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Universally Overconvergent Power Series
via the Riemann Zeta-function
P. M. Gauthier

Abstract. The Riemann zeta-function is employed to generate universally overconvergent power series.

1 Introduction

Universal overconvergence is a generic property of power series on a given disc, but it
does not seem easy to find an explicit example of a universally overconvergent power
series. The present paper addresses this issue.

For an introduction to universality in general, we recommend the excellent survey
by Karl-Goswin Grosse-Erdmann [5]. The two principal types of universal holo-
morphic functions are functions universal with respect to translations and univer-
sally overconvergent power series. The spectacular universality theorem of Sergei
Mikhailovich Voronin asserts that the Riemann zeta-function is universal with re-
spect to translations (see Section 2). In this note we shall show that the Riemann
zeta-function can be employed to fashion universally overconvergent power series as
well.

Every power series
∑

an(z − a)n diverges at each point z in the exterior of its disc
of convergence. That is, the sequence of partial sums diverges at z. However, in some
cases, a subsequence of the sequence of partial sums might converge at z. In this case,
the power series is said to be overconvergent at the exterior point z. For a ∈ C and
0 ≤ r < ∞, let D(a, r) be the closed disc {z : |z − a| ≤ r}. For r > 0, let F[a, r] be
the family of all compact sets K in the complement of the open disc D(a, r) having
connected complements and, for r = 0, let F[a, 0] be the family of all compact sets K
in C\{a} having connected complements. We denote by A(K) the family of functions
continuous on K and holomorphic on the interior Ko of K. The following theorem,
originally due to Wolfgang Luh [6] and independently to Charles Chui and Milton
Parnes [3], was refined by Vassili Nestoridis [7].

Theorem 1.1 ([3, 6, 7]) Fix a ∈ C and 0 ≤ r < +∞. There is a power series∑∞
n=0 an(z − a)n, with radius of convergence r, which is universally overconvergent, in

the sense that, for every set K in F[a, r] and every function f ∈ A(K), there is a sequence
of positive integers {nk} such that

lim
k→∞

max
z∈K

∣∣∣∣ nk∑
n=0

an(z − a)n − f (z)

∣∣∣∣ −→ 0,
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Definition 1.2 We shall say that a power series satisfying the conclusion of Theo-
rem 1.1 is universally overconvergent in the disc D(a, r).

The original theorem of Luh, Chui, and Parnes was for compact sets K outside
of the closed disc D(a, r). Grosse-Erdmann [4] showed that this property is in fact
generic, in the sense that, for r > 0, most holomorphic functions in the disc D(a, r)
are universal in this sense. Nestoridis [7] improved this theorem by showing that if
r > 0, the compact sets may be allowed to touch the boundary of the disc.

Although universal overconvergence is generic, I know of no explicit power series
that is universally overconvergent. The following two theorems exhibit this sort of
universal overconvergence for power series whose coefficients are generated using
the Riemann zeta-function in the right half 1/2 < <z < 1 of the fundamental strip.

Theorem 1.3 Fix a ∈ C, 0 ≤ r < +∞, and 1/2 < σ < 1. There is a sequence {mn}
of integers, such that the power series

∞∑
n=0

ζ(σ + imn)(z − a)n

is universally overconvergent in D(a, r).

Theorem 1.4 Fix a ∈ C, 0 ≤ r < +∞ and 1/2 < σ < 1. There is a sequence {mn}
of integers, such that the power series

∞∑
n=0

ζ(n)(σ + imn)(z − a)n

is universally overconvergent in D(a, r).

The existence of a universally overconvergent power series was first established by
Selesnev [10], who proved Theorem 1.1 for the case r = 0. The existence of univer-
sally overconvergent power series in several complex variables was established only
recently by my Master’s student, Raphaël Clouâtre [2]. Theorem 1.4, for the case
r = 0, was first obtained by my undergraduate student, Antoine Poirier [8], who
wrote the universally overconvergent series in the form

∞∑
n=0

ζ(n)(σ + iτn)

n!
(z − a)n

and called it a dispersed Taylor series. His sequence {τn} consisted of real numbers,
not necessarily integers. He also obtained an analog in several complex variables.

In the following section, we present universality theorems with respect to trans-
lation, which we shall employ in the final section to prove Theorems 1.3 and 1.4 on
universality with respect to overconvergence.
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2 Bohr’s Universality Theorem and Generalizations by Voronin

The first universality theorem for the Riemann zeta-function was obtained by Harold
Bohr in 1915.

Theorem 2.1 (Bohr [1]) For each 1/2 < σ < 1, the curve{
ζ(σ + it) : −∞ < t < +∞

}
is dense in C.

In 1975, Voronin proved a spectacular generalization of Bohr’s theorem, known
as Voronin’s universality theorem. For a compact subset K of the complex plane C,
we denote by A(K) the family of functions continuous on K and holomorphic on
the interior Ko of K. Let Ao(K) denote the subfamily consisting of zero-free functions
in A(K). Voronin’s theorem was refined successively by Bhaskar Bagchi, Steve M.
Gonek, and A. Reich. The following extension of Voronin’s universality theorem was
obtained by Reich in 1980.

