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Strasbourg Cédex, France;
e-mail:debarre@math.u-strasbg.fr

Received 28 December 1995; accepted in final form 4 June 1996

Abstract. We prove that an indecomposable principally polarized complex abelian variety X is the
Jacobian of a smooth curve if and only if there exist points a; b; c of X whose images under the
Kummer map X ! j2�j� are distinct and collinear, and such that the subgroup of X generated by
a� b and b� c is dense in X .
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1. Introduction

Let (X;�) be a complex principally polarized abelian variety. Symmetric repre-
sentatives � of the polarization � differ by translations by points of order 2, hence
the linear system j2�j is independent of the choice of �. It defines a morphism
K : X ! j2�j�, whose image is the Kummer variety K(X) of X . When (X;�) is
the Jacobian of an algebraic curve, there are infinitely many trisecants to K(X),
i.e. lines in the projective space j2�j� that meet K(X) in at least 3 points. Welters
conjectured in [W] that the existence of one trisecant line to the Kummer vari-
ety should characterize Jacobians among all indecomposable principally polarized
abelian varieties, thereby giving one answer to the Schottky problem.

The aim of this article is to improve on the results of [D], where a partial
answer to this problem was given under additional hypotheses. More precisely,
our main theorem implies that an indecomposable principally polarized abelian
variety (X;�) is a Jacobian if and only if there exist points a; b; c of X such that

(i) the subgroup of X generated by a� b and b� c is dense in X;
(ii) the points K(a), K(b) and K(c) are distinct and collinear.

Instead of working on the intersection of a theta divisor with a translate, whose
possibly complicated geometry is the source of most difficulties in [AD], [D],
[M] and [S], we perform algebraic calculations directly on a theta divisor, which
has the advantage of being integral. The point is to prove that the existence of
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one trisecant line implies the existence of a one-dimensional family of such lines.
Welters’ criterion ([W]) then yields the conclusion.

2. The set up

Let (X;�) be a complex indecomposable principally polarized abelian variety, let
� be a symmetric representative of the polarization and let K: X ! j2�j� be the
Kummer morphism. Let � be a non-zero section of OX(�). For any x 2 X , we
write �x for the divisor �+ x and �x for the section z 7! �(z � x) ofOX(�x). If
a; b and c are points of X , it is classical that the points K(a);K(b) and K(c) are
collinear if and only if there exist complex numbers �; � and 
 not all zero such
that

��a��a + ��b��b + 
�c��c = 0:

Following Welters, we consider the set

Va;b;c = 2 f� 2 X j K(� + a);K(� + b);K(� + c) are collinearg;

endowed with its natural scheme structure. By [W], Theorem 0.5, (X;�) is a
Jacobian if and only if there exist distinct points a; b and c such that dimVa;b;c > 0.
This condition is equivalent to the existence of a sequence fDngn>0 of constant
vector fields on X and of a formal curve �(") = �(0) + 1

2D(") with D(") =
�n>0Dn"

n, contained in Va;b;c. This in turn is equivalent to a relation of the type

�(")�a+�(")��a��(") + �(")�b+�(")��b��(") + 
(")�c+�(")��c��(") = 0;

where �("); �(") and 
(") are relatively prime elements of C[["]].

3. The case of a degenerate trisecant

In this section, we prove the following result:

THEOREM 3.1. Let (X;�) be a complex indecomposable principally polarized
abelian variety, let � be a symmetric representative of the polarization and let
K: X ! j2�j� be the Kummer morphism. Assume that there exist points u and v
of X such that 2u 6= 0 and

(i) the points K(u) and K(v) are distinct and the line that joins them is tangent
to K(X) at K(u);

(ii) codimX

\

r2Z

�2ru > 2:

Then (X;�) is isomorphic to the Jacobian of a smooth algebraic curve.
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Note that condition (ii) in the theorem is equivalent to saying that there are no
hypersurfaces in � invariant by translation by 2u; it holds when u generates X .

