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1 Introduction

Science is more than a collection of observed associations. While the description

and cataloging of phenomena play a role in scientific discovery, the ultimate goal of

science is the amalgamation of theories that have survived rigorous falsification

(Hassani et al. 2018). For a theory to be scientific, it is generally expected to declare

the falsifiable causal mechanism responsible for the observed phenomenon (for one

definition of falsifiability, see Popper 1963).1 Put simply, a scientific theory explains

why an observed phenomenon takes place,where that explanation is consistent with

all the empirical evidence (ideally, including experimental results). Economists

subscribe to this view that a genuine science must produce refutable implications,

and that those implications must be tested through solid statistical techniques

(Lazear 2000).

In the experimental sciences (physics, chemistry, biology, etc.), it is rela-

tively straightforward to propose and falsify causal mechanisms through

interventional studies (Fisher 1971). This is not generally the case in financial

economics. Researchers cannot reproduce the financial conditions of the Flash

Crash of May 6, 2010, remove some traders, and observe whether stock

market prices still collapse. This has placed the field of financial economics

at a disadvantage when compared with experimental sciences. A direct con-

sequence of this limitation is that, for the past fifty years, most factor investing

researchers have focused on publishing associational claims, without theoriz-

ing and subjecting to falsification the causal mechanisms responsible for the

observed associations. In the absence of plausible falsifiable theories,

researchers must acknowledge that they do not understand why the reported

anomalies (risk premia) occur, and investors are entitled to dismiss their

claims as spurious. The implication is that the factor investing literature

remains in an immature, phenomenological stage.

From the above, one may reach the bleak conclusion that there is no hope for

factor investing (or financial economics) to produce and build upon scientific

theories. This is not necessarily the case. Financial economics is not the only

field of study afflicted by barriers to experimentation (e.g., astronomers produce

scientific theories despite the unfeasibility of interventional studies). Recent

progress in causal inference has opened a path, however difficult, for advancing

factor investing beyond its current phenomenological stage. The goal of this

1 Strict falsificationism is not widely accepted among philosophers of science, and throughout this
Element I do not follow Popper’s falsificationist framework. I use the term “falsifiable” as the
general requirement that theories must conform to the empirical evidence, without subscribing to
a particular definition of what such conformity entails. Mutatis mutandis, this Element accom-
modates, and its results remain valid, under a number of competing accounts of what makes
a theory “scientific.”

1Causal Factor Investing
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Element is to help factor investing wake up from its associational slumber, and

plant the seeds for the new field of “causal factor investing.”

In order to achieve this goal, I must first recite the fundamental differ-

ences between association and causation (Section 2), and why the study of

association alone does not lead to scientific knowledge (Section 3). In fields

of research with barriers to experimentation, like investing, it has become

possible to estimate causal effects from observational studies, through

natural experiments and simulated interventions (Section 4). After laying

out this foundation, I turn the reader’s attention to the current state of causal

confusion in econometrics (Section 5) and factor investing studies

(Section 6). This state of confusion easily explains why factor investing

remains in a phenomenological stage, and the proliferation of hundreds of

spurious claims that Cochrane (2011) vividly described as the “factor zoo”2

(Section 7). The good news is, once financial economists embrace the

concepts described in this Element, I foresee the transformation of factor

investing into a truly scientific discipline (Section 8).

This Element makes several contributions. First, I describe the logical

inconsistency that afflicts the factor investing literature, whereby authors

make associational claims in denial or ignorance of the causal content of their

models. Second, I define the two different types of spurious claims in factor

investing, type-A and type-B. These two types of spurious claims have

different origins and consequences, hence it is important for factor researchers

to distinguish between the two. In particular, type-B factor spuriosity is an

important topic that has not been discussed in depth until now. Type-B

spuriosity explains, among other literature findings, the time-varying nature

of risk premia. Third, I apply this taxonomy to derive a hierarchy of empirical

evidence used in financial research, based on the evidence’s susceptibility to

being spurious. Fourth, I design Monte Carlo experiments that illustrate the

dire consequences of type-B spurious claims in factor investing. Fifth,

I propose an alternative explanation for the main findings of the factor

investing literature, which is consistent with type-B spuriosity. In particular,

the time-varying nature of risk premia reported in canonical journal articles is

a likely consequence of under-controlling. Sixth, I propose specific actions

that academic authors can take to rebuild factor investing on the more solid

scientific foundations of causal inference.

2 A more appropriate name might have been “factor bestiary,” because a zoo is populated only by
real animals, while a medieval bestiary described in great detail real (e.g., lions, leopards, and
elephants) as well as mythical animals (e.g. chimeras, griffins, and harpies), with equal conviction
regarding the existence of both.

2 Quantitative Finance
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2 Association vs Causation

Every student of statistics, and by extension econometrics, learns that

association does not imply causation. This statement, while superficially

true, does not explain why association exists, and its relation to causation.

Two discrete random variables X and Y are statistically independent if

and only if P½X ¼ x; Y ¼ y� ¼ P½X ¼ x�P½Y ¼ y�; 8x; y, where P½:� is

the probability of the event described inside the squared brackets.

Conversely, two discrete random variables X and Y are said to be statistically

associated (or codependent) when, for some x; yð Þ, they satisfy that

P½X ¼ x; Y ¼ y� 6¼ P½X ¼ x�P½Y ¼ y�. The conditional probability expression

P½Y ¼ yjX ¼ x� ¼ P½X ¼ x; Y ¼ y�=P½X ¼ x� represents the probability

that Y ¼ y among the subset of the population where X ¼ x. When two

variables are associated, observing the value of one conveys information

about the value of the other: P½Y ¼ yjX ¼ x� 6¼ P½Y ¼ y�, or equivalently,

P½X ¼ xjY ¼ y� 6¼ P½X ¼ x�. For example, monthly drownings (Y ) and ice

cream sales (X ) are strongly associated, because the probability that y people

drown in a month conditional on observing x ice cream sales in that same month

does not equal the unconditional probability of y drownings in a month for some

x; yð Þ. However, the expression P½Y ¼ yjX ¼ x� 6¼ P½Y ¼ y� does not tell us

whether ice cream sales cause drownings. Answering that question requires

the introduction of a more nuanced concept than conditional probability: an

intervention.

A data-generating process is a physical process responsible for generating the

observeddata,where the process is characterizedby a systemof structural equations.

Within that system, a variableX is said to cause a variable Y whenY is a function of

X . The structural equation by which X causes Y is called a causal mechanism.

Unfortunately, the data-generating process responsible for observations is rarely

known. Instead, researchers must rely on probabilities, estimated on a sample of

observations, to deduce the causal structure of a system. Probabilistically, a variable

X is said to cause a variable Y when setting the value of X to x increases the

likelihood that Y will take the value y. Econometrics lacks the language to represent

interventions, that is, setting the value of X (Chen and Pearl 2013). To avoid

confusion between conditioning by X ¼ x and setting the value of X ¼ x, Pearl

(1995) introduced the do-operator, do½X ¼ x�, which denotes the intervention that
sets the value ofX to x.With this new notation, causation can be formally defined as

follows: X ¼ x causes Y ¼ y if and only if P
�
Y ¼ yjdo½X ¼ x�� > P½Y ¼ y�.3

3 At first, it may seem counterintuitive that causality is defined in terms of a strict inequality (“>”),
in contrast to the difference (“6¼”) used to define association. The reason is, there is no need to
consider the “<” case, due to complementary probabilities. For example, let X ¼ 1 represent

3Causal Factor Investing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
39

73
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009397315


For example, setting ice cream sales to xwill notmake y drowningsmore likely than

its unconditional probability for any pair x; yð Þ, hence ice cream sales are not a cause

of drownings. In contrast, smoking tobacco is a cause of lung cancer, because the

probability that y individuals develop lung cancer among a collectivewhere the level

of tobacco smoking is set to x (through an intervention) is greater than the uncondi-

tional probability of y individuals developing lung cancer, for some pair x; yð Þ.4
Variables X and Y may be part of a more complex system, involving

additional variables. The causal structure of a system can be represented

through a directed acyclic graph, also denoted a causal graph.5 While a causal

graph does not fully characterize the data-generating process, it conveys topo-

logical information essential to estimate causal effects. Causal graphs declare

the variables involved in a system, which variables influence each other, and the

direction of causality (Pearl 2009, p. 12). Causal graphs help visualize do-

operations as the action of removing all arrows pointing toward X in the causal

graph, so that the full effect on Y can be attributed to setting X ¼ x. This is the

meaning of the ceteris paribus assumption, which is of critical importance to

economists.

