamic standard state was defined as 0.5 mole fraction. The selectivity 
at pH -4.95 of the QH+ species over Na (at XQH• = 0.5) was determined to be Ky = 340. At pH ?c5.5 
surface mole fractions of 0.5 could not be obtained without adsorption of the neutral species. This study 
suggests that at dilute solution concentrations quinoline is sorbed preferentially as the cation even at 
pHs ::li> pK,.. A critical surface-solution concentration is apparently necessary for adsorption of the neutral 
species. 
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INTRODUCTION 

Although the importance of cation exchange in the 
adsorption of quinoline and other ionizable aromatic 
bases in soil and subsurface materials has been estab
lished (Zierath et al., 1980; Zachara et aI., 1986; Mo
rea1e and van Blade1, 1976), little quantitative infor
mation exists on the nature of the exchange process. 
Doehler and Young (1961) found a decrease in quin
oline sorption on various clay minerals with increasing 
pH and ionic strength. Helmy et al. (1983), expanding 
on the work of Doehler and Young, observed maxi
mum sorption at about pH 6 on both phyllosilicates 
and oxides, about one pH unit >pl(" (4.92) for quin
oline. Both of these studies concluded that the cationic 
and molecular forms of quinoline were adsorbed. The 
authors were unable, however, to quantify the contri
butions of the different species (neutral, protonated) or 
to determine the selectivity of the exchange process. 
Sorption studies of purines, pyrimidines, and nucleo
sides on montmorillonite and illite also point to the 
importance of cation exchange, and Lailach et al. 
(1968a, 1968b) and Thompson and Brindley (1969) 
demonstrated that the pH of the bulk solution at max
imum sorption is related to the pI(" of the adsorbate. 
Exchange data for ionizable s-triazine herbicides on 
Ca-H-humic acid (Gilmour and Coleman, 1971) dem
onstrated the controlling effect of compound ioniza
tion, the importance of the ionization fraction, and the 
strong selectivity of the sorbent for the univalent or
ganic cation over Ca2+ (K..,x = 18-60). 

The exchange of fully ionized organic cations has 
been investigated on a variety of organic and inorganic 
adsorbents, and the magnitude of the determined se
lectivity coefficients and the exchange constants de-
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scribing the reaction both point to high stability of the 
surface complex. This stabilization may derive from a 
combination of electrostatic, van der Waals, or en
tropic forces. Grim et al. (1947) reported the stoichio
metric replacement of K+ by n-butylammonium ions 
on K + -saturated montmorillonite and the sorption of 
n-dodecylammonium ions to levels exceeding the cat
ion-exchange capacity. Selectivity coefficients for ex
change between mono-, di-, tri-, and tetraalkylam
monium ions and sodium on montmorillonite increase 
with carbon substitution, suggesting free energy con
tributions from van der Waals forces (Cowen and White, 
1958) or entropy gains (Vansant and Uytterhoeven, 
1972). The aromatic N-containing cations paraquat 
and diquat are selectively exchanged over most mono
valent and divalent cations by soil clays (Dixon et aI., 
1970; Philen et al., 1970; Weed and Weber, 1969). 
Paraquat is also taken up on soil organic materials by 
ion exchange (Bums et aI., 1973), but the selectivity 
for the organic cation was found to be less than that 
observed for smectites. 

Ionizable aromatic compounds are important en
vironmental contaminants and ambiguities exist re
garding their behavior in soil and ground-water envi
ronments. In light of these considerations, the present 
study was undertaken to probe the exchange and mo
lecular adsorption behavior of quinoline over a wide 
range of pH and aqueous concentration using a well
characterized, charged adsorbent. Sodium-saturated 
montmorillonite was used as the exchanger-adsorbent 
to investigate the hypothesized homovalent exchange 
process. Sorption and exchange isotherms measured 
under controlled pH conditions were used to show the 
wide pH and concentration region in which exchange 

https://doi.org/10.1346/CCMN.1987.0350204 Published online by Cambridge University Press

https://doi.org/10.1346/CCMN.1987.0350204


122 Ainsworth, Zachara, and Schmidt Clays and Clay Minerals 

predominates and the conditions under which molec
ular adsorption becomes important. A thermodynamic 
exchange constant was calculated and the mechanism 
of quinoline interaction with the smectite surface was 
investigated. 