Proof. As explained in Section 2, it is enough to prove that the scheme Vu;�u;v
has positive dimension at 0: we look for a sequence fDngn>0 of constant vector
fields on X with D1 6= 0 and relatively prime elements �("); �(") and 
(") of
C[["]] such that

P (z; ") = �(")�u+D(")=2��u�D(")=2 + �(")��u+D(")=2�u�D(")=2

+
(")�v+D(")=2��v�D(")=2 (3.2)

vanishes, with D(") = �n>0Dn"
n. This is nothing but equation (1.4) from [D]. It

follows from loc. cit. that we may assume

�(") = 1 +
X

n>0

�n"
n; �(") = �1; 
(") = ":

Write P (z; ") = �n>0Pn"
n, where Pn is a section of OX(2�) for each n > 0.

One has P0 = 0 and

P1 = �1�u��u + �uD1��u � ��uD1�u + �v��v: (3.3)

As explained in loc.cit., hypothesis (i) in the theorem is equivalent to the van-
ishing of P1 for a suitable D1 such that K�(D1) is tangent at K(u) to the line that
joins K(u) and K(v), and a suitable �1. In general, note that Pn depends only
on �1; : : : ; �n and D1; : : : ;Dn. Knowing that P1 vanishes, we need to construct
a sequence fDngn>0 of constant vector fields on X and a sequence f�ngn>1 of
complex numbers such that Pn vanishes for all positive integers n.

It is convenient to set

R(z; ") = P (z + 1
2D("); ") =

X

n>0

Rn(z)"
n:

We begin by proving a few identities. Note that

R(�; ") = �(")�u��u�D(") � ��u�u�D(") + "�v��v�D("): (3.4)

Modulo �u, we get

R(�; ") � ���u�u�D(") + "�v��v�D("); (3.5)

R(�; ")2u � �(")�3u�u�D(") + "�2u+v�2u�v�D("); (3.6)

R(�; ")u�v � �(")�2u�v��v�D(") � ��v�2u�v�D("): (3.7)
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Since P1 and its translate by 2u both vanish, formula (3.3) yields, modulo �u,

��uD1�u � �v��v � 0; (3.8)

�3uD1�u + �2u�v�2u+v � 0: (3.9)

The following result is the main technical step of the proof.

LEMMA 3.10. Modulo �u, one has

�(")R(�; ")�3u��v +R(�; ")2u��u��v + "R(�; ")u�v��u�2u+v � 0:

Proof. By (3.5), (3.6) and (3.7), the left-hand side of the expression in the
lemma is congruent modulo �u to

��(")��u�u�D(")�3u��v + "�(")�v��v�D(")�3u��v

+�(")�3u�u�D(")��u��v + "�2u+v�2u�v�D(")��u��v

+"�(")�2u�v��v�D(")��u�2u+v � "��v�2u�v�D(")��u�2u+v:

All terms cancel out but the second and the fifth. Since (3.8) and (3.9) yield
�v�3u��v + �2u�v��u�2u+v � 0, the sum vanishes. 2

We proceed by induction: let n be an integer> 2 and assume that �1; : : : ; �n�1

and D1; : : : ;Dn�1 have been constructed so that P1 = � � � = Pn�1 = 0. We want
to find a complex number �n and a tangent vectorDn such that Pn vanishes on X .
By [D], Lemma 1.8, it is enough to show that the restriction of Pn to the scheme
�u \��u (which depends only on �1; : : : ; �n�1 and D1; : : : ;Dn�1) vanishes.

Our induction hypothesis can be rewritten as R1 = � � � = Rn�1 = 0 and
Pn = Rn. Therefore, we need to prove that Rn vanishes on the scheme�u \��u.
Since �(") � 1 modulo ", the identity of the lemma taken modulo "n+1 yields

��v
�
Rn�3u + (Rn)2u��u

�
� 0;

modulo �u; since �u is integral and �v 6= u, we get

Rn�3u + (Rn)2u��u � 0: (3.11)

LEMMA 3.12. If F is a section of an ample line bundle L on X such that RnF
vanishes on the scheme �u \ ��u, then, for any integer r, the section RnF2ru

vanishes on the scheme �u \��u.
Proof. Recall that Pn = Rn is a section of OX(2�), so that RnF is a section

of L(2�)
 I�u\��u
. The Koszul complex yields an exact sequence

0 ! L! L(�u)�L(��u)! L(2�)
 I�u\��u
! 0:
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Because L is ample, one has H1(X;L) = 0, and there exist sections B and C
such that RnF = B�u + C��u. It follows that (Rn)2uF2u � B2u�3u(mod �u).
Multiplying (3.11) by F2u, we get

