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SUMMARY

This paper deals with the istability of a hovering helicopter with
controls fixed The generalized simple stabilizatton system, which 1s
composed ot rods, springs, dampers and masses and uses the rotor shaft to
generate gyroscopic forces, has been analysed Special cases of a Second
Order System have been considered and show that good stability can be
achieved, thus overcoming the mitations ot First Order Systems

1 Introduction

One of the helicopter’s greatest assets 1s 1ts ability to hover However,
1 this condition 1t 1s dynamically unstable with the controls fixed In other
words, a disturbance from the equilibrium position grows with time  Thus
means that the aircraft controls must be operated continuously with resulting
pilot fatigue and increased possibility of accident

The alleviation of this instability has been investigated over the past
few vears  Searches have been made for an automatic control device which
could be fitted to the helicopter such that, with the controls fixed, a distur-
bance would decay and the arrcraft return to its equilibrium position  Of
such devices there are those that use as the basis of gyroscopic couples the
rotor shaft in contrast to other methods where a separate gyroscope has to be
mstalled At the present time there exist two types which belong to the
first category , they are the Bell Stabilizing Bar and the Hiller Servo Blade
control ~ Although they do improve the stability they are not completely
satisfactory At best they give neutral stability  In this paper the principle
of their mechanism has been generahized and the possibilities of a more
satsfactory device have been investigated
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Attention has been focussed mainly on the Sikorsky R-4B since tor this
configuration the results can be compared with past mnvestigations We
have considered too only the longitudinal motion for it 1s known that if the
criterion for longitudinal stability 1s satisfied then that for the lateral motion
follows

The results are given 1n terms of the automatic control component 1n
phase with the attitude, that in phase with the rate of change of attutude
and theirr rato For convenience the dimensionless term 648 15 used
From these results the stability characteristics are deduced

2 Stabiity m Hovermg Fhght

Sissingh 1n reference 1 has shown that by considering a helicopter of
arbitrarv design and allowing 1t to have two degrees of freedom, vz , attitude
and horizontal linear velocity, the equation of longrtudinal motion lead to a
frequency equation of the form

Agd + Ag? + Ap + Ay =0 @1)

where the A’s are known for a particular amrcraft configuration The
disturbances 1n the degrees of freedom are assumed to be of exponential
form and the coupling between lateral and longitudinal motion has been
neglected  Guiven also are stability charts so that the times to either double
or halve the amplitude of the oscillations together with the period can be
determined for given values of the constants A, in equation (2 1)

Attention 1s focussed mainly on the Sikorsky R-4B and for this type
the value of A,/A; 1s nearly zero From the stability charts 1t can be seen
that the helicopter 1s unstable and that 1f A;/A; could be increased stability
would be improved

If we introduce a hypothetical autopilot which will impose upon the
mean blade setting ¢, a cyclic pitch —(6,¢ + 6,q) sin ¢ the constants of
the frequency equation A, and A, now become functions of the arbitrary
parameters 6, and 64 respectively  Physically this procedure corresponds
to a cyclic pitch variation which 1s dependent on the attitude and the rate
of change of attitude with ume

Reference 1 shows that surtable stability can be obtained for 6, = 0 12
and ,Q =325 This converts the unstable helicopter into one where
the disturbance 1s halved 1n 3 secs with period 11 secs

It 1s the purpose of the generalized simple stabilization system to use
the rotor shaft as the bass of gyroscopic forces 1n order to obtain the required
values of ¢, and 9482

3 The Generalized ¢ Sunple’ Stabilization System

Unlike fixed wing aircraft the helicopter does not have to be installed
with a special gyroscope m order to obtamn gyroscopic couples, for it can
utthize 1its own rotor  Let us consider therefore a system which 1s fitted to
and rotating with the rotorshaft and which can transmut the required cyclic
pitch variation to the rotor blades to give good stability following a disturbance
from equlibrum In dealing with ‘simple’ systems we are considering
ones where masses, springs, rods and dampers are used as the fundamental
units of the control mechamism The simple system s attached to the
shaft and a rod leads from the control device to a mechanism at the hub
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which varies the pitch of the blades Following a disturbance of the
rotor shaft therefore a change in angle A¢ will be effected The system
1s represented diagrammatically in Fig 1