The causal graph in Figure 1 tells us that Z causes X , and Z causes Y . In the

language of causal inference, Z is a confounder, because this variable introduces

receiving a vaccine against COVID-19, and Y ¼ 1 represent developing COVID-19. For an
effective vaccine, two causal statements are true. First, P

�
Y ¼ 1jdo½X ¼ 1�� < P½Y ¼ 1�, which

means that receiving the vaccine (X ¼ 1) reduces the likelihood of developing the disease
(Y ¼ 1). Second, P

�
Y ¼ 0jdo½X ¼ 1�� > P½Y ¼ 0�, which means that receiving the vaccine

(X ¼ 1) increases the likelihood of not developing the disease (Y ¼ 0). One statement cannot
be true without the other, and the redundancy is resolved by picking the latter.

4 A variable X may be a necessary cause of Y , a sufficient cause of Y , a necessary-and-sufficient
cause of Y , or neither a necessary-nor-sufficient cause of Y (also known as a contributory cause).
I do not explain the difference in this Element because it is not required for the discussion that
follows.

5 Acyclic graphs have the advantage of allowing the factorization of the joint probability as
a product of conditional probabilities between ancestors and descendants only. However, cyclic
graphs may be preferred for representing bidirectional causality. Representing bidirectional
causal relationships with acyclic graphs requires explicit temporal modeling and duplication of
the graph over multiple time steps. Neither representation (cyclic or acyclic) is better, and it
depends on the modeler’s objectives. This Element focuses on the treatment of acyclic graphs,
without dismissing the usefulness of cyclic graphical models.

X

Z

1

Y
2

X

Z

Y
2

Figure 1 Causal graph of a confounder (Z), before (left) and after (right) a

do-operation

4 Quantitative Finance
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an association between X and Y , even though there is no arrow between X and

Y . For this reason, this type of association is denoted noncausal. Following with

the previous example, weather (Z) influences ice cream sales (X ) and the

number of swimmers, hence drownings (Y ). The intervention that sets ice

cream sales removes arrow (1), because it gives full control of X to the

researcher (X is no longer a function of Z), while keeping all other things

equal (literally, ceteris paribus). And because X does not cause Y , setting

X ¼ x (e.g., banning the sale of ice cream, X ¼ 0) has no effect on the

probability of Y ¼ y. As shown later, noncausal association can occur for

a variety of additional reasons that do not involve confounders.

Five conclusions can be derived from this exposition. First, causality is an

extra-statistical (in the sense of beyond observational) concept, connected to

mechanisms and interventions, and distinct from the concept of association.

As a consequence, researchers cannot describe causal systems with the asso-

ciational language of conditional probabilities. Failure to use the do-operator

has led to confusion between associational and causal statements, in econo-

metrics and elsewhere. Second, association does not imply causation, how-

ever causation does imply association because setting X ¼ x through an

intervention is associated with the outcome Y ¼ y.6 Third, unlike association,

causality is directional, as represented by the arrows of the causal graph. The

statement “X causes Y” implies that P
�
Y ¼ yjdo½X ¼ x�� > P½Y ¼ y�, but not

that P
�
X ¼ xjdo½Y ¼ y�� > P½X ¼ x�. Fourth, unlike association, causality is

sequential. “X causes Y” implies that the value of X is set first, and only after

that Y adapts. Fifth, the ceteris paribus assumption simulates an intervention

(do-operation), whose implications can only be understood with knowledge of

the causal graph. The causal graph shows what “other things” are kept equal

by the intervention.

6 Here I am referring to direct causes (a single link in the causal graph). There are causal structures
where one cause may cancel another, resulting in total causation without association.

5Causal Factor Investing
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3 The Three Steps of Scientific Discovery

Knowing the causes of effects has long been a human aspiration. In 29 BC, ancient

Roman poet Virgil wrote “happy the man, who, studying Nature’s laws, / thro’

known effects can trace the secret cause” (Dryden 1697, p. 71). It was not until

around the year 1011 that Arab mathematician Hasan Ibn al-Haytham proposed

a scientific method for deducing the causes of effects (Thiele 2005; Sabra 1989).

Science has been defined as the systematic organization of knowledge in the

form of testable explanations of natural observations (Heilbron 2003). Mature

scientific knowledge aims at identifying causal relations, and the mechanisms

behind them, because causal relations are responsible for the regularities in

observed data (Glymour et al. 2019).

The process of creating scientific knowledge can be organized around three

critical steps: (1) the phenomenological step, where researchers observe

a recurrent pattern of associated events, or an exception to such a pattern; (2)

the theoretical step, where researchers propose a testable causal mechanism

responsible for the observed pattern; and (3) the falsification step, where the

research community designs experiments aimed at falsifying each component

of the theorized causal mechanism.

3.1 The Phenomenological Step

In the phenomenological step, researchers observe associated events, without

exploring the reason for that association. At this step, it suffices to discover that

P½X ¼ x; Y ¼ y� 6¼ P½X ¼ x�P½Y ¼ y�. Further, a researcher may model the

joint distribution P½X ¼ x; Y ¼ y�, derive conditional probabilities

P½Y ¼ yjX ¼ x�, and make associational statements of the type

E½Y jX ¼ x� ¼ y (an associational prediction) with the help of machine learning

tools. Exceptionally, a researcher may go as far as to produce empirical evi-

dence of a causal effect, such as the result from an interventional study (e.g.,

Ohm’s law of current, Newton’s law of universal gravitation, or Coulomb’s law

of electrical forces), but without providing an explanation for the relationship.

The main goal of the phenomenological step is to state “a problem situation,” in

the sense of describing the observed anomaly for which no scientific explan-

ation exists (Popper 1994b, pp. 2–3). At this step, inference occurs by logical

induction, because the problem situation rests on the conclusion that, for some

unknown reason, the phenomenon will reoccur.7

7 Reasoning by induction occurs when, given some premises, a probable conclusion is inferred
non-reductively, by generalizing or extrapolating from specific cases to a general rule. The
evidence to support this extrapolation may come from a large number of cases (enumerative
induction) or a wide range of cases (variative induction). See Gensler (2010, pp. 80–117).

6 Quantitative Finance
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For instance, a researcher may observe that the bid-ask spread of stocks

widens in the presence of imbalanced orderflow (i.e., when the amount of

shares exchanged in trades initiated by buyers does not equal the amount of

shares exchanged in trades initiated by sellers over a period of time), and that the

widening of bid-ask spreads often precedes a rise in intraday volatility. This is

a surprising phenomenon because under the efficient market hypothesis asset

prices are expected to reflect all available information at all times, making

predictions futile (Fama 1970). The existence of orderflow imbalance, the

sequential nature of these events, and their predictability point to market

inefficiencies, of unclear source. Such associational observations do not consti-

tute a theory, and they do not explain why the phenomenon occurs.

3.2 The Theoretical Step

In the theoretical step, researchers advance a possible explanation for the

observed associated events. This is an exercise in logical abduction (sometimes

also called retroduction): Given the observed phenomenon, the most likely

explanation is inferred by elimination among competing alternatives.

Observations cannot be explained by a hypothesis more extraordinary than

the observations themselves, and of various hypotheses the least extraordinary

must be preferred (Wieten et al. 2020). At this step, a researcher states that X

and Y are associated because X causes Y , in the sense that

P
�
Y ¼ yjdo½X ¼ x�� > P½Y ¼ y�. For the explanation to be scientific, it must

propose a causal mechanism that is falsifiable, that is, propose the system of

structural equations along the causal path from X to Y , where the validity of

each causal link and causal path can be tested empirically.8 Physics Nobel Prize

laureateWolfgang Pauli famously remarked that there are three types of explan-

ations: correct, wrong, and not even wrong (Peierls 1992). With “not even

wrong,” Pauli referred to explanations that appear to be scientific, but use

unfalsifiable premises or reasoning, which can never be affirmed nor denied.

A scientist may propose a theory with the assistance of statistical tools (see

Section 4.3.1), however data and statistical tools are not enough to produce

a theory. The reason is, in the theoretical step the scientist injects extra-

statistical information, in the form of a subjective framework of assumptions

that give meaning to the observations. These assumptions are unavoidable,

because the simple action of taking and interpreting measurements introduces

subjective choices, making the process of discovery a creative endeavor.

8 Following on the earlier examples, in the year 1900, Paul Drude was the first to offer a falsifiable
explanation to Ohm’s law of 1827; in the year 1915, Albert Einstein offered a falsifiable explan-
ation for Newton’s law of gravitation of 1687, and so on.

7Causal Factor Investing
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If theories could be deduced directly from observations, then there would be no

need for experiments that test the validity of the assumptions.

