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Abstract. We prove that an indecomposable principally polarized complex abelian variety X isthe
Jacobian of a smooth curve if and only if there exist points a, b, c of X whose images under the
Kummer map X — |20|* aredistinct and collinear, and such that the subgroup of X generated by
a—bandb — cisdensein X.
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1. Introduction

Let (X, \) be acomplex principally polarized abelian variety. Symmetric repre-
sentatives © of the polarization A differ by trandations by points of order 2, hence
the linear system |20)| is independent of the choice of ©. It defines a morphism
K: X — |20|*, whoseimageis the Kummer variety K (X) of X. When (X, A) is
the Jacobian of an algebraic curve, there are infinitely many trisecants to K (X),
i.e. linesin the projective space |20 |* that meet K(X) in at least 3 points. Welters
conjectured in [W] that the existence of one trisecant line to the Kummer vari-
ety should characterize Jacobians among all indecomposable principally polarized
abelian varieties, thereby giving one answer to the Schottky problem.

The aim of this article is to improve on the results of [D], where a partial
answer to this problem was given under additional hypotheses. More precisely,
our main theorem implies that an indecomposable principally polarized abelian
variety (X, \) isa Jacobian if and only if there exist points a, b, ¢ of X such that

(i) the subgroup of X generatedby ¢ — b and b — c isdensein X
(i) the points K (a), K (b) and K (c¢) aredistinct and collinear.

Instead of working on the intersection of atheta divisor with atranslate, whose
possibly complicated geometry is the source of most difficulties in [AD], [D],
[M] and [S], we perform algebraic calculations directly on a theta divisor, which
has the advantage of being integral. The point is to prove that the existence of
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one trisecant line implies the existence of a one-dimensional family of such lines.
Welters' criterion ([W]) then yields the conclusion.

2. Thesetup

Let (X, ) be acomplex indecomposable principally polarized abelian variety, let
© be a symmetric representative of the polarization and let K: X — |20|* bethe
Kummer morphism. Let 6 be a non-zero section of Ox (). For any z € X, we
write ©,, for thedivisor © + « and @, for the section z — 6(z — z) of Ox (©). If
a,b and ¢ are points of X, it is classical that the points K (a), K (b) and K (c) are
collinear if and only if there exist complex numbers «, 5 and v not al zero such
that

a0 o+ 80,0_p + 6.0 . = 0.
Following Welters, we consider the set
Vape =2{C € X | K(¢+ a), K(C +b), K(¢ + c) arecollinear},

endowed with its natural scheme structure. By [W], Theorem 0.5, (X, \) is a
Jacobianif and only if thereexist distinct pointsa, b and ¢ suchthat dimV, , . > 0.
This condition is equivalent to the existence of a sequence {Dn}n>o of constant
vector fields on X and of a formal curve ((¢) = ¢(0) + 5D(e) with D(e) =
Yn>0Dpe™, contained in V, 5, .. Thisin turnis equivalent to arel ation of the type

(E)0ayc()0a¢e) T BEbrce)f b ce) +V(E)0eic(e)0c¢c(e) =0

where a(¢), B(e) and y(e) arerelatively prime elements of C[[¢]].

3. Thecase of a degeneratetrisecant

In this section, we prove the following result:

THEOREM 3.1. Let (X, A\) be a complex indecomposable principally polarized
abelian variety, let © be a symmetric representative of the polarization and let
K: X — |20[* be the Kummer morphism. Assume that there exist points « and v
of X suchthat 2u # 0 and

(i) the points K (u) and K (v) aredistinct and the line that joins themis tangent
to K(X) at K(u);

(ii) codimy ﬂ Oopy > 2.
reZ
Then (X, \) isisomorphic to the Jacobian of a smooth algebraic curve.
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Note that condition (ii) in the theorem is equivalent to saying that there are no
hypersurfacesin © invariant by translation by 2u; it holds when u generates X .