MATERIALS AND METHODS 

Compound purity 

Quinoline (99% purity, Aldrich Co.) was used with
out further purification. Radiolabeled l'C-quinoline was 
custom synthesized (Pathfinders Laboratories) and fur
ther purified by liquid chromatography (Waters As
sociates, C-18 column, 25 cm x 3.9 mm) and a 40% 
acetonitrile/60% citrate buffer (0.05 M, 1: 1 Na-citrate: 
citric acid). The peak corresponding to quinoline was 
collected, partitioned into hexane, and back-extracted 
in 0.05 N HCI. 

Na-montmorillonite 

A bulk sample of montmorillonite (SWy-l, Crook 
County, Wyoming) was obtained from the Source Clays 
Repository of The CIay Minerals Society for use in this 
study. The clay was purified and prepared in the so
dium form according to the procedure employed by 
Sposito et at. (1981); Na was determined by inductively 
coupled argon-plasma spectroscopy (ICP); CIO. was 
determined by ion chromatography (IC). The prepared 
clay suspension was stored in 0.1 M NaCIO. at about 
pH 5.5. 

Sorption experiments 

Batch exchange studies. Exchange studies were con
ducted at 25 ± O.soC in 200-ml Corex (Coming Glass 
Works) tubes containing a montmorillonite suspension 
of about 1 glkg in 0.1 M NaCIO •. Nine quinoline con
centrations (in triplicate) were used ranging from - 5 x 
10-' to -4 X 10-7 M. The working clay suspension 
for each concentration of quinoline was produced by 
adding about 40 g of the stock suspension, 0.01 M 
NaCIO., and deionized H 20 to a l-liter bottle to yield 
780 g of suspension at -0.01 M NaCIO •. The suspen
sion was allowed to equilibrate for 24 hr. After the 
equilibration period, an appropriate mass of quinoline 
and l'C-quinoline was added to the suspension and 
mixed, and two aliquots were removed for CIO. de
termination (IC). The pH was adjusted to 4.9, and 3, 
120-ml aliquots were removed to Corex bottles. The 
bottles were capped and shaken for 24 hr. The bottles 
were then weighed and centrifuged, and the superna
tant was removed. The bottles and clay plug were 
weighed, 50 ml of 0.1 M NH40Ac was added, and the 
mixture was agitated for 24 hr. This procedure was 
repeated three times using the NH40Ac at pH 10 for 
the third extraction. All solutions were analyzed for 
l'C-quinoline by liquid scintillation and for Na by ICP. 
Occluded volumes and the sorbed concentrations were 

determined by mass difference; quinoline concentra
tions were spot checked by direct analysis by liquid 
chromatography. The total adsorbed charge was cal
culated by the method of Sposito et al. (1981). 

Quinoline sorption. A titration-equilibration technique 
was employed using a Wheaton Celstir double-side
arm, water-jacketed flask and a Radiometer Copen
hagen pH meter equipped with titrator and autobu
rette. The temperature was maintained at 25 ± 0.2°C. 
About 400 g of 0.01 M NaCI04 was added to the flask 
and degassed overnight with N2 • Varying masses of 
quinoline (hot and cold) were added depending upon 
the initial concentration desired (- 6 X 10-' to 1 X 

10-6 M). The pH was adjusted to 8.0 with 0.11 M 
NaOH. At this point stock clay suspension was added 
to yield about 7.25 x 10-' g clay/g suspension. The 
addition of the clay caused the pH to decrease by -0.3 
unit. The suspension was titrated to pH 8.0 and held 
there for 4 hr by additions of 0.114 M HCIO •. Three 
aliquots (5 ml each) were removed, and the clay and 
aqueous phases were separated via centrifugation. 
l'C-quinoline was determined by liquid scintillation; 
Na was determined by ICP. The pH was reduced to 
7.5 by slow addition of 0.114 M HCI04 and held at 
that pH as previously described for 4 hr. Samples were 
again removed and analyzed for Na and quinoline. The 
pH was similarly adjusted to 6.5 and 5.5, with quin
oline, Na, and hydrogen consumption determined at 
all pHs. The clay suspensions were titrated without 
quinoline, and the degassed electrolyte solution was 
titrated as blanks to determine the hydrogen con
sumption background. No attempt was made to de
termine the exchanger composition directly. The net 
cumulative sorption of quinoline and the H+ con
sumption for sorption at pH 7.5, 6.5, and 5.5 were 
calculated by summing the appropriate data from pre
vious pH levels and correcting for the mass removed 
for sampling and blanks. 