When the shaft 1s 1 1ts 1tial position (t = 0) an arbitrary point on this
connecting rod will be at £, (say) If following a disturbance the mechanism
were allowed to tollow the rotor without hinderance the arbitrary pomnt
would have moved to ¢!, Owing to the gyroscopic fcrces, the control
device does not follow the rotor immediately Let us assume the position
of the point be at & after ume t secs

The response therefore to the disturbance 1s
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We shall suppose that the mecharusm governing the actual pitch variation
acts 1 a manner such that
A6 = Go (32)

where G 1s a constant and that for a two-bladed rotor the pitch variations
are equal but of opposite sign (see Fig 2)

Fal

DIAGRAMMATIC REPRESENTATION OF THE

HUBR MECHANISM

FIG 2

We shall consider the generalized ‘ sumple ’ system to be composed of
n rods hinged at the axis of rotatton and connected to some form of mass
The mass may or may not be designed to have any special aerodynamic
characteristics  The rods are damped at the hinge, between which, and the
rotor shaft, springs are attached The rods are also mutually interlinked by
springs and dampers and are connected to the main control rod which feeds
the response into the mechanism governing the blade pitch angle

The automatic control response 1s defined by

= 2n3 (33)

where n, are constants and the §,’s are the angular displacements of the
respective rods

By considering the equation of motion about the hinge of the 1 th rod
taking 1nto account aerodynamic, mass, hinge damping and interconnecting
moments and neglecting feedback due to the other rods through and due to
the attachment to the main control, as well as the inertia of the blades about
their longitudinal axis we obtain n equations of the form

1)) 1%
j=1

o, + 2Q2A,5 4+ Q22B 5 + 2Q q sin (¥ + )
! 34
—q cos (+¢,) — 2qK,Q cos (f+4¢) =0
where1 = 1,2, n
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The derivation of these equations 1s given 1 Appendix I It 1s a simple
extension to prove that the form of the equations 1s unaltered if we consider
additional rods which nstead of being attached to the shaft are hinged at
pomnts along the present rods

It 1s assumed too that the moments due to the linking of the rods by
springs and dampers act in the same plane as the other moments  If there-
fore two rods, 1 and j, are at a large angle the interlinking moment would
act 1n a plane nearly orthogonal to the planes of the other moments This

I 3

ILLUSTRATION OF THE CONNECTION BETWEEN THE

Lth AND |th RODS

has no advantage from the response point of view and 1t may provide struc-
tural worrtes  If therefore | i, — ¢, | 1s large the appropriate coefficients m
equation (3 4) will be small (see Fig 3)

Equations (3 2-4) define the response of the control system to a disturb-
bance 1n pitch of the helicopter in the hovering condition In general
A¢ will be of the form

Af = 6, s;n i + 0, cos ¢ 35)

with 6,, A. non-zero This corresponds to displacements 1n the longi-
tudmal and lateral control The lateral component 6. will be neglected,
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1e, we shall neglect coupling between the two motions This lateral
component can in fact be used to compensate for the already existing coupling
The component 1n the longitudinal plane 6- 1s itself composed of two
parts  Firstly a component 1n phase with the change of attitude and secondly
a part 1n phase with the rate of change of attitude with time
Adopting the frequencv response technique we consider the response
to a sinusoidal variation 1n a

a==a, sin ut (36)
We can then obtain on solving equations 3 2—6

6,=8, (v, A, By, K, 4y 1,5 G, Q) BG7
and
0y = 04 (u, A, B, K, 4, 0, G, Q) 38)

The method 1s 1tself a first approximation We should strictly consider a
decreasing or increasmng oscillation for « but the above assumption (3 6)
simphfies the mathematics mvolved and investigations have shown (Ref 1)
that the introduction of a varying amgphitude has only a small effect on ¢,
and 64

Equattons 3 7—8 show that 6,, 6, are functions of the parameters of
the system By their appropriate choice we can obtam the desired values
of 6., 64 to give the type of stability required In this paper we are looking
at the problem from the theoretical viewpoint and 1t will be shown later
that the desired values of 64, 64 can be achieved In practice, however,
the constants of the system will not be independent but will functionally be
related by either engineering limitations or factors intrinsic to a proposed
design Here we are content to show that good stability 1s possible using
simple systems as defined

No attempt has been made to solve the equation 3 2—6 generally but
concentration has been fixed on particular values of n, z ¢, for systems with
given degrees of freedom