Proof. Asexplainedin Section 2, it is enough to provethat the scheme V,, _,,
has positive dimension at 0: we look for a sequence {D,, },~0 oOf constant vector
fields on X with Dy # 0 and relatively prime elements a(¢), B(e) and y(e) of
C[[¢]] such that

P(z,e) = a(e)0usp(e)/20—u—p(e)/2 + BE)0_utD(e)/20u—D(e) /2
+7(€)0v1-D(e) /20— v—D(e) /2 (3.2)
vanishes, with D(e) = ¥,,~0D,e"™. Thisis nothing but equation (1.4) from [D]. It
follows from loc. cit. that we may assume

e)=1+ Z ane”, B(e) = -1, v(e) = e.

n>0

Write P(z,¢) = ¥,>0P,", where P, isasection of Oy (20) for eachn > O.
Onehas Py = 0 and

P, =a10,0_, + 0,D10_, — 0_, D160, + 0,0_,. (3.3)

As explained in loc.cit., hypothesis (i) in the theorem is equivalent to the van-
ishing of P; for asuitable D, suchthat K, (D) istangent at K (u) to the line that
joins K (u) and K (v), and a suitable «1. In general, note that P,, depends only
onay,...,a, and D1, ..., D,. Knowing that P; vanishes, we need to construct
a seguence {D,, },~o of constant vector fields on X and a sequence {«a;, },>1 Of
complex numbers such that P,, vanishesfor al positive integersn.

It is convenient to set

R(z,€) = P(z+ 3D(e),e) = > Ru(z
n>0

We begin by proving a few identities. Note that
R('a 6) = (X(&)Oue,u,D(E) - e—ueufD(s) + 69U971}7D(E)‘ (34)

Modulo 8,,, we get

R( ) =—0_40, D(e) + 69U97117D(5)7 (35)
R(,€)ou = a(5)93u9u—D(e) + 592u+v92u—v—D(a)a (3.6)
R(- &)y = a(5)92u—v9—v—D(e) - 9—v02u—v—D(e)' (3.7)
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Since P; and itstrandlate by 2u both vanish, formula (3.3) yields, modulo 6,,,
0_.D10, — 0,0_, =0, (3.8
03, D10, + 92u—v92u+v =0. (3.9)
The following result is the main technical step of the proof.
LEMMA 3.10. Modulo 8,,, one has

a(e)R(-,e€)03,0_y + R(-,€)2u0_y0_y + €R(-, ) y—vp0—_u02u 40 = 0.

Proof. By (3.5), (3.6) and (3.7), the left-hand side of the expression in the
lemmais congruent modulo 6, to
—a(E)Q,ueu_D(E)H:guer + 5a(5)0u9—v—D(5)03u97u
+a(8)93u9u7D(s)9—u9—v + €02utvb2u v D(e)0—ub-v

+€a(6)02u*U9—U—D(E) 9,u02u+v — 89,U92u_U_D(E) 9,u92u+v.

All terms cancel out but the second and the fifth. Since (3.8) and (3.9) yield

0,03,0_, + 02, ,0_,02,., = 0, the sum vanishes. O
We proceed by induction: let n beaninteger > 2 and assumethat a1, ..., a, 1
and D1,...,D, 1 havebeen constructed so that P, = --- = P, ; = 0. We want

to find a complex number «,, and atangent vector D,, such that P, vanisheson X.
By [D], Lemma 1.8, it is enough to show that the restriction of P, to the scheme
0, NO_, (whichdependsonly on as,...,a, 1and D1,..., D, 1) vanishes.
Our induction hypothesis can be rewrittenas Ry = --- = R, 1 = 0 and
P, = R,,. Therefore, we need to provethat R,, vanisheson thescheme©®©, N O .
Since a(e) = 1 modulo ¢, the identity of the lemma taken modulo e yields

9—1) [Rn03u + (Rn)Zue—u] = 0,
modulo ¢,,; since ©,, isintegral and —v # u, we get
R,03, + (Ry) 20—y = 0. (3.11)

LEMMA 3.12. If F' isa section of an ample line bundle £ on X such that R, F’
vanishes on the scheme 6, N ©_,, then, for any integer r, the section R,, o,
vanishes on the scheme ©, N ©_,,.