Quinoline sorption rate. The time required to obtain a 
steady-state aqueous quinoline concentration and ces
sation of hydrogen consumption was determined using 
the titration-equilibration technique employed in the 
above sorption experiments. A suspension of 0.75 g 
clay/kg suspension in 0.01 M NaCI04 and 6 x 10-4 M 
quinoline tagged with 14C was maintained at pH 5.5 
using a pH meter and autotitrator. The quinoline so
lution concentration was monitored by timed sampling 
and determination of the aqueous 14C-quinoline activ
ity over a period of560 min. This process was repeated 
at pH 6.5 and 7.5. 

Cation-exchange capacity. The cation-exchange ca
pacity of each stock clay suspension used was deter
mined by 22Na isotopic dilution (Babcock and Schulz, 
1970), using a background electrolyte of 0.0 1 M NaCIO •. 
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RESULTS AND DISCUSSION 

Influence of time 

The time required to obtain a steady-state concen
tration of quinoline and the cessation of hydrogen con
sumption varied with pH; as pH increased, time to 
steady state increased. The sorption reaction reached 
equilibrium in about 200 min at pH 7.5, in slightly less 
time at pH 6.5, and in about 100 min at pH s.s. These 
results agree well with those of Doehler and Young 
(1961) and Helmy et at. (1983). 

Sorption isotherms 

The quinoline sorption data on Na-montmorillonite 
at pH 7.5, 6.5, and 5.5 can be described by a power 
function: 

S = aC/, 

where a and b are constants specific to pH, S is the 
number of micromoles of quinoline sorbed per gram 
of clay, and Ce is the number of micromoles of quin
oline per kilogram of solution. The correlation coeffi
cient (r2) for the above function, however, deteriorates 
with increasing pH (Table 1). The reason for this ero
sion of fit to the power function model is evident from 
the log-log plot of the data in Figure I. Each pH iso
therm shows a distinct break in slope at the higher 
concentrations, which becomes more severe with in
creasing pH. 

By regressing the upper and lower portions of each 
curve separately, good fits were obtained to the linear 
form of the power function (log S = log a + b log Cc). 
The constants and linear correlation coefficients are 
presented in Table 1 along with the coordinates de
noting the intersection of the related curves. The iso
therms at lower equilibrium concentrations are similar 
in slope (i.e. , roughly parallel), with a slope near unity. 
The isotherm segments at higher concentrations, how
ever, have a steeper slope than their lower-concentra
tion counterparts: 1.62, 1.90, and 2.36 for pH 5.5, 6.5, 
and 7.5 , respectively. The slopes of the higher concen
tration isotherms (log-log form) increase markedly with 
increasing pH. Isotherms having this general shape are 
typically referred to as S-type isotherms. 

In certain instances, especially in the adsorption of 
organic compounds, the S-type isotherm is due to co-
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Figure I. Quinoline sorption on Na-montmorillonite at pH 
7.5,6.5, and 5.5 overthe initial concentration range of6.09 x 
10-4 to 1.27 X 10-6 M. 

operative interactions among sorbed organic species, 
stabilizing the sorbate and enhancing the affinity of the 
surface for the sorbate (Sposito, 1984, p. 116). Addi
tionally, S-type isotherms may indicate clustering of 
the sorbate rather than random surface mixing (Sposi
to, 1981 , p. 134). Similar S-type convex curves for 
quinoline sorption were reported by Doehler and Young 
(1961) for quinoline sorption on illite and montmo
rillonite. The magnitude of sorption was influenced by 
the nature of the saturating cation (Na and Ca), pH 
(6.5 and 7.5), and salinity. In contrast, Helmy et al. 
(1983) found quinoline sorption on Na-montmorillon
ite to yield H-type isotherms, the magnitude being in
fluenced by the nature of the saturating cation (Na, Ca, 
K, and NH.) and pH (6.7 and 10.3). 

Table 1. Regression constants for quinoline sorption on Na-montmorillonite. 