Let us first consider the simplest case

4  Furst Order Systems (n = 1)

For a system with one degree of freedom the equation of motion becomes
8 +24A;,Q8 + Q?B,;5 +2Qq sin (¢ + 1)) — q cos (¢ + ) @1
_zKqu COs (lll + ll‘l) - 0
and the change in the pitch angle of the blade 1s given by
A0 = G = — (f,a + 0,9) sin 42
The systems 1 current use can be divided into two classes  Firstly there
are those that incorporate only mechanical damping at the hinge and lttle

aerodynimic damping and secondlv there are those where the aerodynamic
moment forms the major contribution
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The first case 1s the well-known Bell Stabihzing Bar and 1n effect 1s
governed by the equation

§ + 2K8Q + Q2 + 2Qq cos ¢ + q s ¢ = 0

43)
te Ki=0, By=1, A=K, =",

The second class 1s typified by the Hiller Servo Blade Control and the

equatton of motion here becomes

8 +2K8Q -+ O + 2Qqcos ¢ + q sin ¢ + 2KqQ sin

=0 4y
te Ap=K =K, By=1, =",

In each case 1t has been shown (Refs 1 and 2) that the values of 4,, 6,2

are given approximately by

8, =] (K2 + %) 45)
0,2 =K [ (K% + 2% (46)

Figs 4 and 5 show the vaniation of 6, and 6,0 with the damping constant
K for a frequency ratio of v == 001 This value 1s of the same order of
magmitude as that experienced by a helicopter when shightly disturbed from
the equilibrium position It can be seen that 6, decreases rapidly with
increasing K and that 6,0 reaches a maximum and then decays

From the stability charts of Ref 1 we see that A;/A; and hence 6,
must be greater than zero Therefore since the decrease of ¢, with K 1s
fast we must have a small value of K This leads to a large 6,0  The
mummum practical value for K 1s of the order 0 03

In the first of the two cases the excitement due to the gyroscopic forces
associated with the mass of the bar has a frequency which 1s practically equal
to 1ts natural frequency Thus the motion must contain damping

In the second case the damping 1s provided by the air forces The
spectfic damping of a typical rotor blade considering only air forces 1s
approximately K = y,/16  The damping 1s still too large even if we use
very heavy blades, ¢ ¢, for small values of y, In order therefore to obtain
the necessary small amount of damping the servo-blade, located at the
outer part of the radius, 1s relatively short, 7 ¢ , of small aspect ratio

For the value of K = 003 we see that §, = 0 10 and 6,0 = 30
Unfortunately these values only serve to give neutral stability This can
be seen fromn the stability charts of Ref 1 where for a given value of A,/A,
and Ay/A; an increase 1n A,/A, leads to an increase 1n the time for a distur-
bance oscillation to decay to half its 1mitial amplitude

The large value of 6,0 has also a detrimental effect upon the control
sensitivity  In hus lecture to the Helicopter Association of Great Britain m
1948 (Ref 3) Sissingh gives a plot of control effectiveness against 6, for
various values of 6402 It 1s shown that control displacements in phase
with the rate of change of attitude 6, play the major part in determining
the effectiveness of the pilot’s controls  An increase 1n 6, causes a decrease
m the effectiveness  Although the defimtion of control sensitivity used,
2, the ratio of the amplitude of the forced oscillation of the helicopter to
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the amplitude of the manual control displacement when the pilot applies a
manual periodic control of period 4 secs, 1s not a completely satisfactory
criterion for judging the response of an automatically stabilized hehicopter,
1t does show 1n a simple way that loss 1n control sensitivity 1s mainly caused
by the component 6, becoming too large
The hmutations of the system 1n current use can be summarized thus
1 b, 15 too small
u 640 15 too large
For these systems the ratio 640 1s of the order of 300 , good stability can
t,
be obtained if this rato 1s about 30
These limitations are caused through the mimimum practical value of
K bemng too great, so let us consider the properties of a system with an
additional degree of freedom

5  Second Order Systems (n= 2)
The equations of motion for a second order system are

81 - 2QA8, + 2QA8, + QB8 + Q%B,8,

+2Q gsm ( + 1) —qos (b + ) — 29K, Q cos (¢ + ) =0
and GD

8, + 2QA,,8; -+ 2Q4,,8, + Q%B,8, + Q%B,.5,
b 2Qqsin(fh 1 9) — qcos (i + ) — 2qK, € cos (¢ -+ ¢,) =0
and the vanations of the blade pitch angle are given by