Following on the previous example, the Probability of Informed Trading (PIN)

theory explains liquidity provision as the result of a sequential strategic game

between market makers and informed traders (Easley et al. 1996). In the absence

of informed traders, the orderflow is balanced, because uninformed traders initiate

buys and sells in roughly equal amounts, hence market impact is mute and the

mid-price barely changes. When market makers provide liquidity to uninformed

traders, they profit from the bid-ask spread (they buy at the bid price and sell at the

ask price). However, the presence of informed traders imbalances the orderflow,

creating market impact that changes the mid-price. When market makers provide

liquidity to an informed trader, the mid-price changes before market makers are

able to profit from the bid-ask spread, and they are eventually forced to realize

a loss. As a protection against losses, market makers react to orderflow imbalance

by charging a greater premium for selling the option to be adversely selected (that

premium is the bid-ask spread). In the presence of persistent orderflow imbalance,

realized losses accumulate, andmarket makers are forced to reduce their provision

of liquidity, which results in greater volatility. Two features make the PIN theory

scientific: First, it describes a precise mechanism that explains the causal link:

orderflow imbalance→market impact→mid-price change→ realized losses→

bid-ask spread widening → reduced liquidity → greater volatility. Second, the

mechanism involves measurable variables, with links that are individually test-

able. An unscientific explanation would not propose a mechanism, or it would

propose a mechanism that is not testable.

Mathematicians use the term theory with a different meaning than scientists.

A mathematical theory is an area of study derived from a set of axioms, such as

number theory or group theory. Following Kant’s epistemological definitions,

mathematical theories are synthetic a priori logical statements, whereas scien-

tific theories are synthetic a posteriori logical statements. This means that

mathematical theories do not admit empirical evidence to the contrary, whereas

scientific theories must open themselves to falsification.

3.3 The Falsification Step

In the falsification step, researchers not involved in the formulation of the theory

independently: (i) deduce key implications from the theory, such that it is impos-

sible for the theory to be true and the implications to be false; and (ii) design and

execute experiments with the purpose of proving that the implications are false.

Step (i) is an exercise in logical deduction because given some theorized prem-

ises, a falsifiable conclusion is reached reductively (Gensler 2010, pp. 104–110).

8 Quantitative Finance
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When properly done, performing step (i) demands substantial creativity and

domain expertise, as it must balance the strength of the deduced implication

with its testability (cost, measurement errors, reproducibility, etc.). Each experi-

ment in step (ii) focuses on falsifying one particular link in the chain of events

involved in the causal mechanism, applying the tools of mediation analysis. The

conclusion that the theory is false follows the structure of a modus tollens

syllogism (proof by contradiction): using standard sequent notation, if A ) B,

however :B is observed, then :A, where A stands for “the theory is true” and B

stands for a falsifiable key implication of the theory.

One strategy of falsification is to show that P
�
Y ¼ yjdo½X ¼ x�� ¼ P½Y ¼ y�,

in which case either the association is noncausal, or there is no association (i.e.,

the phenomenon originally observed in step (i) was a statistical fluke). A second

strategy of falsification is to deduce a causal prediction from the proposed

mechanism, and to show that E
�
Y jdo½X ¼ x�� 6¼ y. When that is the case,

there may be a causal mechanism, however, it does not work as theorized

(e.g., when the actual causal graph is more complex than the one proposed).

A third strategy of falsification is to deduce from the theorized causal mechan-

ism the existence of associations, and then applymachine learning techniques to

show that those associations do not exist. Unlike the first two falsification

strategies, the third one does not involve a do-operation.

Following on the previous example, a researcher may split a list of stocks

randomly into two groups, send buy orders that set the level of orderflow

imbalance for the first group, and measure the difference in bid-ask spread,

liquidity, and volatility between the two groups (an interventional study, see

Section 4.1).9 In response to random spikes in orderflow imbalance, a researcher

may find evidence of quote cancellation, quote size reduction, and resending

quotes further away from the mid-price (a natural experiment, see

Section 4.2).10 If the experimental evidence is consistent with the proposed

PIN theory, the research community concludes that the theory has (temporarily)

survived falsification. Furthermore, in some cases a researcher might be able to

inspect the data-generating process directly, in what I call a “field study.”

A researcher may approach profitable market makers and examine whether

9 Sophisticated large asset managers routinely conduct so-called algo-wheel experiments to assess
broker performance, however the results from these controlled experiments are rarely made
public, and are generally unknown to the academic community (López de Prado 2017). See
Webster and Westray (2022) for an example of a theoretical framework that covers this kind of
execution experiments.

10 Random spikes in orderflow imbalance allow researchers to observe the reaction of market
makers while removing the influence of potential confounders. For the purpose of this experi-
ment, a researcher is interested in orderflow imbalance fluctuations that market makers cannot
rule out as random at their onset, however the researcher can determine to have been random
(likely ex-post).

9Causal Factor Investing
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their liquidity provision algorithms are designed to widen the bid-ask spread at

which they place quotes when they observe imbalanced order flow. The same

researcher may approach less profitable market makers and examine whether

their liquidity provision algorithms do not react to order flow imbalance.

Service providers are willing to offer this level of disclosure to key clients

and regulators. This field study may confirm that market makers who do not

adjust their bid-ask spread in presence of orderflow imbalance succumb to

Darwinian competition, leaving as survivors those whose behavior aligns with

the PIN theory.

Popper gave special significance to falsification through “risky forecasts,”

that is, forecasts of outcomes y0 under yet unobserved interventions x0 (Vignero
andWenmackers 2021). Mathematically, this type of falsification is represented

by the counterfactual expression E½YX¼x0 jX ¼ x;Y ¼ y� 6¼ y0, namely the

expected value of Y in an alternative universe where X is set to x0 (a do-

operation) for the subset of observations where what actually happened is

X ¼ x and Y ¼ y.11 Successful theories answer questions about previously

observed events, as well as never-before observed events. To come up with

risky forecasts, an experiment designer scrutinizes the theory, deducing its

ultimate implications under hypothetical x0, and then searches or waits for

them. Because the theory was developed during the theoretical step without

knowledge of x0; y0ð Þ, this type of analysis constitutes an instance of out-of-

sample assessment. For example, the PIN theory implied the possibility of

failures in the provision of liquidity approximately fourteen years before the

flash crash of 2010 took place. Traders who had implemented liquidity provi-

sion models based on the PIN theory (or better, its high-frequency embodiment,

VPIN) were prepared for that black-swan and profited from that event (Easley

et al. 2010, 2012, López de Prado 2018, pp. 281–300), at the expense of traders

who relied on weaker microstructural theories.

3.4 Demarcation and Falsificationism in Statistics

Science is essential to human understanding in that it replaces unreliable

inductive reasoning (such as “Y will follow X because that is the association

observed in the past”) with more reliable deductive reasoning (such as “Y will

follow X because X causes Y through a tested mechanism M”). Parsimonious

theories are preferable, because they are easier to falsify, as they involve

controlling for fewer variables (Occam’s razor). The most parsimonious sur-

viving theory is not truer, however, it is better “fit” (in an evolutionary sense) to

tackle more difficult problems posed by that theory. The most parsimonious

11 For an introduction to counterfactuals, see Pearl et al. (2016, chapter 4).
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surviving theory poses new problem situations, hence re-starting a new iteration

of the three-step process, which will result in a better theory yet.

To appreciate the unique characteristics of the scientific method, it helps to

contrast it with a dialectical predecessor. For centuries prior to the scientific

revolution of the seventeenth century, academics used the Socratic method to

eliminate logically inconsistent hypotheses. Like the scientific method, the

Socratic method relies on three steps: (1) problem statement; (2) hypothesis

formulation; and (3) elenchus (refutation), see Vlastos (1983, pp. 27–58).

However, both methods differ in three important aspects. First, a Socratic

problem statement is a definiendum (“what is X?”), not an observed empirical

phenomenon (“X and Y are associated”). Second, a Socratic hypothesis is

a definiens (“X is . . .”), not a falsifiable theory (“X causes Y through

mechanism M”). Third, a Socratic refutation presents a counterexample

that exposes implicit assumptions, where those assumptions contradict the

original definition. In contrast, scientific falsification does not involve searching

for contradictive implicit assumptions, since all assumptions were made explicit

and coherent by a plausible causal mechanism. Instead, scientific falsification

designs and executes an experiment aimed at debunking the theorized causal

effect (“X does not cause Y”), or showing that the experiment’s results contradict

the hypothesized mechanism (“experimental results contradict M”).12

The above explanation elucidates an important fact that is often ignored or

misunderstood: not all academic debate is scientific, even in empirical or

mathematical subjects. A claim does not become scientific by virtue of its use

of complex mathematics, its reliance onmeasurements, or its submission to peer

review.13 Philosophers of science call the challenge of separating scientific

claims from pseudoscientific claims the “demarcation problem.” Popper,

Kuhn, Lakatos, Musgrave, Thagard, Laudan, Lutz, and many other authors

have proposed different demarcation principles. While there is no consensus

on what constitutes a definitive demarcation principle across all disciplines,

modern philosophers of science generally agree that, for a theory to be scientific,

it must be falsifiable in some wide or narrow sense.14

12 The reader should not conclude from these statements that the Socratic method has no place in
science. The Socratic method can be helpful at certain steps of the scientific method, such as
sharpening definitions (phenomenological step) and making all assumptions explicit (theoretical
step).