RnF2u�3u +B2u �3u��u � 0 (mod �u):

Since 2u 6= 0 and �u is integral, �3u is not a zero divisor modulo �u and we
get RnF2u � 0 (mod(�u; ��u)). By a similar reasoning, RnF�2u � 0
(mod(�u; ��u)). 2

(3.13) The lemma implies thatRn�u+2ru vanishes on�u\��u for all r. Because
of hypothesis (ii), it follows that Rn vanishes on each primary component of codi-
mension 2 of �u \ ��u; since this scheme has no embedded components, Rn

vanishes on it. This concludes the proof of the theorem. 2

It follows from (3.5) that Rn��v , hence also its image Rn�v by the involution
x 7! �x, vanish on the scheme �u \ ��u. Hypothesis (ii) in Theorem 3.1 can
therefore be relaxed to

codimX

\

r2Z

(�u \�v \��v)2ru > 2:

4. The case of a non-degenerate trisecant

In this section, we prove, under an extra hypothesis, that the existence of a non-
degenerate trisecant line implies the existence of a degenerate trisecant of the type
studied in Section 3.

THEOREM 4.1. Let (X;�) be an indecomposable principally polarized abelian
variety, let � be a symmetric representative of the polarization and let K : X !

j2�j� be the Kummer morphism. Assume that there exist points a; b and c of X
such that

(i) the points K(a);K(b) and K(c) are distinct and collinear;

(ii) codimX

\

p;q;r2Z
p+q+r=0

�pa+qb+rc > 2:

Then (X;�) is isomorphic to the Jacobian of a smooth algebraic curve.

Note that condition (ii) in the theorem is equivalent to saying that there are no
hypersurfaces in � invariant by translation by a� b and b� c; it holds when a� b
and b� c together generate X .
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Proof. Instead of proving thatVa;b;c has positive dimension at 0, we will proceed
as follows. As explained in Section 2, condition (i) translates into the existence of
nonzero complex numbers �; � and 
 such that

��a��a + ��b��b + 
�c��c = 0: (4.2)

For any x in X , we will write P x for �a+b+c��x. Our first aim is to show that
P c vanishes on the scheme �a \�b.

LEMMA 4.3. One has

P c
a�b�b + P c�2a�b � 0 (mod �a):

Proof. Equation (4.2) and its translates by (a + c) and (a � b) yield, modulo
�a,

��b��b + 
�c��c � 0;

��2a+c�c + ��a+b+c�a�b+c � 0;

��2a�b��b + 
�a�b+c�a�b�c � 0:

It follows that, still modulo �a

����b (P
c
a�b�b + P c�2a�b)

� �2a+c�a�b�c (��
�c��c) + �a+b+c��c (��
�a�b+c�a�b�c)

� �
�a�b�c��c (��2a+c�c + ��a+b+c�a�b+c) � 0:

Since � is integral and �b 6= a, the section ��b is not a zero divisor modulo �a
and the lemma follows. 2

LEMMA 4.4. If F is a section of an ample line bundle on X such that P cF
vanishes on the scheme �a \ �b, then, for any integer s, the section P cFs(a�b)
also vanishes on the scheme �a \�b.

Proof. Since a and b play the same role, it is enough to prove that P cFa�b
vanishes on �a \ �b. As in the proof of Lemma 3.12, there exist sections B and
C such that P cF = B�a + C�b. Then P c

a�bFa�b � Ba�b�2a�b (mod �a). Using
Lemma 4.3, we get

P cFa�b�2a�b +Ba�b�2a�b �b � 0 (mod �a):

Since 2a � b 6= a and �a is irreducible, we can divide out by �2a�b, and the
lemma is proved. 2
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LEMMA 4.5. If F is a section of an ample line bundle on X , then P cF vanishes
on the scheme �a \�b if and only if P bF vanishes on the scheme �a \�c.