A8 = G (8; +n8,) — G (8, + nb,,) sin o (52)

where n = ny/n,

From these equations we obtain

Li? .
Ga’G = m '{" O (U ) (5 3)
P + Qv? -
Il i A e
and 001G = e T 0@ G4

where the constants P, M, Q and N are functions of the parameters of the
system defined by (5 1) They are to be chosen such that terms 1n powers
of v greater than the third can be neglected The detailed account of the
denvation of equations 5 3 and 4 1s given mn Appendix II

From these equations 1t 1s seen that 1n order to reduce the magnitude of
0,0 m comparison with f, we have to make P small since 1t 1s generally
impossible to make L sufficiently large We shall put P = 0 and consider
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the position where we have only mechanical damping at the hinge with no
interconnecting moments but with varying azimuth angles  Afterwards we
shall introduce springs and aerodynamic damping and consider their effect
on the results

Equations (5 1) become for a system with only mechanical damping

8 4 2QA;8; + Q% +2Qqsin (§ -+ ) —qcos (¢ + ) =0
and (55)
8, + 2QA,,8, + Q28, + 2Qq s (f + ) —qcos ( + ) =0
In Appendix III 1t 1s shown that

_ (Agy— Ay sy sin i, + LA A, s () — i)
A211A22 sin s,

6,/Gw* (56)

and

A A
6,0/Gi? = Agysiny, cos iy — Ayy singy cos iy + <Ki ——A—jj> S ) s

2
A%y Ay sy,

G

where we also neglect No? when compared with M and the value of @
required to give P = 0 1s

A,y sy
Ay sin i,y

The constant G 1n these equations 1s a gearing ratio and increases the value
of 6, and 6,2 whilst leaving the ratio 6,0/6, constant It 15 considered
to be positive

The neglected terms 1n the series expansions used to determine 6, and
048 have no significant effect  Thus 15 because of the low value of » which
1s approximately O 01 for a typical helicopter

From the form of equations (56) and (57) we see that 6, and 6,0
are not necessarily positive It can be seen from the stability charts of
Ref 1 that for the values of the coefficients of the stability equation (2 1)
used, we must have both 6, and 6,Q positive 1n order to improve the dynamic
stability

Let us therefore consider the boundaries where 6, and 6, are zero
i both the (y;, — ¢,) plane and the (A;; — A,,) plane The areas in these
planes where 6, and 6,0 are both greater than zero will be called © available
regions ’

Figs 6 and 7 show the boundaries and available regions for the range
— "y <y, ¥p <7/, We have plotted for convenience tan ; and tan y,
It can be seen that for A,,>A,, there are regions for ¥, 5 <0, ¢y, s > 0
and ¢y, >0, ¢ <0  For Ay, << A,; the only regton occurs when y, < 0
and ¢, > 0

rl_:

58
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AVAILABLE REGIONS FOR "2<1f,Y. <L AND m> {

In Figs 8 and 9 we have moved the origin of the azimuth angle through
a right angle by substituting

fr=¢1 + 7/, 59

and ¢, = ¢, + 7/, (5 10)

From these diagrams we see that for A,, >A,;, regions occur for v, < os
$o <7y and ¢y <7y, Y5 >7/, For A, < A;, we have regions for
1> %oy g > 7y and Yy > 7y, vy < 7Y,

The diagrams are only sketches of the shape of the boundaries which
are expected  The position and gradients are functions of both A, and
Ay  The theory behind the curves 1s given mn Appendix IV If we now
plot the boundaries in the damping plane for given values of ¢, and o we
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have only to consider positive values of A, and A,, Figs (10—16) show
the available regions when Ay /A,, 1s plotted agamnst A,, Fig 10 1s for
the case where — 7/, < y; < ¢, <0, Fig 11 shows the regions when
—Af, <Yy <0 <P, <7, and ¥y + ¢ <0 The region for both
— Yy < <0<y <y, Yy A+ <0and0 <y, <o < Yy < m,
W, 4+ ¢p << 1s shown mm Fig 12 In Fig 13 we show the region for
0<u,<<u; <7, and m Fig 14 the region for 0 << ¢y < vy <7,
When 0 <y, <<%, <y, <7 and #; + b, > = the available region 1s
given m Fig 15 Finally in this section, Fig 16 shows the region for
Uy << thy < iy <m These results follow from the data mn Appendix V
and 1t can be shown that there are no available regions for the following