Proof. Recall that P, = R,, isasection of Ox(20), so that R, F' isasection
of £L(20) ® Ze,ne_, - The Koszul complex yields an exact sequence

0= L — L(O) B LO ) = L(20) ® To,no_, — O.
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Because £ is ample, one has H1(X, £) = 0, and there exist sections B and C'
such that R, F' = B0, + CO_,,. It follows that (R,,)2,F2, = Ba,b03,(mod 6,,).
Multiplying (3.11) by F5,, we get

R, F5,03, + By, 03,0_, =0 (mod Qu).

Since 2u # 0 and ©,, isintegral, 63, is not a zero divisor modulo 6,, and we
get R,Fp, = 0 (mod(f,,0_,)). By a similar reasoning, R,F 2, = 0
(mod(6,,0_,)). O

(3.13) Thelemmaimpliesthat R,,0, 2., vanisheson©,NO _,, for al . Because
of hypothesis (ii), it follows that R,, vanishes on each primary component of codi-
mension 2 of ©, N ©_,; since this scheme has no embedded components, R,
vanishes on it. This concludesthe proof of the theorem. O

It follows from (3.5) that R, 0_,, hence aso its image R,,0, by the involution
2 — —x, vanish on the scheme ©, N ©_,,. Hypothesis (ii) in Theorem 3.1 can
therefore be relaxed to

codimy () (6u N O, NO_y)2my > 2.
reZ

4. The case of a non-degener atetrisecant

In this section, we prove, under an extra hypothesis, that the existence of a non-
degenerate trisecant line implies the existence of a degenerate trisecant of the type
studied in Section 3.

THEOREM 4.1. Let (X, \) be an indecomposable principally polarized abelian
variety, let © be a symmetric representative of the polarization and let K: X —
|20[* be the Kummer morphism. Assume that there exist points a, b and ¢ of X
such that

(i) the points K (a), K (b) and K (c) aredistinct and collinear;

(i) codimy () Opatgorre > 2
p,q,TEZ
p+q+r=0

Then (X, \) isisomorphic to the Jacobian of a smooth algebraic curve.

Note that condition (ii) in the theorem is equivalent to saying that there are no
hypersurfacesin © invariant by translation by a — b and b — ¢; it holdswhena — b
and b — ¢ together generate X .
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Proof. Instead of provingthat V, ; . haspositivedimensionat O, wewill proceed
asfollows. Asexplained in Section 2, condition (i) translates into the existence of
nonzero complex numbers «, 8 and -y such that

afa0—_q + B0y + ¥0.0_c = O. (4.2)

For any = in X, we will write P for 6,y .0_,. Our first aim is to show that
P¢ vanishes on the scheme ©, N Oy

LEMMA 4.3. One has
Pgﬁbob + Pcoza_b = O (mOd Qa).

Proof. Equation (4.2) and its trandates by (a + ¢) and (a — b) yield, modulo
Oa,
BOL0_p + 0.0 =0,
ablzqiclc + Bavbcbabre =0,
g0 + V0a—b+cba—b—c = 0.
It follows that, still modulo 8,
afB0_y (Pi_y0, + P2q_p)
= O2atcba b (—V0c0-c) + Ousbrcl—c (=BY0a—btcbab-c)
= —YWa—p—c0 ¢ (0204 0c + Batptcba—pic) = O.

Since © isintegral and —b # a, the section 6_, is not a zero divisor modulo 6,
and the lemmafollows. |

LEMMA 4.4. If F is a section of an ample line bundle on X such that P°F
vanishes on the scheme ©, N Oy, then, for any integer s, the section P°F(, )
also vanishes on the scheme ©, N O,

Proof. Since ¢ and b play the same role, it is enough to prove that P°F,
vanisheson ©, N ©,. Asin the proof of Lemma 3.12, there exist sections B and
C suchthat P°F = B, + C6,. Then P¢_,F, , = B, 02, (mod 6,). Using
Lemma4.3, we get

PFy_ 4024 + Ba—pb2q—p 0, =0 (mod6y).

Since 2a — b # o and ©,, is irreducible, we can divide out by #,,_;, and the
lemmais proved. O
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LEMMA 4.5. If F isa section of an ample line bundle on X, then P¢F vanishes
on the scheme ©, N O, if and only if P®F vanishes on the scheme ©, N O,..