Proof. As in the proof of Lemma 3.12, write �a+b+c��cF � B�b (mod �a).
We get


B�b�c � �a+b+c
�c��cF

� ��a+b+c��b��bF = ��P bF�b (mod �a);

where we used (4.2). Since �a is irreducible and a 6= b, the lemma is proved. 2

We combine the last two lemmas to get, for all integers r and s,

P c F � 0
�
mod (�a; �b)

�

=) P b F � 0
�
mod(�a; �c)

�

=) P b Fr(a�c) � 0
�
mod(�a; �c)

�

=) P c Fr(a�c) � 0
�
mod(�a; �b)

�

=) P c Fr(a�c)+s(a�b) � 0
�
mod(�a; �b)

�
:

It follows in particular that P c�a+r(a�c)+s(a�b) vanishes on �a \ �b for all
integers r and s. As in (3.13), hypothesis (ii) in the theorem shows that

P c vanishes on the scheme �a \�b (4.6)

(hence also P a on �b \�c, and P b on �c \�a).
Let u be any point ofX such that 2u = a�b, and set v = u�a�c. Translating

(4.6) by (�u� b), we get that �v��v vanishes on �u \��u. As explained in [D],
this is equivalent to the existence of a complex number �1 and a tangent vector D1

to X such that

�1�u��u + �uD1��u � ��uD1�u + �v��v = 0: (4.7)

In other words, the line that joins K(u) and K(v) is tangent to K(X) at K(u).
Note that we cannot apply Theorem 3.1 directly, since hypothesis (ii) may not be
satisfied. However, we will still follow the same method, i.e. we will show that the
scheme Va;b;�c (which is a translate of Vu;�u;v) has positive dimension at (�a�b),
but we will need to prove at the same time that Va;�b;c has positive dimension at
the point (�a� c).

Let n be an integer > 1. As in Section 3, the scheme Va;b;�c contains a
scheme isomorphic to C["]="n+1 and concentrated at (�a � b) if and only if
one can find complex numbers �1; : : : ; �n and tangent vectors D1; : : : ;Dn such
that R1; : : : ; Rn, defined in Section 3, vanish (�1 and D1 are the same as in (4.7),
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and R1 is the left-hand side of that equation). Similarly, the scheme Va;�b;c con-
tains a scheme isomorphic to C["]="n+1 and concentrated at (�a� c) if and only
if there exist complex numbers �01; : : : ; �

0
n and tangent vectors D0

1; : : : ;D
0
n such

that R0

1; : : : ; R
0
n vanish.

We proceed as in Section 3: letn be an integer> 2 and assume that�1; : : : ; �n�1;
�01; : : : ; �

0

n�1 and D1; : : : ;Dn�1;D
0

1; : : : ;D
0

n�1 have been constructed so that
R1; : : : ; Rn�1; R

0

1; : : : ; R
0

n�1 vanish on X . As in the proof of theorem 3.1, it
is enough to show that the restriction ofRn to the scheme�a\�b (which depends
only on �1; : : : ; �n�1 and D1; : : : ;Dn�1), and the restriction of R0

n to �a \ �c

(which depends only on �01; : : : ; �
0

n�1 and D0

1; : : : ;D
0

n�1) both vanish.

LEMMA 4.8. One has

(�
)nRn�c � �nR0

n�b � ��b�c
�
(�
)nDn � �nD0

n

�
�a (mod �a):

Proof. Formula (3.4) translates into

R(�; ") = �(")�a�b�D(") � �b�a�D(") + "��c�a+b+c�D("); (4.9)

R0(�; ") = �0(")�a�c�D0(") � �c�a�D0(") + "��b�a+b+c�D0("): (4.10)

For 0 < s 6 n, let P(s) be the property “�tD0
t = (�
)tDt whenever 0 < t <

s,” or equivalently D0(�") � D(�
") (mod "s). Assume P(s) holds; using (4.9),
(4.10) and (4.2), we get

R(�;�
")�c �R0(�; �")�b

� ��b�c
�
(�
)sDs � �sD0

s

�
�a

�
mod (�a; "

s+1)
�
: (4.11)

Assume s < n; thenR andR0 vanish modulo "s+1, we get (�
)sDs��
sD0

s = 0
and P(s+ 1) holds. Since P(1) is empty, this proves that P(n) holds, hence also
formula (4.11) for s = n. 2

LEMMA 4.12. Let F be a section of an ample line bundle on X . Then RnF
vanishes on the scheme �a \ �b if and only if R0

nF vanishes on the scheme
�a \�c.