13 Some of the greatest scientists in history had limited mathematical training. The mathematical
knowledge of Michael Faraday (1791–1867) did not reach beyond the simplest of algebra. What
made Faraday one of the most influential scientists of all time was his ability to design
experiments that elucidated causal mechanisms (Rao 2000, p. 281).

14 This statement is hardly an endorsement of strict falsificationism a la Popper (1994b, pp. 82–86).
It is merely an acknowledgement that scientists never cease to design experiments in an attempt
to falsify a theory, if not with absolute certainty, at least with a sufficient degree of confidence.
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The principle of falsification is deeply ingrained in statistics and economet-

rics (Dickson and Baird 2011). Frequentist statisticians routinely use Fisher’s

p-values and Neyman–Pearson’s framework for falsifying a proposed hypoth-

esis (H0), following a hypothetico-deductive argument of the form (using

standard sequent notation):

H0 ) P½datajH0� ≥ α;P½datajH0� < α ‘:H0; ð1Þ

where data denotes the observation made and α denotes the targeted false

positive rate (Perezgonzalez 2017). The above proposition is analogous to

a modus tollens syllogism, with the caveat that H0 is not rejected with certainty,

as it would be the case in a mathematical proof. For this reason, this proposition

is categorized as a stochastic proof by contradiction, where certainty is replaced

by a preset confidence level (Imai 2013; Balsubramani and Ramdas 2016).

Failure to reject H0 does not validate H0, but rather attests that there is not

sufficient empirical evidence to cast significant doubt on the truth ofH0 (Reeves

and Brewer 1980).15 Accordingly, the logical structure of statistical hypothesis

testing enforces a Popperian view of science in quantitative disciplines,

whereby a hypothesis can never be accepted, but it can be rejected (i.e.,

falsified), see Wilkinson (2013). Popper’s influence is also palpable in

Bayesian statistics, see Gelman and Rohilla-Shalizi (2013).

Statistical falsification can be applied to different types of claims. For the

purpose of this Element, it is helpful to differentiate between the statistical

falsification of: (a) associational claims; and (b) causal claims. The statistical

falsification of associational claims occurs during the phenomenological step of

the scientific method (e.g., when a researcher finds that “X is correlated with Y”),

and it can be done on the sole basis of observational evidence. The statistical

falsification of causal claims may also occur at the phenomenological step of the

scientific method (e.g., when a laboratory finds that “X causes Y” in the absence of

any theory to explain why), or at the falsification step of the scientific method

(involving a theory, of the form “X causes Y through a mechanismM”), but either

way the statistical falsification of a causal claim always requires an experiment.16

Most statisticians and econometricians are trained in the statistical falsification of

After over 100 years, physicists continue to test Einstein’s theory of relativity in ingenious ways,
and it is almost certain that one day they will succeed (for a recent falsification exercise, see
Pogosian et al. 2022).

15 In the words of Fisher (1971): “In relation to any experiment we may speak of this hypothesis as
the null hypothesis, and it should be noted that the null hypothesis is never proved or established,
but is possibly disproved, in the course of experimentation. Every experiment may be said to
exist only in order to give the facts a chance of disproving the null hypothesis.”

16 As explained in Section 4.3, under certain assumptions the experiment used to falsify a causal
claim may be simulated.
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associational claims and have a limited understanding of the statistical falsification

of causal claims in general, and the statistical falsification of causal theories in

particular. The statistical falsification of causal claims requires the careful design

of experiments, and the statistical falsification of causal theories requires testing

the hypothesized causal mechanism, which in turn requires testing independent

effects along the causal path. The next section delves into this important topic.
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4 Causal Inference

The academic field of causal inference studies methods to determine the

independent effect of a particular variable within a larger system. Assessing

independent effects is far from trivial, as the fundamental problem of causal

inference illustrates.

Consider two random variables X ; Yð Þ, where a researcher wishes to estimate

the effect of X on Y . Let E½Y jdo½X ¼ x0�� denote the expected outcome of Y

when X is set to x0 (control), and let E½Y jdo½X ¼ x1�� denote the expected

outcome of Y when X is set to x1 (treatment). The average treatment effect

(ATE) of X on Y is defined as

ATE ¼ E½Y jdo½X ¼ x1�� � E½Y jdo½X ¼ x0��: ð2Þ

In general, ATE is not equal to the observed difference,

E½Y jX ¼ x1� � E½Y jX ¼ x0�. The observed difference between two states of X

is

E½Y jX ¼x1� � E½Y jX ¼x0� ¼ E½YX¼x1 jX ¼x1� � E½YX¼x0 jX ¼x0�
¼ E½YX¼x1 jX ¼x1� � E½YX¼x0 jX ¼x1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ATT

þ E½YX¼x0 jX ¼x1� � E½YX¼x0 jX ¼x0�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SSB

;

ð3Þ

where E½YX¼x0 jX ¼ x1� is a counterfactual expression, representing the

expected value of Y in an alternative universe where X is set to x0, given that

what actually happened is X ¼ x1. Naturally, E½YX¼xi jX ¼ xi� ¼ E½Y jX ¼ xi�,
for i 2 0; 1gf , because the counterfactual expression (the left-hand side)

replicates what actually happened (right-hand side).

The above equation splits the observed difference into two components, the so-

called average treatment effect on the treated (ATT) and self-selection bias (SSB).

The fundamental problem of causal inference is that computing ATT requires

estimating the counterfactual E½YX¼x0 jX ¼ x1�, which is not directly observable.
What is directly observable is the difference E½Y jX ¼ x1� � E½Y jX ¼ x0�, how-
ever that estimand of ATT is biased by SSB. The impact of SSB on

E½Y jX ¼ x1� � E½Y jX ¼ x0� can be significant, to the point of misleading the

researcher. Following the earlier example, suppose that Y is the number of

drownings in a month, X ¼ x0 represents low ice cream monthly sales, and

X ¼ x1 represents high ice cream monthly sales. The value of

E½Y jX ¼ x1� � E½Y jX ¼ x0� is high, because of the confounding effect of

warm weather, which encourages both, ice cream sales and swimming. While

high ice cream sales are associated with more drownings, it would be incorrect

to infer that the former is a cause of the latter. The counterfactual
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E½YX¼x0 jX ¼ x1� represents the expected number of drownings in amonth of high

ice cream sales, should ice cream sales have been suppressed. The value of that

unobserved counterfactual is arguably close to the observed E½YX¼x1 jX ¼ x1�,
hence ATT ≈ 0, and the observed difference is largely due to SSB.

Studies designed to establish causality propose methods to nullify SSB.

These studies can be largely grouped into three types: interventional studies,

natural experiments, and simulated interventions.

4.1 Interventional Studies

In a controlled experiment, scientists assess causality by observing the effect on Y

of changing the values of X while keeping constant all other variables in the

system (a do-operation). Hasan Ibn al-Haytham (965–1040) conducted the first

recorded controlled experiment in history, in which he designed a camera obscura

to manipulate variables involved in vision. Through various ingenious experi-

ments, Ibn al-Haytham showed that light travels in a straight line, and that light

reflects from the observed objects to the observer’s eyes, hence falsifying the

extramission theories of light by Ptolemy, Galen, and Euclid (Toomer 1964). This

example illustrates a strong prerequisite for conducting a controlled experiment:

the researcher must have direct control of all the variables involved in the data-

generating process.When that is the case, the ceteris paribus condition is satisfied,

and the difference in Y can be attributed to the change in X .

When some of the variables in the data-generating process are not under direct

experimental control (e.g., the weather in the drownings example), the ceteris

paribus condition cannot be guaranteed. In that case, scientists may execute

a randomized controlled trial (RCT), whereby members of a population (called

units or subjects) are randomly assigned either to a treatment or to a control group.