Proof. Asin the proof of Lemma 3.12, write 0,y .0_.F = B, (mod 6,).
We get

’)/BHbHC = 0a+b+c’)/909,CF
= —9a+b+cﬁ9b9_bF = —ﬁP”FGb (mod Ha),

where we used (4.2). Since O, isirreducible and a # b, thelemmais proved. O

We combine the last two lemmas to get, for all integersr and s,

P¢F = 0 (mod (0,,6))
= P'F =0 (mod(f,,0.))
= P Fo4cy = 0 (mod(f,,6.))
= P¢Fra ) = 0 (mod(6y,0))

)

= P* Fr(a—c)—l—s(a—b) =0 (mod(@a,eb) .

It follows in particular that P01 ,(4—c)+s(a—p) VaNishes on ©, N O, for al
integersr and s. Asin (3.13), hypothesis (ii) in the theorem shows that

P¢ vanisheson the scheme ©®, N ©, (4.6)

(henceaso P* on ©, N O, and P’ on ©,.N O,).

Letu beany point of X suchthat 2u = a — b, and setv = v —a — c. Tranglating
(4.6) by (—u —b), we get that 6,0, vanisheson ©, N ©_,,. Asexplainedin [D],
thisis equivalent to the existence of acomplex number o1 and atangent vector D1
to X such that

1040y + 04 D10_y — 0_y D10y, + 0,0_, = 0. 4.7)

In other words, the line that joins K (u) and K (v) istangentto K (X) at K (u).
Note that we cannot apply Theorem 3.1 directly, since hypothesis (ii) may not be
satisfied. However, we will still follow the same method, i.e. we will show that the
schemeV, ; . (whichisatrandlateof V,, _,, ,,) haspositivedimensionat (—a —b),
but we will need to prove at the same time that V,, _;, . has positive dimension at
the point (—a — c).

Let n be an integer > 1. Asin Section 3, the scheme V,;, . contains a
scheme isomorphic to C[e]/e"*! and concentrated at (—a — b) if and only if
one can find complex numbers a4, . .., a, and tangent vectors D, ..., D, such
that Ry, ..., R, defined in Section 3, vanish («; and D; arethe same asin (4.7),
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and Ry isthe left-hand side of that equation). Similarly, the scheme V,, _; . con-
tains a scheme isomorphic to C[e]/¢"+1 and concentrated at (—a — ¢) if and only
if there exist complex numbers o, . . ., o/, and tangent vectors D3, ..., D], such
that R7,. .., R}, vanish.

Weproceed asin Section 3: let n beaninteger > 2andassumethat oy, . . ., a1,
o, ...,a),_q and Dq,...,D,_1,D4,...,D] _; have been constructed so that
Ry,...,R, 1, R},...,R],_; vanish on X. As in the proof of theorem 3.1, it
isenough to show that the restriction of R,, to the scheme ©, N ©; (which depends
only on aa,...,a, 1 and D, ..., D, 1), and the restriction of R/, to ©, N O,
(which dependsonly on o, ...,«a),_,and D1, ..., D! _;) both vanish.

LEMMA 4.8. One has
(=) Rub. — B RL0y = —040.((—y)"D,, — 5" D,)0, (mod d,).
Proof. Formula (3.4) translatesinto
R(,¢) = a(e)0abp—p(e) — O0a—p(e) + E0—cbatbte—D(e)s (4.9)

R,('a 5) = al(g)eaech’(s) - eceafD’(s) + 60*b00+b+87D,(5)' (410)

For 0 < s < n, let P(s) bethe property “3'D; = (—v)!D; whenever 0 < t <
s,” or equivalently D'(Be) = D(—~e) (mod *). Assume P(s) holds; using (4.9),
(4.10) and (4.2), we get

R('7 —’)/6)00 - R,('J 56)0()
= —0,0.((—y)*Ds — °D.)0, (mod (8,,5™). (4.11)

Assumes < n;then Rand R’ vanishmoduloe®*1, weget (—v)*Ds—3*D. = 0
and P(s + 1) holds. Since P(1) is empty, this proves that (n) holds, hence also
formula (4.11) for s = n. O

LEMMA 4.12. Let F be a section of an ample line bundle on X. Then R, F
vanishes on the scheme ©, N ©, if and only if R F vanishes on the scheme
0, N O..