Theorem 2.2 (Reich [9]) For every compact set K with connected complement lying
in the right half 1/2 < <z < 1 of the fundamental strip, the sequence {ζ(z + in)} of
vertical integral translates of the Riemann zeta-function is dense in Ao(K). That is, for
every function f ∈ Ao(K), there is a sequence {mn} of integers, such that

max
z∈K

∣∣ζ(z + imn)− f (z)
∣∣ −→ 0

as n→∞.

We are unable to prove Theorems 1.3 and 1.4 employing Theorem 2.2, because of
the restriction in the hypotheses that f be zero-free. However we may invoke a less
powerful but very interesting precursor of Voronin’s universality theorem, obtained
earlier by Voronin himself in 1972, which generalizes Bohr’s Theorem 2.1.

Theorem 2.3 (Voronin [11]) For each zo in the strip 1/2 < σ < 1 and each k =
0, 1, 2, . . . , the sequence{(

ζ(zo + im), ζ ′(zo + im), . . . , ζ(k)(zo + im)
)

: m = 1, 2, . . .
}

is dense in Ck+1.

3 Proof of Theorems 1.3 and 1.4

Our proof is based on the proof of Theorem 1.1. For the convenience of the reader,
with the exception of the first lemma, which is due to Nestoridis [7], we shall refer
only to the proof in [3] which is more easily accessible than [6]. We shall show that
by making several modifications (some of which are not obvious) in the proof in [3]
and invoking the lemma of Nestoridis, we obtain Theorem 1.3 without recourse to
Baire category.
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Lemma 3.1 ([7]) There exists a countable family L in F[a, r] such that each K ∈
F[a, r] lies in some L ∈ L.

Lemma 3.2 Fix a ∈ C, 0 ≤ r < +∞, and ρ > 1. Let K ∈ F[a, r]. Then every f ∈
A(K) can be uniformly approximated on K by polynomials pn(z) =

∑n
j=0 an j(z − a) j

whose coefficients are bounded by (ρ/r) j .

For r = 0, this is interpreted as meaning that no restriction is imposed on the
coefficients.

Proof Let w = (ρ/r)(z − a), Q = {w : z ∈ K}, and g(w) = f (z). Then Q is a
compact set outside the closed disc |w| ≤ 1 and g ∈ A(Q). By [3, Lemma 1], the
function g can be uniformly approximated by polynomials qn(z) = bn0 + · · · + bnnzn,
whose coefficients are bounded by one. Set pn(z) = qn(w). Then

pn(z) =
n∑

j=0

bn j(ρ/r) j(z − a) j =

n∑
j=0

an j(z − a) j ,

where |an j | ≤ (ρ/r) j for j = 0, . . . , n.

Lemma 3.3 Fix a ∈ C, 0 ≤ r < +∞, and ρ > 1. Let K ∈ F[a, r], f ∈ A(K), and k
be a non-negative integer. Then there is a polynomial

pk(z) = bk(z − a)k + bk+1(z − a)k+1 + · · · + bm(z − a)m,

such that

max
z∈K
|pn(z)− f (z)| ≤ 1

2k+1
,

where m ≥ k and |b`| ≤ (ρ/r)` for ` = k, . . . ,m.

Again, for r = 0, this is interpreted as meaning that no restriction is imposed on
the coefficients.

Proof This follows from [3, Lemma 2] by the same change of variables as in the
proof of the previous lemma.

In Lemma 3.3, the polynomial pk depends on f , i.e., for a different f we could
have a different pk. This may seem rather far from universality, which is the key aim
of this manuscript. However, Lemma 3.3 allows us to prove Lemma 3.4, which will
be used later to prove universality results.

Let G be the set of all polynomials with rational complex coefficients and L the
family from Lemma 3.1. Let P = {(gn, Ln)} be a countable listing of the pairs in
G× L such that each pair (g, L) appears infinitely often in the list.

Lemma 3.4 Fix σ with 1/2 < σ < 1 and for n = 1, 2, 3, · · · , choose ρn > 1.
There exists a sequence of integers {m`} and an increasing sequence of integers {kn}
with |ζ(σ + im`)| ≤ (ρ2

n/r)` for ` = kn−1 + 1, · · · , kn such that the polynomials

sn(z) =
kn∑

`=kn−1+1

ζ(σ + iml)(z − a)`
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have the approximation property

max
z∈Ln

|sn(z)− (gn(z)− s0(z)− · · · − sn−1(z))| ≤ 2

n
,

where s0 = 0.

Proof By Lemma 3.3, there is a polynomial p1(z) = a10+a11(z−a)+· · ·+a1k1 (z−a)k1 ,
with |a1`| ≤ (ρ1/r)` for ` = 0, . . . , k1, such that

max
z∈L1

∣∣ p1(z)−
(

g1(z)− s0(z)
) ∣∣ ≤ 1

2
.