Such random assignment aims to create two groups that are as comparable as

possible, so that any difference in outcomes can be attributed to the treatment. In

an RCT, the researcher carries out the do-operation on two random samples of

units, rather than on a particular unit, hence enabling a ceteris paribus compari-

son. The randomization also allows the researcher to quantify the experiment’s

uncertainty via Monte Carlo, by computing the standard deviation on ATEs from

different subsamples. Scientists may keep secret from participants (single-blind)

and researchers (double-blind) which units belong to each group, in order to

further remove subject and experimenter biases. For additional information, see

Hernán and Robins (2020) and Kohavi et al. (2020).

We can use the earlier characterization of the fundamental problem of causal

inference to show how random assignment achieves its goal. Consider the

situation where a researcher assigns units randomly to X ¼ x0 (control group)

15Causal Factor Investing
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and X ¼ x1 (treatment group). Following with the earlier example, this is

equivalent to tossing a coin at the beginning of every month, then setting

X ¼ x0 (low ice cream sales) on heads and setting X ¼ x1 (high ice cream

sales) on tails. Because the intervention on X was decided at random, units in

the treatment group are expected to be undistinguishable from units in the

control group, hence

E½YX¼x0 jX ¼ x1� ¼ E½YX¼x0 jX ¼ x0� ¼ E½YX¼x0 � ¼ E½Y jdo½X ¼ x0�� ð4Þ

E½YX¼x1 jX ¼ x1� ¼ E½YX¼x1 jX ¼ x0� ¼ E½YX¼x1 � ¼ E½Y jdo½X ¼ x1��: ð5Þ

Random assignment makes YX¼x0 and YX¼x1 independent of the observed X .

The implication from the first equation above is that SSB ¼ 0. In the drownings

example, E½YX¼x0 jX ¼ x1� ¼ E½YX¼x0 jX ¼ x0�, because suppressing ice cream

sales would have had the same expected outcome (E½YX¼x0 �) on both, high sales
months and low sales months, since the monthly sales were set at random to

begin with (irrespective of the weather).

In conclusion, under random assignment, the observed difference matches

both ATT and ATE:

E½Y jX ¼x1� � E½Y jX ¼x0�
¼ E½YX¼x1 jX ¼x1� � E½YX¼x0 jX ¼x1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ATT

þ E½YX¼x0 jX ¼x1� � E½YX¼x0 jX ¼x0�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SSB

¼ E
�
Y jdo½X ¼x1�

�� E
�
Y jdo½X ¼x0�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ATE

þ E
�
Y jdo½X ¼x0�

�� E
�
Y jdo½X ¼x0�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SSB¼0

¼ ATE: ð6Þ

4.2 Natural Experiments

Sometimes interventional studies are not possible, because they are unfeasible,

unethical, or prohibitively expensive. Under those circumstances, scientists may

resort to natural experiments or simulated interventions. In a natural experiment

(also known as a quasi-experiment), units are assigned to the treatment and

control groups determined randomly by Nature or by other factors outside the

influence of scientists (Dunning 2012). Although natural experiments are obser-

vational (as opposed to interventional, like controlled experiments and RCT)

studies, the fact that the assignment of units to groups is assumed random enables

the attribution of the difference in outcomes to the treatment. Put differently,

Nature performs the do-operation, and the researcher’s challenge is to identify the

two random groups that enable a ceteris paribus comparison. Common examples

of natural experiments include (1) regression discontinuity design (RDD); (2)
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crossover studies (COSs); and (3) difference-in-differences (DID) studies. Case–

control studies,17 cohort studies,18 and synthetic control studies19 are not proper

natural experiments because there is no random assignment of units to groups.

Regression discontinuity design studies compare the outcomes of: (a) units

that received treatment because the value of an assignment variable fell barely

above a threshold; and (b) units that escaped treatment because the value of an

assignment variable fell barely below a threshold. The critical assumption

behind RDD is that groups (a) and (b) are comparable in everything but the

slight difference in the assignment variable, which can be attributed to noise,

hence the difference in outcomes between (a) and (b) is the treatment effect. For

further reading, see Imbens and Lemieux (2008).

A COS is a longitudinal study in which the exposure of units to a treatment is

randomly removed for a time, and then returned. COS assumes that the effect of

confounders does not change per unit over time. When that assumption holds,

COSs have two advantages over standard longitudinal studies. First, in a COS

the influence of confounding variables is reduced by each unit serving as its own

control. Second, COS are statistically efficient, as they can identify causal

effects in smaller samples than other studies. COS may not be appropriate

when the order of treatments affects the outcome (order effects). Sufficiently

long wash-out periods should be observed between treatments, to avoid that

past treatments confound the estimated effects of new treatments (carryover

effects). COS can also have an interventional counterpart, when the random

assignment is under the control of the researcher. To learn more, see Jones and

Kenward (2003).

When factors other than the treatment influence the outcome over time,

researchers may apply a pre-post with-without comparison, called a DID study.

In a DID study, researchers compare two differences: (i) the before-after difference

17 In a case–control study, a researcher compares the incidence of a supposed causal attribute
among two groups of units that differ in an outcome. For example, one group may be composed
of individuals with lung cancer, and a second group by individuals without lung cancer. From the
estimation of the odds ratio, the researcher may theorize (without proof) that smoking contrib-
utes to lung cancer.

18 A cohort study is a longitudinal study where a researcher categorizes a cohort (a group of units
who share a characteristic) into different subgroups based on their exposure to a particular factor,
and then follows them over time to assess the incidence of the outcome of interest. Cohort studies
can be retrospective (historical) or prospective (ongoing). Retrospective cohort studies are
usually cheap and fast, however they are more vulnerable to publication bias and survivorship
bias, among other problems.

19 A synthetic control study is a longitudinal study where a researcher generates a synthetic control
group. To do that, the researcher finds the linear combination of untreated units that is most
similar to a treated unit before treatment, according to some common features. The treatment
effect is computed as the difference between the observed outcome of the treated unit and the
predicted outcome of the treatment on the synthetic control group. For a discussion, see Abadie
(2021).
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in outcomes of the treatment group; and (ii) the before-after difference in outcomes

of the control group (where the random assignment of units to groups is done by

Nature). By computing the difference between (i) and (ii), DID attempts to remove

from the treatment effect (i) all time-varying factors captured by (ii). DID relies on

the “equal-trends assumption,” namely that no time-varying differences exist

between treatment and control groups. The validity of the equal-trends assumption

can be assessed in a number of ways. For example, researchers may compute

changes in outcomes for the treatment and control groups repeatedly before the

treatment is actually administered, so as to confirm that the outcome trendsmove in

parallel. For additional information, see Angrist and Pischke (2008, pp. 227–243).

4.3 Simulated Interventions

The previous sections explained how interventional studies and natural experiments

use randomization to achieve the ceteris paribus comparisons that result in

SSB ¼ 0. Each approach demanded stronger assumptions than the previous one,

with the corresponding cost in terms of generality of the conclusions. For instance,

the conclusions from a controlled experiment aremore general than the conclusions

from an RCT, because in the former researchers control the variables involved in

the data-generating process in such a way that ceteris paribus comparisons are

clearer. Likewise, the conclusions from an RCT are more general than the conclu-

sions from a natural experiment, because in an RCT the researcher is in control of

the random assignment, and the researcher performs the do-operation.

In recent decades, the field of causal inference has added one more tool to the

scientific arsenal: when interventional studies and natural experiments are not

possible, researchers may still conduct an observational study that simulates

a do-operation, with the help of a hypothesized causal graph. The hypothesized

causal graph encodes the information needed to remove from observations the

SSB introduced by confounders, under the assumption that the causal graph is

correct. The price to pay is, as one might have expected, accepting stronger

assumptions that make the conclusions less general, but still useful.

Simulated interventions have two main applications: First, subject to

a hypothesized causal graph, a simulated intervention allows researchers to

estimate the strength of a causal effect from observational studies. Second,

a simulated intervention may help falsify a hypothesized causal graph, when the

strength of one of the effects posited by the graph is deemed statistically

insignificant (once again, a modus tollens argument, see Section 3.4).

It is important to understand the difference between establishing a causal

claim and falsifying a causal claim. Through interventional studies and natural

experiments, subject to some assumptions, a researcher can establish or falsify
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a causal claim without knowledge of the causal graph. For this reason, they are

the most powerful tools in causal inference. In simulated interventions, the

causal graph is part of the assumptions, and one cannot prove what one is

assuming. The most a simulated intervention can achieve is to disprove

a hypothesized causal graph, by finding a contradiction between an effect

claimed by a graph and the effect estimated with the help of that same graph.

This power of simulated interventions to falsify causal claims can be very

helpful in discovering through elimination the causal structure hidden in the

data.