KEY

st AVAILABLE REGION
9, =0 FIG 7
sq’ =0

- Y2 =0

- Yi+4, = O

—> TAN ¥,

AVAILABLE DEGIONS FOR —F <Y, f, <3 ANDm < |
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— << ¢y <0
—a <y <O < ihy <7y with ¢y + ¢y >0
— o < ihy <0 < iy <y with gy -+, >0
0< <7 <py<m with y; + ¢y > 7
0 <t <<y <m with Jy +4, <
and <y <y <m

On comparing Figs 6—9 with Figs 10—16 we see that they correspond
very closely The regions for A,, > A,; gwven mn Fig 6 correspond to

<EvY
s AVAILABLE REGION
g;:o FiG 8
- — ¢-¢.=0
- (?:*f'a:O
¢ THhTE
¢ =¥ -3

TaN 6,

'}ﬂ
//M” \

~\

AVAILABLE REGIONS FOR O< ‘1—" 5 ‘1’2 < T AND m > {
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Figs 10, 12, 13 and 14 The region for A;; > A,, given 1 Fig 7 corres-
ronds to Fig 11  The regions of Fig 8 correspond to Figs 12, 13 and 14
whilst those of Fig 9 are equivalent to Figs 15 and 16 It can be seen
also that the regions given above where no available regions exist corres-
pond to simular regions in Figs 6—9

6  Three Special Cases

Let us now consider some special cases Firstly let A;; = 0 30 and
A,, = 035 TFig 17 shows the available regions near the origin and 1t can
be seen that 1t 1s of the form predicted by Fig 6 The assumption that the
second term 1n the denominator of the expressions (5 3) and (5 4) for ¢,/G
and 64Q/G 1s justified for, with the given values of A;; and Ay, and a

KEY

Y1l AVAILABLE REGION

h— (=) FIG ©
- - ©q=0 -
. '_¢z=o

— — $+§2=0

g =4t

R R

AVAILABLE REGION FOR O <Y, ,Y,<T anD m <1
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frequency ratio of about 0 01, 1t can easily be proved that Nw?/M 1s of the
order of 0 005 Effects of this order of magmitude can be neglected

For the second example we have chosen ¢, = — */; and s, = — 7/,
In Fig 18 m == A,,/A,; 1s plotted against A,; and the available region
corresponds to the expected area given by Fig 10

Thirdly, we have chosen ¢, = */; and , = */; The available
region Fig 19 agrees with the predicted region Fig 14 If we now choose
Ay = 2Ay; and plot 0/Gu?, 0502/Gi? and 64Q/6, agamnst A;, we obtan
Fig 20 From thss figure 1t can be seen that small values of the ratio
t482/#, are possible and hence good stability charactersstics can be obtained
We now mtroduce springs and aerodynamic damping into the system and
mvestigate their effect  Let us first consider the spring effect

A
uiuu/uwuu’”“’””wﬂw”’”“’—”
upt
Sutt
10
0 > A
[}
AVAILABLE REGION FOR I <{i <Y, <O
Fie 10
MmN
KEY
wy  ANALABLE REGION
B =0
f - =
o 6q, =0
© Ay
AVAILABLE REGION FOR “Z<{ <0 <Y, < y+y,<0
FiGé 1
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7  Effect of Spring Restramnt
The equation of motion can now be written 1n the form

8, -+ 2QA,5, + Q*(1+AB,)8, 4 2Qq sm (¥ + ) —qcos (f + ) =0
1=1,2) 70D
The orgmal B, of equations (51) has been replaced by (1 4 AB,) for
convenience 1n the algebra and because AB, = 0 reduces (7 1) to the
equations (5 5) where the spring effect 1s absent By conducting a similar

analysis as performed 1n Appendix III it can be shown that both ¢, and
64 are of the form

(a; tan ¢, tan 4, + ay tan ¢ + az tan P, -+ a,) COS P,

B+ B> tan i,

where o, and S are functions of both A, and AB, (j -1 4, k- 1,2,
1=1,2)

Thus the major changes i the picture for the available regions in the
(15 ¥5) plane are that the curve 6, = 6,2 = 0 suffer changes in their
asymptotes Let us consider a numerical example Taking