S ~ aC.' Lower curve 

pH a ' b r' N a' b 

5.5 22.9 1.18 .983 11 0.39 1.12 
6.5 89.1 1.45 .981 9 -0.58 1.33 
7.5 13.4 1.42 .936 8 -0.99 1.088 

, Units are (j.tmole' - N/g clay) kgN "". 

logS~ log a + blogC. 

Higher curve 

r' N a' b 

.967 4 -0.62 1.62 

.992 6 -1.69 1.90 

.987 7 -3.43 2.36 

r ' 

.996 

.995 

.967 

Intersection 
(X, Y) 

(2.0,2.64) 
(1.96,2.04) 
(1.93, 1.11) 
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Figure 2. Hydrogen ion consumption data for the quinoline 
sorption isotherms at pH 7.5, 6.5, and 5.5. Diagonal line 
denotes one-to-one correspondence between quinoline sorbed 
and H+ consumed. 

The apparent contradiction between the sorption data 
in the present study and that of Doehler and Young 
(1961) with the results ofHelmy et al. (1983) probably 
reflects the different surface loadings used in the in
dividual studies. The highest quinoline concentration 
used in the present study was about half that of the 
lowest solution concentration used by Helmy et al. 
(1983). Consequently, different parts of the total iso
therm were investigated. Qualitatively, the sum of the 
parts yields a complete S-type isotherm. 

Concomitant with quinoline sorption is the release 
of hydroxyl ions. In the present study, pH was moni
tored and maintained by the addition of 0.114 M HCl04 

so that the H+ consumption could be determined over 
the entire concentration and pH range (Figure 2). The 
diagonal dashed line in Figure 2 represents one-to-one 
stoichiometry between proton consumption and quin
oline sorption. The data suggest that for a given pH 
the proton consumption was about equal to the quin
oline sorption, to a certain surface excess. Beyond this 
point, the amount of quinoline sorbed exceeded the 
H+ consumption. The surface densities at crossover 
points in the titration data correlate with the break 
points in the isotherms (Figure 2, Table 1). The surface 
excess of quinoline at the crossover point for the titra
tion data are about 10, 100, and 316 (~mole/g) for pH 
7.5, 6.5, and 5.5, respectively, whereas the surface ex
cess from the intersection coordinates are 12.8, 109, 
and 436 (~mole/g), respectively. These findings suggest 
that the quinolinium ion was the dominant sorbate at 
low surface densities, whereas the molecular species 

became an important reactant at higher surface den
sities. 

The preference for the quinolinium ion and concom
itant hydroxyl release may be written as a combined 
protonation-exchange reaction: 

Q(aq) + H 20 + NaX(s) = QHX(s) + Na+(aq) + OH-(aq), 

where Q denotes the neutral species; NaX, the Na ex
changer complex; and QHX, the quinolinium ion
exchanger complex. Although it is initially low, mo
lecular sorption may increase at the higher surface den
sities and pH due to the formation of surface hemisalts 
(Mortland, 1970): 

Q(aq) + QHX(g) = X(QHQ)(g), 

or simple partitioning of the neutral species 

Q(aq) = Q(s), 

from the aqueous solution to a conditioned surface. 
Helmy et al. (1983) estimated that at extremely high 
surface loading, approximately two of every three sorbed 
quinoline molecules were the neutral species. 

The present data suggest that quinoline sorption was 
dominated by cation exchange over a fairly wide pH 
and concentration range. Whether through partitioning 
or hemisalt formation, the onset of molecular sorption 
as an important contributor to the overall sorption 
reaction appears to have been related to solution spe
ciation (and hence pH), surface density, and solution 
concentration. The relationship of the sorption of the 
neutral species to these variables, however, is not quan
titatively evident. In an attempt to substantiate the 
cation-exchange hypothesis and elucidate the selectiv
ity ofmontmorillonite for the quinolinium cation over 
the Na cation, an exchange study was undertaken. 