4.3.1 Causal Discovery

Causal discovery can be defined as the search for the structure of causal relation-

ships, by analyzing the statistical properties of observational evidence (Spirtes

et al. 2001). While observational evidence almost never suffices to fully charac-

terize a causal graph, it often contains information helpful in reducing the number

of possible structures of interdependence among variables. At the very least, the

extra-statistical information assumed by the causal graph should be compatible

with the observations. Over the past three decades, statisticians have developed

numerous computational methods and algorithms for the discovery of causal

relations, represented as directed acyclic graphs (see Glymour et al. 2019). These

methods can be divided into the following classes: (a) constraint-based algo-

rithms; (b) score-based algorithms; and (c) functional causal models (FCMs).

Constraint-based methods exploit conditional independence relationships in

the data to recover the underlying causal structure. Two of the most widely used

methods are the PC algorithm (named after its authors, Peter Spirtes and Clark

Glymour), and the fast causal inference (FCI) algorithm (Spirtes et al. 2000).

The PC algorithm assumes that there are no latent (unobservable) confounders,

and under this assumption the discovered causal information is asymptotically

correct. The FCI algorithm gives asymptotically correct results even in the

presence of latent confounders.

Score-based methods can be used in the absence of latent confounders. These

algorithms attempt to find the causal structure by optimizing a defined score

function. An example of a score-based method is the greedy equivalence search

(GES) algorithm. This heuristic algorithm searches over the space of Markov

equivalence classes, that is, the set of causal structures satisfying the same

conditional independences, evaluating the fitness of each structure based on

a score calculated from the data (Chickering 2003). The GES algorithm is

known to be consistent under certain assumptions, which means that as the

sample size increases, the algorithm will converge to the true causal structure

19Causal Factor Investing
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with probability approaching 1. However, this does not necessarily mean that

the algorithm will converge to the true causal structure in finite time or with

a reasonable sample size. GES is also known to be sensitive to the initial

ordering of variables.

FCMs distinguish between different directed-acyclic graphs in the same

equivalence class. This comes at the cost of making additional assump-

tions on the data distribution than conditional independence relations.

A FCM models the effect variable Y as Y ¼ f X ; εð Þ, where f is a function
of the direct causes X and ε is noise that is independent of X . Subject to the

aforementioned assumptions, the causal direction between X and Y is identifi-

able, because the independence condition between ε and X holds only for the

true causal direction (Shimizu et al. 2006; Hoyer et al. 2009; and Zhang and

Hyvaerinen 2009).

Causal graphs can also be derived from nonnumerical data. For example,

Laudy et al. (2022) apply natural language processing techniques to news

articles in which different authors express views of the form X→Y . By aggre-

gating those views, these researchers derive directed acyclic graphs that repre-

sent collective, forward-looking, point-in-time views of causal mechanisms.

Machine learning is a powerful tool for causal discovery. Various methods

allow researchers to identify the important variables associated in

a phenomenon, with minimal model specification assumptions. In doing so,

these methods decouple the variable search from the specification search, in

contrast with traditional statistical methods. Examples include mean-decrease

accuracy, local surrogate models, and Shapley values (López de Prado 2020,

pp. 3–4, López de Prado 2022a). Once the variables relevant to a phenomenon

have been isolated, researchers can apply causal discovery methods to propose

a causal structure (identify the links between variables, and the direction of the

causal arrows).

4.3.2 Do-Calculus

Do-calculus is a complete axiomatic system that allows researchers to estimate

do-operators by means of conditional probabilities, where the necessary and

sufficient conditioning variables can be determined with the help of the causal

graph (Shpitser and Pearl 2006). The following sections review some notions of

do-calculus needed to understand this Element. I encourage the reader to learn

more about these important concepts in Pearl (2009), Pearl et al. (2016), and

Neal (2020).
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4.3.2.1 Blocked Paths

In a graph with three variables X ; Y ; Zgf , a variable Z is a confounder with

respect to X and Y when the causal relationships include a structure X← Z→ Y.

A variable Z is a collider with respect to X and Y when the causal relationships

are reversed, that is, X→ Z← Y. Avariable Z is a mediator with respect to X and

Y when the causal relationships include a structure X → Z → Y.20

A path is a sequence of arrows and nodes that connect two variables X and Y ,

regardless of the direction of causation. A directed path is a path where all

arrows point in the same direction. In a directed path that starts in X and ends in

Z, X is an ancestor of Z, and Z is a descendant of X . A path between X and Y is

blocked if either: (1) the path traverses a collider, and the researcher has not

conditioned on that collider or its descendants; or (2) the researcher conditions

on a variable in the path between X and Y , where the conditioned variable is not

a collider. Association flows along any paths between X and Y that are not

blocked. Causal association flows along an unblocked directed path that starts in

treatment X and ends in outcome Y , denoted the causal path. Association

implies causation only if all noncausal paths are blocked. This is the deeper

explanation of why association does not imply causation, and why causal

independence does not imply statistical independence.

Two variablesX and Y are d-separated by a (possibly empty) set of variables S if,

upon conditioning on S, all paths between X and Y are blocked. The set S

d-separates X and Y if and only if X and Y are conditionally independent given

S. For a proof of this statement, see Koller and Friedman (2009, chapter 3). This

important result, sometimes called the global Markov condition in Bayesian net-

work theory,21 allows researchers to assume that SSB ¼ 0, and estimate ATE as

ATE ¼ E½Y jdo½X ¼ x1�� � E½Y jdo½X ¼ x0��
¼ E½E½Y jS;X ¼ x1� � E½Y jS;X ¼ x0��: ð7Þ

The catch is, deciding which variables belong in S requires knowledge of the

causal graph that comprises all the paths between X and Y . Using the above

concepts, it is possible to define various specific controls for confounding

variables, including: (a) the backdoor adjustment; (b) the front-door adjustment;

and (c) the method of instrumental variables (Pearl 2009). This is not

a comprehensive list of adjustments, and I have selected these three adjustments

in particular because I will refer to them in the sections ahead.

20 These concepts are formally defined in Sections 7.1, 7.2, and 7.3.
21 A Bayesian network is directed acyclic graph endowed with a set of conditional probability

distributions. The conditional probability distributions specify the probability of each variable
given its parent variables in the graph.
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4.3.2.2 Backdoor Adjustment

A backdoor path between X and Y is an unblocked noncausal path that connects

those two variables. The term backdoor is inspired by the fact that this kind of

paths have an arrow pointing into the treatment (X ). For example, Figure 2 (left)

contains a backdoor path (colored in red, Y ← Z → X), and a causal path

(colored in green, Y → X). Backdoor paths can be blocked by conditioning on

a set of variables S that satisfies the backdoor criterion. The backdoor criterion

is useful when controlling for observable confounders.22

A set of variables S satisfies the backdoor criterion with regards to treatment

X and outcome Y if the following two conditions are true: (i) conditioning on S

blocks all backdoor paths between X and Y ; and (ii) S does not contain any

descendants of X . Then, S is a sufficient adjustment set, and the causal effect of

X on Y can be estimated as:

P½Y ¼ yjdo½X ¼ x�� ¼
X
s

P½Y ¼ y X ¼ x; S ¼ s�P½S ¼ sj �: ð8Þ

Intuitively, condition (i) blocks all noncausal paths, while condition (ii) keeps

open all causal paths. In Figure 2, the only sufficient adjustment set S is Zgf . Set

S is sufficient because conditioning on Z blocks that backdoor path Y← Z→ X,

and Z is not a descendant of X . The result is that the only remaining association

is the one flowing through the causal path, thus adjusting the observations in

a way that simulates a do-operation on X . In general, there can be multiple

sufficient adjustment sets that satisfy the backdoor criterion for any given graph.

4.3.2.3 Front-Door Adjustment

Sometimes researchers may not be able to condition on a variable that satisfies

the backdoor criterion, for instance when that variable is latent (unobservable).

In that case, under certain conditions, the front-door criterion allows researchers

to estimate the causal effect with the help of a mediator.

X

Y

3Z

1

2

X

Y

3Z

1

2

Figure 2 Example of a causal graph that satisfies the backdoor criterion, before

(left) and after (right) conditioning on Z (shaded node)

22 I use here the nomenclature popularized by Pearl (2009); however, this form of adjustment was
fully developed by Robins (1986) under the term g-formula.
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A set of variables S satisfies the front-door criterion with regards to treatment

X and outcome Y if the following three conditions are true: (i) all causal paths

fromX to Y go through S; (ii) there is no backdoor path between X and S; (iii) all

backdoor paths between S and Y are blocked by conditioning on X . Then, S is

a sufficient adjustment set, and the causal effect of X on Y can be estimated as:

P½Y ¼ yjdo½X ¼ x�� ¼
X
s

P½S ¼ sjX ¼ x�
X
x0

P½Y¼ y S¼ s;X ¼ x0�P½X ¼ x0j �:

ð9Þ
Intuitively, condition (i) ensures that S completely mediates the effect ofX on Y ,

condition (ii) applies the backdoor criterion onX→ S, and condition (iii) applies

the backdoor criterion on S → Y.