(72)

Ay =030, Ay =035, AB;; =0, AB,, = 0 10

and considering that part of the i plane where 0 << iy, 4, << %/, we obtain
Fig 21 From this figure we see that larger values of ; may now be used
and that the previous values when the spring effect 1s absent are no longer
‘ available’

In Fig 22 we have plotted 6./Gv?, 6,2/Gi2 and 6,Q/6, against tan g
for i, ="/, The figure shows that in the new available region the
desired value of 8442/6, necessary for good dynamic stability can be achieved
Thus we see that the introduction of the spring effect does not harm the
system’s ability to produce the desired ratio but only alters the position
of the available areas

8  Effect of Aerodynamic Damping

On the mtroduction of damping due to arr forces and neglecting spring
effects the equation of motion becomes

5, +2Q (A, + K) 8 + Q% +2Qq sin ( + 3, 81
—qcos (¢ + ) — 29K, Q cos (4 + ) = 0 (1=1,2)

The aerodynamic effect 1s given by the K, terms and 1t can be seen that
when K; = K, = 0, equation (8 1) reduces to equations (5 5) where only
mechanical damping at the hinge 1s considered

The effect on the boundaries 6, = 642 — 0 15 the same as in the
case of the introduction of springs into the system

Let us consider the case where

Ay=030,A,=0,K =0, K, =035

92 The Journal of the Helicopter
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This corresponds to a system where one rod 1s mechanically damped at the
hinge and the other 1s damped aerodynamically Fig 23 shows the changes
produced 1n the ¢ plane where 0 < ¢, 4, <<= It can be seen that the
available region before the introduction of aerodynamic damping has dis-
appeared and has been replaced by two larger regions The reason why
the new curves fail to degenerate mnto straight lines as in the case of pure
mechanical damping, 1s because of the introduction of the a, term 1 equation
(72) In Fig 24 we have plotted ¢,/G%, 6,2/Gv? and 6,02/6, aganst
tan ¢, for ¢, = 7/, 1¢, Py =3 We see agamn that the required value
of 6,0/6, for good stability can be obtained

9  Conclusions

1 Theoretically a helicopter can be fitted with an automatic control device
utilizing the rotor shaft as the origin of gyroscopic couples to give any
required stability characteristic with controls fixed A second order system
will give the small values of the ratio 6,2/6, required for good stability

KEY 6.
e =,
aV

ey N _

4" Jaa
—_—n
&
Yo,

FiG 24
O!o 15 > Tan q)

VARJATIONS OF %‘?_/_2, GN_ gn

[ = = - =1 O
FOR A" o 30, A22 Q, K, =9, KZ 35, TaN cp2 [
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2 The position of the bars must be 1n ¢ available * regions  The location
of these regions can be changed by the introduction of aerodynamic damping
and elastic restramnt

3 The results are sufficient to indicate how mechanical apparatus should
be designed for practical application of the principle
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APPENDIX I

The Generahized ¢ Sumple’ Stabihzation System

We shall consider the system to be composed of n rods hinged at the
axis of rotation and connected to some form of mass If we neglect the
moment of merua of the blades about their axes, the forces in the blade
setting device which oppose the motion », 7 ¢, friction and feedback to the
separate rods due to their connection with the main control bar, the moments
about the hinge give for the 1 th rod,

My + My, + 7 M, =0 @A
) =
and M, = Moment due to Aerodynamic forces
Mm: = Moment due to Mass forces
M, == Moment due to the connection of j th rod with 1 th rod
M, = Moment due to the connection of 1 th rod to the shaft
It 1s to be noted that 1n general Mu + MJl

These separate moments are given by

M, = 20°KI,[5/Q + C'8, — (q/Q) cos (4 + 4)] (A2)

where
I = Moment of Inertia of 1 th mass about hinge
K, = Specific damping and
(0% = coupling between the incidence of the 1 th mass and 1ts

angular displacement

My, = I,[5, + 0%, +2Qq s (f + ) —qeos (f + ¢)]  (A3)

M, = 2K’ QL3 + 31,02 (A 4)
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where