Quinoline-Na exchange 

The analysis of the exchange data is predicated on 
the following assumptions: (1) the solution concentra
tions of neutral quinoline and the quinolinium ion 
(QH+) may be accurately depicted through the use of 
the pI(,. (4.92, Perrin et al., 1981); (2) the activity coef
ficient for the neutral quinoline species is unity; and 
(3) the Davies equation yields an accurate description 
of both the Na+ and QH+ solution activity coefficients. 
The exchange reaction is depicted as: 

NaX(s) + QH+(aq) = QHX(s) + Na+(aq)' 

A conditional equilibrium constant (Vanselow con
vention, Kv) can be used to describe the selectivity of 
the exchanger phase for quinoline: 

(1) 

where XQH and X Na are the respective mole fractions 
on the surface, D is the mass of H 20 in 1 kg of super
natant (Sposito et aI., 1981), and aQH+ and aNa+ are the 
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Table 2. Exchange data for QH+-Na-moJ)tmorillonite. 

leN.' 2q 2q N •• 'Q 
(mole/kg) (meq/icio g) (meq/lOO g) (meq/ lOO g) 'K. K .. aye 

'COH" 

pH (mole/ kg) 

4.95 3.48E-05 1.07E-02 43.1 38.9 82.0 341 
4.95 3.52E-05 1.07E-02 45.6 40.8 86.4 340 341 
4.95 3.44E-05 1.06E-02 45.3 40.8 86.1 342 
4.95 9.61E-06 9.53E- 03 15.1 57.9 73.0 259 
4.95 1.02E-05 9.05E-03 15.2 60.6 75.8 222 247 
4.95 9.70E-06 9.40E-03 15.7 58.6 74.3 260 
5.06 2.04E-06 1.I9E-02 8.8 75 .0 83.8 681 
4.98 2.ooE-06 1.I9E-02 8.9 76 .2 85.1 691 721 
5.03 1.91E-06 1.21E-02 8.9 71.3 80.2 792 
5.07 5.72E-07 1.10E-02 4.2 76.2 80.4 1062 
4.99 7.08E-07 1.IIE-02 4.3 73.6 77.9 914 926 
5.02 6.68E-07 1.I1E-02 4.3 88.8 93.1 802 
4.96 2.03E-07 1.06E-02 1.7 70.4 72.1 1292 
4.94 2.17E-07 1.08E-02 1.7 78.2 79.9 1099 1198 
4.87 2.12E-07 1.09E-02 1.8 75.3 77.1 1205 
4.78 1.99E-07 1.05E-02 0.083 76.1 76.9 574 
4.82 2.IIE-07 1.07E-02 0.082 70.9 71.7 587 599 
4.87 1.87E-07 1.05E- 02 0.083 73.4 74.2 638 
4.91 4.84E-08 1.05E-02 7.45E- 02 67.2 67.3 241 
4.93 4.73E-08 1.04E-02 7.54E-02 69.2 69.3 240 232 
4.93 4.90E-08 1.03E-02 7.42E- 02 72.4 72.5 215 
4.97 8.34E-08 1.05E-02 0.015 85.4 85.6 228 
5.10 7.00E-08 1.04E-02 0.015 81.9 82.1 277 261 
5.11 7.57E-08 1.06E-02 0.015 77.5 77.7 278 
4.75 4.66E-08 1.03E-02 7.43E-02 69.3 69.4 237 
4.76 4.91E-08 1.02E-02 7.78E- 02 82.2 82.3 197 220 
4.75 4.65E-08 1.01E-02 7.52E- 02 72.2 72.3 226 

I Solution equilibrium concentration in mole per kg solution. 
2 Solid phase equilibrium concentration in meq/100 g clay. 
3 Q = (qQH+ + qNa+) expressed in meq/ 100 g clay. 
4 Vanselow selectivity coefficient calculated using Eq. (I). 

respective solution activities. The conditional equilib
rium constant (KJ is related to the equilibrium con
stant (1<"x), if the reaction is reversible, by the rela
tionship 

(2) 

where the term in parentheses is the ratio of the solid 
phase activity coefficients. 

Typically, Kv is determined over the entire range of 
exchanger composition, with the rational solid-phase 
activity coefficients being calculated by integration 
(Sposito, 1981 , Chapter 5). For the sorption considered 
in the present study, however, the ability to evaluate 
Eq. (I) to unit mole fraction, XQH = I, is at best dubious 
inasmuch as at high sorption densities molecular sorp
tion has been demonstrated for related organic com
pounds (Karickhoff and Bailey, 1976) as well as for 
quinoline (Helmy et al., 1983; this study). Addition
ally, demixing of adsorbed inorganic and organic ions 
may occur at high surface densities of the organic cation 
(Vansant and Uytterhoeven, 1972), precluding use of 
solution thermodynamics to calculate solid-phase ra
tional activity coefficients. 