Proof. As in the proof of Lemma 3.12, we can write RnF � B�b (mod �a).
Multiplying the congruence of Lemma 4.8 by F , we get

(�
)nB�b�c � �nR0
nF�b

� ��b�cF
�
(�
)nDn � �nD0

n

�
�a (mod �a):

Since �a is irreducible and a 6= b, one can divide out by �b. This proves the Lem-
ma. 2
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By Lemma 3.12, R0
n�a+r(a�c) vanishes on �a \ �c for all integers r; by

Lemma 4.12, this implies that Rn�a+r(a�c) vanishes on �a \�b for all r, and by
Lemma 3.12 again, so does Rn�a+r(a�c)+s(a�b) for all r and s. Hypothesis (ii) in
the theorem implies, as in (3.13), that Rn vanishes on �a \�b, which concludes
the proof of the theorem. 2

5. Complements

In this short Section, we will indicate how to combine the techniques used here
with those of [D] to get better results in the degenerate case when the theta divisor
is not too singular. We will use the following lemma, inspired by Proposition 2.6
in [D].

LEMMA 5.1. Let (X;�) be a principally polarized abelian variety and let � be a
representative of the polarization. Let x be a non-torsion element ofX and assume
that Z is a component of �\�x such that Zred is contained in

T
r2Z �rx. Assume

that codimX(Z \ Sing�) > 3. Then Z is reduced.
Proof. Since Zred + rx is contained in �\�x for all integers r, so is Zred +A,

where A is the neutral component of the closed subgroup generated by x. It
follows that Zred +A = Zred, hence Zred contains a translate A0 of A that satisfies
codimA0(A0 \ Sing�) > 2. If Z is not reduced, it is contained in the singular
locus of � \ �x, hence so is A0. By the Jacobian criterion, the D�x=D�, for
D 2 T0A, define a section of OA0(�x � �) which is regular outside of the
closed subset A0 \ Sing�. Since this subset has codimension > 2 in A0, the
line bundle OA0(�x � �) is trivial. This means that x is in the kernel of the
restriction homomorphism Pic0(X) ! Pic0(A0), hence so is A. The composed
homomorphismA! Pic0(A) is therefore zero. Since it is the morphism associated
with the restriction of the polarization � toA, this impliesA = 0, which contradicts
the fact that x is not torsion. Hence Z is reduced. 2

In the case of a degenerate trisecant, this lemma allows us to prove the following
improvement on Theorem 2.2 of [D].

THEOREM 5.2. Let (X;�) be a complex indecomposable principally polarized
abelian variety, let � be a symmetric representative of the polarization and let
K: X ! j2�j� be the Kummer morphism. Assume that there exist points u and v
of X such that

(i) the points K(u) and K(v) are distinct and the line that joins them is tangent
to K(X) at K(u);

(ii) the point u is not torsion;
(iii) codimX

�
Sing� \

T
r2Z �2ru

�
> 3.
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Then (X;�) is isomorphic to the Jacobian of a smooth non-hyperelliptic algebraic
curve.

Note that by [BD], condition (i) implies codimX Sing� 6 4. On the other hand,
the indecomposability of (X;�) implies codimX Sing� > 3 ([EL]): if hypothesis
(iii) fails, there is a component of Sing� of codimension 3 in X , invariant by the
abelian subvariety generated by u.

Proof. We keep the notation of the proof of Theorem 3.1. The point is to
show that Rn vanishes on the scheme �u \��u. Let Z be a primary component
of �u \ ��u; it has codimension 2. If Zred is not contained in

T
r2Z �u+2ru,

Lemma 3.12 implies that Rn vanishes on Z . Otherwise, Lemma 5.1 implies that
Z is reduced. On page 9 of [D], it is proved that R2

n vanishes on �u \��u. Since
Z is reduced, it follows that Rn vanishes on Z . Hence Rn vanishes on all primary
components of �u \��u, which proves the theorem. 2

This approach does not seem to work in the non-degenerate case.
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