K’, = specific damping at hinge of 1 th rod

I

specific elastic constant

M, = S§,13, —13) + D13, —13) (A5)
2
= 0, X S,13,—13) + o) d,(13, —13) (A6
assuming P+ 13 —21) cos (¢, — ¢,) < (15, — 15,)> A7

where §,, and d,, are specific spring and damping constants The condition

A 7 15 mmposed 1 order that the moment due to the interlinking forces acts

n the same plane as the other moments Fig 3 illustrates the situation
Substituting these expressions into (A 1) gives equations of the form

8, +2Q3A5 + Q%2B,35, + 2Qq sm (¢ + i)
y=1 1=1

—qcos (b + ¢,) —2qK,Q cos (f + ) =0 (A8
=12, n)

AprpeENDIX II

The equations of motion for a Second Order System with no inter-
connecting moments are

8, +2Q8,A,, + Q7 (1 4+ aBy)S; +2Qq sin (f + ;) — q cos (4 + ¥y)

—2K,Qq cos (¢ + ¢) =0 A9)
8, + 2Q8,A,, + Q (1+4By)8;, + 2Qq s (f + ¢,) —q cos (¥ + ¥)
—2K,Qq cos (1/: + Lﬁz) =0 (A 10)
Substituting 8, = O, sin ¢ + O, cos ¢ (1 =1, 2) (A 11)
and a = ao1 b
0, = 0, (A 12)
@xc = 010 elu:
we obtain
=0 H(Z' X', + Z'/X") + wZ' X'y + 12X’ + X2, —XZ")
%o Zloz + 1_12 (lez + 2ZI02,2)
(A 13)
Association of Ct Britain 97
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neglecting the terms 1n higher powers of o,

where Z'y = AB?), + 4A%), (A 14)
le — —2AB11 -_— 4A211 -_— 4 (A 15)
le = 4A11 ABll + 8A11 (A 16)

X’z = (— 4 -_ ABII -_ 4A11K1) sin 411
+ (—2A; + 4K;) cos ¢ (A17)
X'y = (4Ay; + 24BKy) sin ; + (— 44K, -+ 2ABy;)cos ¢y (A 18)

and X'; = (—24A;; — 2K)) sin ¢, (A 19)
Similarly we obtamn Orsfaq

Now 01, = —Re (014/ay) (A 20)

01,Qv = — Im (0,5/a,) (A 21)

and Af = G (§; + nd,) (A22)

so that fa = G (8, + ny,) (A 23)

0,2 = G (6,4 + nb,) & (A24)

Hence we can write 0,/G = Lo¥ /(M + NvP) (A 25)

and 0,2/G = A%—-—:_L}é (A 206)

where L = [Z,"XZ';X', - Z';X')) + 0Z'% (2" X", + Z"",X"\] (A27)
P = Z’oZIlo[X,lzNQ + ﬁZ,OX”l] (A 28)
Q — [Z”C2(Z,0X’3 + 212}(/1 — Z,IX,2) + Z/0X11 (21112 + 22"02”2)
+ h Z,/OXIII(Z'ZI + 2210212) + h 2120 (Z,,()X’IB + )(IIIZII2 i Xllzzlll)]
(A 29)
M = 22,7, (A 30)
and N =Z'% (2, + 22" Z") + Z"* (Z% + 2Z'5Z';) (A 31)

The double primed terms are the equivalent expressions of A (14—19) when
the second bar 1s considered

Since, from A 14, Z'#0 except when both AB; and A,; are zero, we
must have, for P = 0,

X2 4 8Z/ X", =0 (A 32)

as Lhe Jousnil of the H licopter

https://doi.org/10.1017/52753447200003127 Published online by Cambridge University Press


https://doi.org/10.1017/S2753447200003127

AppeEnpIx II1
When we consider only damping at the hinge A 14—19 become

Z'y = 4A?; (A 33)

Zy=—4(1 + AYy) (A 34)

Z'5 = 8A;, (A 35)

X'y = —4 sin §; — 2A;; c0s iy (A 36)

X'; == 4A,; s Y, (A 37)

and X'y = —2A,, sin (A 38)
and the condition that P should be zero 1s that

n=—A,, smn
Azlzl s ilz (A 39)

When these expressions are substituted into equations A 27—30,

_9_'1 _ (A — Ayy) s gy sin ¢, + FA; Ay, sin (4’1 — 4’2) (A 40)