To circumvent this problem, the thermodynamic 
standard state may be defined as mole fraction 0.5 

(XQH = 0.5) instead of the more traditional standard 
state ofXQH = I (Babcock and Duckart, 1980; Duckart 
and Babcock, 1984). Redefining the standard state in 
this manner does not change the expression for K" Eq. 
(2); however, it does allow direct calculation of the 
rational activity coefficients from experimentally de
termined Kv values without integration over the entire 
exchange isotherm. Further, K.,x may be found directly 
from the Kv at this standard state, Kv~ (Babcock and 
Duckart, 1980), from the relationship 

K"x = (fQH+/fNa+)Kv~ = (2vQH+-VNa+)K,~, (3) 

where v is the number of moles of each ion in the 
reaction. For the reaction considered here, v for both 
species equals one; therefore, Eq. (3) reduces to K.,x = 

Kv· when XQH = 0.5. 
The results of the QH+-Na exchange study are sum

marized in Table 2. The mean normality of NaCI04 

in all experiments was 0.0106 N. The total quinoline 
and Na concentration in the solution and on the surface 
were determined directly, and the partitioning between 
the neutral and protonated solution species were cal
culated using pI<,. = 4.92. All quinoline removed from 
the surface by exchange with NH4 was considered to 
be the quinolinium ion. The total sorbed charge (Q) is 

https://doi.org/10.1346/CCMN.1987.0350204 Published online by Cambridge University Press

https://doi.org/10.1346/CCMN.1987.0350204


126 Ainsworth, Zachara, and Schmidt Clays and Clay Minerals 

0 1 
o I 

00 Jl 
8 0 1 

3.0 f- ~ ~ 8 0 lA 

> ocP ooW3 0 fP - ll~ 
~ lo A ~, A, Cl -0 

0 ...J a A A 
2.0 f- a 

A • Exchange Data 
• pH 5.5 } Quonohn, 
o pH 6 .5 Sorption 

1.0 I 
o P1H 7 .5 Datla 

-4.0 -3.0 -2.0 -1.0 I 
0.5 

Log XoH + Mole 
Fraction 

Figure 3. Data from sorption isotherm study plotted as log 
Kv vs. log surface mole fraction (XQ H), assuming all quinoline 
sorbed is the QH+ species. Data from the exchange study are 
overlaid. 

the sum of the sorbed QH+ (qQH+) and the sorbed Na 
(qN.). The mean value of Q through all the experi
ments was 78 ± 6 meq/ 100 g. This value is below the 
CEC value of86 ± 3 meq/ 100 g, at pH 5.0, measured 
by 22Na isotope exchange. A subset of these values at 
the higher mole fractions (i.e., the first 15 values in 
Table 2), yields a Q value of 81 ± 6 meq/l 00 g, close 
to the measured CEC. Other reported values for the 
CEC of source-clay smectite SWy-l include 92 ± 5 
and 91 meq/ lOO g (Sposito et al.. 1981; Peigneur et 
aI., 1975, respectively). 

The conditional equilibrium constant (Kv) describ
ing the exchange reaction varies from about 1200 to 
350 over the exchange composition range XQH = 0.018 
to 0.52, with the highest Kv values being observed at 
intermediate surface saturations (Table 2). The value 
of Kv~ (Kx = Kv~ at XQH = 0.5) and, hence, the ther
modynamic exchange constant, is 340. 
. Several organic cations have been shown to sorb 
strongly to montmorillonite (Thompson and Brindley, 
1969; Lailach et aI., 1968a, 1968b; Grim et al.. 1947; 
Dixon et aI., 1970; Hayes et al.. 1978). Published data, 
however, do not provide confirming evidence for the 
above Kx as a thermodynamic exchange-equilibrium 
constant. Theng et al. (1967) observed selectivity coef
ficients (KJ for tetraethylammonium ions on Na
montmorillonite of about 1.58 to 22.4 at surface XE'4 

of -0.1 and 0.7. In discussing his 1967 study, however, 
Theng (1974) concluded that without confirming evi
dence the K.x (determined from exchange isotherms 
over the entire range of exchanger-phase mole fraction) 
should best be regarded as an affinity or selectivity 
coefficient. He was concerned about nonreversibility 
and, possible, interlayer contraction, two points that 
have yet to be addressed adequately. 