Figure 3 provides an example of a causal graph with a latent variable Z

(represented as a dashed oval) that confounds the effect of X on Y . There is

a backdoor path between X and Y (colored in red, Y← Z→ X), and a causal path

(colored in green, X → M → Y). The first condition of the backdoor criterion is

violated (it is not possible to condition on Z), however S ¼ Mgf satisfies the

front-door criterion, because M mediates the only causal path (X → M → Y), the

path betweenX andM is blockedby colliderY (M→Y←Z→X), and conditioning

onX blocks thebackdoor pathbetweenM andY (Y←Z→X→M). The adjustment

accomplishes that the only remaining association is the one flowing through the

causal path.

4.3.2.4 Instrumental Variables

The front-door adjustment controls for a latent confounder when a mediator

exists. In the absence of a mediator, the instrumental variables method allows

researchers to control for a latent confounder Z, as long as researchers can find

a variable W that turns X into a collider, thus blocking the backdoor path

through Z.

AvariableW satisfies the instrumental variable criterion relative to treatment

X and outcome Y if the following three conditions are true: (i) there is an arrow

Z

X1
Y2

M
3 4

Z

X1
Y2

M
3 4

Figure 3 Example of a causal graph that satisfies the front-door criterion, before

(top) and after (bottom) adjustment
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W→ X; (ii) the causal effect ofW on Y is fully mediated by X ; and (iii) there is

no backdoor path between W and Y .

Intuitively, conditions (i) and (ii) ensure thatW can be used as a proxy for X ,

whereas condition (iii) prevents the need for an additional backdoor adjustment

to de-confound the effect ofW on Y . Figure 4 provides an example of a causal

graph with a latent variable Z that confounds the effect of X on Y . There is

a backdoor path between X and Y (colored in red, Y← Z→ X), and a causal path

(colored in green, X → Y). The first condition of the backdoor criterion is

violated (it is not possible to condition on Z), and the first condition of the front-

door criterion is violated (there is no mediator between X and Y ). VariableW is

an instrument, because there is an arrowW→ X (arrow number 4), X mediates

the only causal path fromW to Y (W→ X→ Y), and there is no backdoor path

between W and Y .

Assuming that Figure 4 represents a linear causal model, the coefficient
cov½X ;Y �
cov½X ;X � provides a biased estimate of the effect X → Y, due to the confounding

effect of Z. To estimate the unconfounded coefficient of effect X → Y, the

instrumental variables method estimates first the coefficient of the effect

W → X → Y as the slope of the regression line of Y on W , rYW ¼ cov½Y ;W �
cov½W ;W �,

which is the product of coefficients of effects (3) and (4) in Figure 4. The

coefficient of effect (4) can be estimated from the slope of the regression line of

X on W , rXW ¼ cov½W ;X �
cov½W ;W �. Finally, the adjusted (unconfounded) coefficient of

effect X→ Y can be estimated as rYW
rXW

. For further reading, see Hernán and Robins

(2020, chapter 16).

W X
4

Z

1
Y2

3

W X
4

Z

1
Y2

3

Figure 4 Example of a causal graph with an instrumental variable W , before

(top) and after (bottom) adjustment
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5 Causality in Econometrics

Chen and Pearl (2013) reviewed six of the most popular textbooks in econo-

metrics, concluding that they “deviate significantly from modern standards of

causal analysis.” Chen and Pearl find that most textbooks deny the causal

content of econometric equations, and confuse causation with association.

This section discusses several ways in which the econometrics literature often

misunderstands causality.

5.1 Authors often Mistake Causality for Association

First, consider the joint distribution of X ; Yð Þ, and the standard econo-

metric model, Yt ¼ β0 þ β1Xt þ εt. Second, consider an alternative model with

specification, Xt ¼ γ0 þ γ1Yt þ ζ t. If regression parameters are characteristics

of the joint distribution of X ; Yð Þ, it should be possible to recover one set of

estimates from the other, namely γ̂0 ¼ �β̂ 0=β̂1, γ̂1 ¼ 1=β̂ 1, and ζ̂ ¼ �ε̂=β̂1,

because associational relations are nondirectional. However, least-squares

estimators do not have this property. The parameter estimates from one specifi-

cation are inconsistent with the parameter estimates from the alternative speci-

fication, hence a least-squares model cannot be “just” a statement on the joint

distribution X ; Yð Þ. If a least-squares model does not model association, what

does it model? The answer comes from the definition of the error term, which

implies a directed flow of information. In the first specification, ε represents the

portion of the outcome Y that cannot be attributed to X . This unexplained

outcome is different from ζ , which is the portion of the outcome X that cannot

be attributed to Y . A researcher that chooses the first specification has in mind

a controlled experiment where X causes Y , and he estimates the effect coeffi-

cient β1 under the least-squares assumption that E½εtjXt� ¼ 0, rather than

E½εtjYt� ¼ 0. A researcher that chooses the second specification has in mind

a controlled experiment where Y causes X , and he estimates the effect coeffi-

cient γ1 under the assumption that E½ζ tjYt� ¼ 0, rather than E½ζ tjXt� ¼ 0. The

vast majority of econometric models rely on least-squares estimators, hence

implying causal relationships, not associational relationships (Imbens and

Wooldridge 2009; Abadie and Cattaneo 2018).

By choosing a particular model specification and estimating its parameters

through least-squares, econometricians inject extra-statistical information

consistent with some causal graph. Alternatively, econometricians could

have used a Deming (or orthogonal) regression, a type of errors-in-variables

model that attributes errors to both X and Y . Figure 5 illustrates the regression

lines of: (1) a least-squares model where X causes Y ; (2) a least-squares model

25Causal Factor Investing
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where Y causes X ; and (3) a Deming regression. Only result (3) characterizes the

joint distribution X ; Yð Þ, without injecting extra-statistical information.

The realization that econometric equations model causal relationships

may come as a surprise to many economics students and professionals.

This surprise is understandable, because econometrics textbooks rarely

mention causality, causal discovery, causal graphs, causal mechanisms, or

causal inference. Economists are not trained in the estimation of Bayesian

networks, design of experiments, or applications of do-calculus.23 They are

not taught that the causal graph determines the model’s specification, not the

other way around, hence the identification of a causal graph should always

precede any choice of model specification. Instead, they have been taught

debunked specification-searching procedures, such as the stepwise algorithm

(an instance of selection bias under multiple testing, see Romano and Wolf

2005), the general-to-simple algorithm (see Greene 2012, pp. 178–182), or

model selection through trial and error, see Chatfield (1995). Section 6.4.2.3

expands on this point, in the context of factor investing.

Figure 5 Three regression lines on the same dataset

23 Economists are often taught the method of instrumental variables, however econometrics
textbooks motivate this method as a solution to the correlation between X and ε, once again
comingling association with causation (see Chen and Pearl 2013, section 3.4). While instrumental
variables can be helpful in some cases, they are a limited tool compared to the wide range of
problems tackled by do-calculus.
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5.2 Authors often Misunderstand the Meaning of β

The least-squares method estimates β in the equation Y ¼ Xβþ ε as24

β̂ ¼ ðX 0
X Þ�1X

0
Y ¼ ðX 0

X Þ�1X
0
Xβþ εð Þ ¼ βþ ðX 0

X Þ�1X
0
ε: ð10Þ

For the estimate to be unbiased (E½β̂ jX � ¼ β), it must occur that

E½εjX � ¼ 0. This is known as the exogeneity condition. There are two

approaches for achieving exogeneity. The first approach, called implicit

exogeneity, is to define the error term as ε ≡ Y � E½Y jX �, thus

E½εjX � ¼ E½Y � E½Y jX �jX � ¼ E½Y jX � � E½Y jX � ¼ 0. Under this approach,

E½Y jX � ¼ Y � ε ¼ Xβ, and β has merely a distributional (associational)

interpretation, as the slope of a regression line. This is the approach adopted

by most econometrics textbooks, see for example Greene (2012), Hill et al.

(2011), Kennedy (2008), Ruud (2000), and Wooldridge (2009). A first flaw

of this approach is that it cannot answer interventional questions, hence it is

rarely useful for building theories. A second flaw is that it is inconsistent

with the causal meaning of the least-squares model specification

(Section 5.1).