Gv? A% Ay sin g,
and

Ay A—22> sin §; s ¢,

0,0 A22 sin Y, cos ; — Ay sin ) cos ¢y + (
Ay Ay

G

A% Ay s
(A4
It 15 assumed that the ratio Nuv?/M 1s small and can be neglected

APPENDIX IV

The Regions of Possible Azimuth Angles §, ¢,

Let us consider the regions 1n the ¢y, §, plane where both 6, and 6
are positive

Let us write

F=(m—1)tan ¢ tan ¢, + 3 mA,;; (tan ¢; —tan ¢,) (A 42)

and f = —tan ¢; -+ m tan ¢, -} ( )tan ¢; tan ¢, (A 43)

mAy,

6, F 12 cos y; cos ¢,

L= e e A 45
Then G Ap Ay, s gy k%)

=2

and @:fu cos ¢, cos ¢, (A 46)

G ApAgy sin g,
Assoruation of Gt Britamn 99
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Range I ___g_< by 5 iy < %
Here cos ¢; cos ¢, > 0 (A 47)
Let e =1mA,/m—1)and h = m?i‘1 (A 48)
The boundaries are given by

F=01e tan ¢2=e—e__t—?m¢—th (A 49)
and f=01e tan %:E}%%_qﬂ (A 50)
Considering G > 0 and using (A 47) we can write

6, = »?F/sin ¢, (A 51)

and 8, = y"*f/sin ¢, (A 52)

where y and " are real quantities

The condition G > 0 corresponds to Af being in the same sense as 8
The available areas zre found by considering the various {y, o

(@ m>1
® m<1

1€

1€

Range 11

Let

and

Then

and

where F’

Iz

100

Ay, > A,; The results are shown 1n fig 6
Ay > A,, The results are shown in fig 7
0 < 4’1: ‘Pz <=
{1 = ¢ + 7)) (A53)
by = ¢y + 7/, (A 54)
- F" cos ¢,
8,/Gv* = (A 55)
ApyAgp
- " cos ¢,
6,Q/Gv? =f—— A 56)
4 Apfg, (
=tan ¢, —m tan ¢; + (L — m) /An (A 58)
m
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and the boundaries are given by

F'=01¢ tan ¢, = ; + !/,

(A 59)
(A 60)

(A 61)
(A 62)
(A 63)

(A 64)
(A 65)

(A 66)

(A 67)

(A 68)

and f =01¢c tan ¢, = mtan ¢, + '/,
Lhe results arc illustrated mn Fig 8 and 9 The regions arc found by
mspection
APPENDIX V
By wnting a=sin ¢,
b=1smn($—¢)/smn &
C = sin Yy cos Palsin G,
d = cos
H*——a—i—ma—}—,‘l}mAub
, /1
and H =—c¢ }md—{—\——m afAy
m
0, Ho?
we sec that —= = -~
G  Apfy
2
and @ _ Hv
G Aphy,
By considering the groups—
1 —"ﬂ/z <'~IJ1 <'4/2<0
2 — Ty <Py <y <0
3 — 7y <Yy <0 <, <7y
4 — "2 <4 <0 <Yy <7y
5 0 <y <ty <7y
6 0 <y, <Py <7/,
7 0 <Yy <y <y <
8 0 <<, <™/, <y <m
9 My <Yy <ty <m

10 o <b, <y <mr
we obtam Figs 10—16
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Li1sT OF SYMBOLS

At Coeffictents of frequency equation (1 = 0, 1, 2, 3)
B automatic control component in phase with attitude
0q automatic control component in phase with rate of change of attitude

angle in pitch (in radians)
rate of change of attitude with respect to time (1n rads/sec )

a

qQ

V] azimuth angle measured from rear position 1n direction of rotation
(in radians)

(9%

3

angular velocity of rotor (in rads/sec )
automatic control device response

b angular displacement of 1 th rod of the device (in radians)
A6 change of pitch setung (in radians)

0o mean pitch setting of rotor blade (in radians)

G gearing ratio

4 azimuth angle of 1 th rod measured from blade 1 (1in radians)
Ay spectfic damping coefficient 1in gencralized equations

By, specific spring constant in generalized equations

K, spectfic aerodynamic damping 1n generalized equations

0s cyclic pitch component (1in radians)

Ue ditto

v frequency of the oscillation (1n sec -1)

v = v/} frequency ratio

n, 11 Iinkage ratios

Yo mertia number

Other symbols are defined 1n the text as required
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