To compare the sorption isotherms and exchange 
isotherm data all quinoline sorbed in the former ex
periments (Figure 1) was assumed to be in the QH+ 
form and thus removed from solution via cation ex
change. A Kv was then calculated using Eq. (1). For 
this calculation sorbed quinoline was taken to be the 
difference between the total added and that found in 
solution at equilibrium, and the Na exchanger phase 
concentration being set equal to the CEC minus sorbed 
quinoline. The clay suspension for the sorption iso
therm study, although from the same source as the 
exchange study and prepared in the same manner, was 
from a different container and prepared several months 
later. The CEC values at pH 5.5, 6.5, and 7.5 were 
100 ± 9, 103 ± 5, 105 ± 10 meq/ 100 g, respectively, 
as determined by 22Na isotope dilution. Calculated Kv 
values are plotted in Figure 3; the data from the ex
change study are overlaid. 

Conditional equilibrium constants calculated from 
the sorption isotherm data conform to the exchange 
data over a considerable range in surface densities and 
solution pH (Figure 3). Importantly, the surface excess 
of quinoline marking the sharp increase in Kv away 
from that calculated from the exchange data varies with 
pH (17.7 , 100, and 316 /lmole/g for pH 7.5, 6.5, 5.5, 
respectively) and is coincident with the shifts in slope 
of the isotherms (Table 1) and the transition in proton 
consumption discussed above. The similarity in selec
tivity coefficients calculated for the exchange and sorp
tion (isotherm) data suggests that the quinolinium ion 
predominated on the surface at low aqueous concen
trations over a wide pH range that significantly ex
ceeded the pI(,.. 

The sharp upswing in quinoline sorption that was 
noted at all pH levels in the isotherms at the higher 
solution concentrations (Figure I), and that was re
flected in the departure of the Kv values from the ex
change data (Figure 3) suggests sorbate-assisted inter
actions on the montmorillonite surface. Similar 
phenomena have been observed for alkylated organic 
compounds. Cowen and White (1958) demonstrated 
that the adsorption isotherms for n-primary alkylam
monium ions (C3 to Cl.) on montmorillonite were of 
the Langmuir type and that sorption did not exceed 
the CEC for Cn ::::8, although at Cn >8, the amount 
adsorbed was greater than the CEC. Chander et al. 
(1983), describing hemimicelle formation at the oxide
water interface, observed no hemimicelles on alumina 
for short-chain surfactants (Cn :::: 8) and noted that sorp
tion was log-log linear. For longer chain lengths (Cn 

> 8) sorption isotherms were of the S-type. The initial 
sorption was ascribed to mono mer sorption with little 
if any molecular interactions, but a sharp shift in slope 
was described as molecular aggregation, as hemimi
celles, the slope for this section of the isotherm being 
related to the aggregation number. If this idea is ex-
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tended to the slope shift observed in the present study, 
the aggregation number is about 2. White and Cowen 
(1960) found considerable similarity between the ex
tent of adsorption of octylamine (Cs) and aniline, a 
single benzene ring amine, on Na-montmorillonite. 
These results suggest that quinoline, a two-ring com
pound, may be similar to a long-chain alkyl compound 
(Cn > 8) with respect to a critical surface concentration, 
molecular interaction, and formation of aggregates at 
a solid/water interface. 

SUMMARY AND CONCLUSIONS 

In this paper the sorption of quinoline has been shown 
to increase as the pH of the system nears the pI(,. of 
quinoline. Exchange is an important mechanism in the 
adsorption of quinoline over a wide pH range, and the 
cationic form is sorbed far in excess of that indicated 
by the ionization fraction. The very large selectivity 
coefficients (Kv) determined in this study underscore 
the importance of van der Waals interaction or entropy 
gains in stabilizing the surface cationic complex and 
the significance of cation exchange, even at very low 
aqueous concentrations. Bailey et at. (1968) also re
lated retention of basic organic compounds to bulk 
properties ofthe compounds, including pI(,., solubility, 
and van der Waals interactions and to properties of 
the adsorbent; however, the present study has shown 
that above a critical concentration, significant molec
ular sorption of quinoline occurs. This critical surface 
concentration is dependent upon the pH, surface den
sity, and solution concentration of the neutral species 
in a complicated way that has not been resolved. 
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