By Theorem 2.3 with k = 0, we can approximate the coefficients a1` by the zeta-
function, so there are integers m0,m1, . . . ,mk1 , with |ζ(σ + im`)| ≤ (ρ2

1/r)` for ` =
0, . . . , k1 such that the polynomial

s1(z) =
k1∑
`=0

ζ(σ + iml)(z − a)`

has the approximation property

max
z∈L1

∣∣ s1(z)−
(

g1(z)− s0(z)
) ∣∣ ≤ 1.

Suppose for j = 1, . . . , n− 1, we have found integers−1 = k0 < · · · < kn−1 and
integers ml, l = 0, . . . , kn−1 with |ζ(σ+ im`)| ≤ (ρ2

j/r)` for ` = k j−1 + 1, . . . , k j such
that the polynomials

s j(z) =

k j∑
`=k j−1+1

ζ(σ + iml)(z − a)`

have the approximation property

max
z∈L j

∣∣ s j(z)−
(

g j(z)− s0(z)− · · · − s j−1(z)
) ∣∣ ≤ 2

j
.

By Lemma 3.3, there is a polynomial

pn(z) =
kn∑

`=kn−1+1

an`(z − a)`,

with |an`| ≤ (ρn/r)` for ` = kn−1 + 1, . . . , kn such that

max
z∈Ln

∣∣ pn(z)−
(

gn(z)− s0(z)− · · · − sn−1(z)
) ∣∣ ≤ 1

2kn−1+1
≤ 1

n
.
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By Theorem 2.3 with k = 0, we can approximate the coefficients an` by the zeta-
function, so there are integers mkn−1 , . . . ,mkn , with |ζ(σ + im`)| ≤ (ρ2

n/r)` for ` =
mkn−1 , . . . ,mkn , such that the polynomial

sn(z) =
kn∑

`=kn−1+1

ζ(σ + iml)(z − a)`

has the approximation property

max
z∈Ln

∣∣ sn(z)−
(

gn(z)− s0(z)− · · · − sn−1(z)
) ∣∣ ≤ 2

n
.

At last, we are ready to prove Theorems 1.3 and 1.4.

Proof Choose the sequence {ρn} to be decreasing to 1.
Fix K in F[a, r], a function f ∈ A(K) and ε > 0. By Mergelyan’s theorem, there

is a polynomial p(z) such that maxz∈K |p(z) − f (z)| < ε. Let {sn} be a sequence of
polynomials satisfying the conclusion of Lemma 3.4. For each n, the kn-th partial
sum of the power series

(3.1)
∞∑
l=0

ζ(σ + iml)(z − a)l

approximates the polynomial gn within 2/n on Ln. For infinitely many n, the set K is
contained in Ln and |gn − p| < ε on Ln. Thus, for infinitely many n we have

max
z∈K

∣∣∣ f (z)−
kn∑
`=0

ζ(σ + iml)(z − a)l
∣∣∣

≤ max
z∈K

∣∣ f (z)− p(z)
∣∣ + max

z∈Ln

∣∣ p(z)− gn(z)
∣∣

+ max
z∈Ln

∣∣ sn(z)−
(

gn(z)− s0(z)− · · · − sn−1(z)
) ∣∣

≤ ε + ε +
2

n
.

Thus, the series (3.1) has the required approximation property.
Since {ρn} is decreasing, it follows from the coefficient estimates that, for each

n, the radius of convergence of S(z) is at least r/ρn, and since ρn ↘ 1, the radius
of convergence is at least r. Since at every point z outside the disc D(a, r), different
subsequences of partial sums converge to different values, the radius of convergence
is at most r. Thus, the radius of convergence is precisely r.

We have shown that the series (3.1) satisfies Theorem 1.3.
Theorem 1.4 follows in the same way, invoking Theorem 2.3 with k = kn.
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[2] R. Clouâtre, Universal power series in CN . Canad. Math. Bull. 54(2011), no. 2, 230–236.
[3] C. K. Chui and M. N. Parnes, Approximation by overconvergence of a power series. J. Math. Anal.

Appl. 36(1971), 693–696. http://dx.doi.org/10.1016/0022-247X(71)90049-7
[4] K.-G. Grosse-Erdmann, Holomorphe Monster und universelle Funktionen. Mitt. Math. Sem. Giessen

176(1987).
[5] , Universal families and hypercyclic operators. Bull. Am. Math. Soc. (N. S.) 36(1999), no. 3,

345–381. http://dx.doi.org/10.1090/S0273-0979-99-00788-0
[6] W. Luh, Approximation analytischer Funktionen durch überkonvergente Potenzreihen und deren

Matrix-Transformierten. Mitt. Math. Semin. Giessen 88(1970).
[7] V. Nestoridis, Universal Taylor series. Ann. Inst. Fourier 46(1996), no. 5, 1293–1306.

http://dx.doi.org/10.5802/aif.1549
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