Proof. As in the proof of Lemma 3.12, we can write R, F = B, (mod 6,).
Multiplying the congruence of Lemma4.8 by F', we get

(—y)"B6yo. — B" R, FO,
= —0,0.F ((—y)"D,, — " D},)0, (mod8,).

Since O, isirreducible and a # b, one can divide out by 6,. This provesthe Lem-
ma. O
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By Lemma 3.12, R; 04, ,(a—c) Vanishes on ©, N O, for al integers r; by
Lemma4.12, thisimplies that R,.0,,(,—.) vanisheson ©, N Oy for al r, and by
Lemma3.12 again, so does .8,y (a—c)+s(a—b) fOr Al v and s. Hypothesis (ii) in
the theorem implies, asin (3.13), that R,, vanishes on ©, N ©,, which concludes
the proof of the theorem. O

5. Complements

In this short Section, we will indicate how to combine the techniques used here
with those of [D] to get better resultsin the degenerate case when the theta divisor
is not too singular. We will use the following lemma, inspired by Proposition 2.6
in[D].

LEMMA 5.1. Let (X, \) bea principally polarized abelian variety and let © bea
representative of the polarization. Let = be a non-torsion element of X and assume
that Z isa component of © N ©,, suchthat Z; iscontained in ..z ©;,,. Assume
that codimy (Z N Sing®) > 3. Then Z isreduced.

Proof. Since Zeq + rx iscontainedin © N ©,, for al integersr, s0is Zeg + A,
where A is the neutral component of the closed subgroup generated by . It
followsthat Zeq + A = Zreg, hence Zyeg contains atranslate A’ of A that satisfies
codimy (A’ N Sing®) > 2. If Z is not reduced, it is contained in the singular
locus of ©® N O©,, hence so is A’. By the Jacobian criterion, the D6, /D6, for
D € TyA, define a section of Oy (0, — ©) which is regular outside of the
closed subset A’ N Sing®. Since this subset has codimension > 2 in A’, the
line bundle O 4/(0, — ©) is trivial. This means that « is in the kernel of the
restriction homomorphism Pic’(X) — Pic®(A’), hence so is A. The composed
homomorphism A — Pic®(A) istherefore zero. Sinceit isthe morphism associated
with therestriction of the polarization A to A, thisimplies A = 0, which contradicts
the fact that 2 is not torsion. Hence Z is reduced. |

In the case of adegeneratetrisecant, thislemmaallowsusto provethe following
improvement on Theorem 2.2 of [D].

THEOREM 5.2. Let (X, \) be a complex indecomposable principally polarized
abelian variety, let © be a symmetric representative of the polarization and let
K: X — |20|* be the Kummer morphism. Assume that there exist points v and v
of X such that

(i) the points K (u) and K (v) aredistinct and the line that joins them is tangent
to K(X) at K(u);
(if) the point u isnot torsion;
(iii) codimx (Sing® NN,cz O2ru) > 3.
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Then (X, \) isisomorphic to the Jacobian of a smooth non-hyperelliptic algebraic
curve.

Notethat by [BD], condition (i) impliescodimy Sing © < 4. Onthe other hand,
the indecomposability of (X, A) impliescodimx Sing® > 3 ([EL]): if hypothesis
(i) fails, there is a component of Sing © of codimension 3 in X, invariant by the
abelian subvariety generated by .

Proof. We keep the notation of the proof of Theorem 3.1. The point is to
show that R,, vanisheson the scheme©®, N O _,,. Let Z be a primary component
of ©, N ©_,; it has codimension 2. If Zq is not contained in (,cz Oui2ru,
Lemma 3.12 implies that R,, vanishes on Z. Otherwise, Lemma 5.1 implies that
Z isreduced. On page 9 of [D], it is proved that R? vanisheson©, N © _,,. Since
Z isreduced, it follows that R,, vanisheson Z. Hence R,, vanisheson all primary
componentsof ©, N ©_,,, which provesthe theorem. O

This approach does not seem to work in the non-degenerate case.
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