The second approach, called explicit exogeneity, is to assume that ε

represents all causes of Y that are uncorrelated to X . In this case, exogeneity

is supported by a causal argument, not by an associational definition. When X

has been randomly assigned, as in an RCTor a natural experiment, exogeneity is

a consequence of experimental design. However, in purely observational stud-

ies, the validity of this assumption is contingent on the model being correctly

specified. Under this second approach, E½Y jdo½X �� ¼ Xβ, and β has a causal

interpretation, as the expected value of Y given an intervention that sets the

value of X . More formally,

β ¼ ∂E½Y jdo½X ��
∂X

: ð11Þ

Defending the assumption of correct model specification requires the identifi-

cation of a causal graph consistent with the observed sample. Absent this

information, β loses its causal meaning, and reverts to the simpler associational

interpretation that is inadequate for building theories and inconsistent with

least-squares’ causal meaning.

The ceteris paribus assumption, so popular among economists, is consistent

with the causal interpretation of the estimated β, whereby the model simulates

a controlled experiment. Haavelmo (1944) was among the first to argue that

24 Throughout the Element, when a regression equation does not include an intercept, variable Y is
assumed to have been centered.

27Causal Factor Investing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
39

73
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009397315


most economists imply a causal meaning when they use their estimated β.

Almost 80 years later, most econometrics textbooks continue to teach an

associational meaning of the estimated β that contradicts economists’ interpret-

ation and use. Accordingly, economists are taught to estimate β as if it were an

associational concept, without regard for causal discovery or do-calculus, while

at the same time they interpret and use the estimated β as if it were a causal

concept, leading to spurious claims.

5.3 Authors Often Mistake Association for Causality

Section 5.1 explained how economists often mean causation when they write

about association. Oddly, economists also often mean association when they

write about causation. A case in point is the so-called Granger causality.

Consider two stationary random variables Xtgf and Ytgf . Granger (1969,

1980) proposed an econometric test for (linear) causality, based on the

equation:

Yt ¼ β0 þ
XI

i¼1

βiXt�i þ
XJ
j¼1

γjYt�j þ εt: ð12Þ

According to Granger, X causes Y if and only if at least one of the estimated

coefficients in βif gi¼1;...;I is statistically significant. This approach was later

expanded to multivariate systems, in the form of a vector autoregression

specification, see Hamilton (1994, section 11.2).

The term Granger causality is an unfortunate misnomer. The confusion stems

from Granger’s attempt to define causality in terms of sequential association (a

characteristic of the joint distribution of probability), see Diebold (2007, pp. 230–

231). However, sequentiality is a necessary, non-sufficient condition for causality

(Section 2). Sequential association cannot establish causality, as the latter requires

an interventional or natural experiment (Sections 4.1 and 4.2), and in the absence

of these, a simulated intervention justified by a discovered or hypothesized causal

graph (Section 4.3). For example, a Granger causality test will conclude that

a rooster’s crow (Xt�1) causes the sun to dawn (Yt), because β1 is statistically

significant after controlling for lags of Y . And yet, it is trivial to falsify the claim

that a rooster’s crow is a cause of dawn, by silencing the rooster before dawn, or

by forcing it to crow at midnight (an intervention). A second problem with

Granger causality is that, if both X and Y are caused by Z (a confounder),

Granger’s test will still falsely conclude that X causes Y (see Figure 1). Granger

causality is misleading in a causally insufficient multivariate time series (Peters

et al. 2017, pp. 205–208). A third problem is that the test itself is susceptible to

selection bias, because the selection of lagged variables involves multiple
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testing across a large number of potential specifications that are not informed by

a causal graph, for example through stepwise specification-searching algo-

rithms. A fourth problem is that it assumes that the causal relation must be

linear.

Granger (1969) remains one of the most-cited articles in the econometrics

literature, with over 33,000 citations, and it has become Granger’s second most-

cited article. As Figure 6 illustrates, that publication receives thousands of new

citations each year, and that number keeps rising, with 2,294 publications referen-

cing it in the year 2021 alone. This confusion of association for causality has led to

numerous misinformed claims in the factor investing literature (see Schuller et al.

2021 for a survey of claims based on Granger causality). While Granger causality

may be used as a simple tool to help decide the direction of causal flow between two

unconfounded variables (rather than the existence of causal flow), the field of causal

discovery has developed more sophisticated methods to that purpose (see Peters

et al. 2017, chapter 4).

I cannot end this section without recognizing a few remarkable economists

who, defying the resistance from their peers, have fought to bring the rigor of

causal inference into their field of study. Section 4.3.2.4 already discussed the

method of instrumental variables, first proposed in 1928 by economist

P. G. Wright. Section 5.2 mentioned Haavelmo’s 1944 paper on the meaning

of β, whose insights continue to be ignored today to a large extent (Pearl 2015).

The original idea of the DID approach first appeared in labor economics, see

Ashenfelter and Card (1986). In the year 2021, Joshua Angrist and Guido

Imbens received (in conjunction with David Card) the Nobel Memorial Prize

in Economics in recognition “for their methodological contributions to the

analysis of causal relationships” in the context of natural experiments (see

Section 4.2). Several authors have recently applied the RDD approach to

corporate finance, such as Bronzoni and Iachini (2014), Flammer (2015), and

Malenko and Shen (2016). Angrist and Pischke (2010) have called for

a “credibility revolution,” urging fellow economists to improve the reliability

of their empirical work through the design of interventional studies and

Figure 6 Citations of Granger (1969).

Source: Google Scholar, as of December 1, 2022
25

25 https://scholar.google.com/citations?hl=en&user=Q92731gAAAAJ
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natural experiments. These academics offer a rare but inspiring example that

ought to be emulated throughout the entire field of economics. On the other

hand, asset pricing remains to this day staunchly oblivious to rigorous causal

reasoning. Paraphrasing Leamer (1983), factor researchers have not yet taken

the “con” out of econometrics, with the dire consequences described in the

following section.
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6 Causality in Factor Investing

The previous section outlined the prevailing state of confusion between associ-

ation and causation in the field of econometrics. This section focuses on how

financial economists have often (mis)applied econometrics to factor investing,

leading to a discipline based on shaky foundations and plagued with false

discoveries (Harvey 2017).

Factor investing can be defined as the investment approach that targets the

exposure to measurable characteristics (called “factors”) that presumably

explain differences in the performance of a set of securities.26 This is an

evolution of the Asset Pricing Theory literature,27 inspired by the seminal

work of Schipper and Thompson (1981), that uses factor analysis and principal

component analysis to validate those characteristics (Ferson 2019, p. 130). For

example, proponents of the value factor believe that a portfolio composed of

stocks with a high book-to-market equity (called “value stocks”) will outper-

form a portfolio composed of stocks with a low book-to-market equity (called

“growth stocks”). In search of supportive empirical evidence, factor researchers

generally follow one of two procedures. In the first procedure, inspired by Fama

and MacBeth (1973), a researcher gathers returns of securities (Y ), explanatory

factors (X ), and control variables (Z). The researcher then estimates through

least-squares the parameters (also called factor exposures or factor loadings) of

a cross-sectional regression model with general form Y ¼ Xβþ Zγþ ε for each

time period, and computes the mean and standard deviation of those parameter

estimates across all periods (Cochrane 2005, pp. 245–251). In the second

procedure, inspired by Fama and French (1993), a researcher ranks securities

in an investment universe according to a characteristic, and carries out two

parallel operations on that ranking: (a) partition the investment universe into

subsets delimited by quantiles, and compute the time series of average returns

for each subset; and (b) compute the returns time series of a long-short portfolio,

where top-ranked securities receive a positive weight and bottom-ranked

securities receive a negative weight. A researcher interested in a multifactor

26 The term “factor investing” is another misnomer. The word “factor” has its origin in the Latin
language, with the literal meaning of “doer” or “maker.” Semantically, a factor is a cause
responsible, in total or in part, for an effect. Ironically, the factor investing literature has not
attempted to explain what does or makes the observed cross-section of expected returns.

27 The field of Asset Pricing Theory uses the term “theory” in the mathematical sense, not in the
scientific sense (see Section 3.2). For example, modern portfolio theory (MPT) derives results in
risk diversification from the set of axioms proposed by Harry Markowitz’s landmark 1952 paper.
Modern portfolio theory results are true in a mathematical sense, by virtue of proven theorems,
however they are not necessarily true in a physical sense. Modern portfolio theory was not
derived through the process described in Section 3. Assessing the scientific validity of MPT’s
claims would require falsification of hypothesized causal mechanisms through testable
implications (Section 3.3).
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analysis will apply operations (a) and (b) once for each factor (for operation

(a), this means further partitioning each subset). For each subset, the

researcher then estimates through least-squares the parameters of a time-

series regression model with general form Y ¼ Xβþ Zγþ ε, where Y repre-

sents one time series computed in (a), X represents the (possibly several) time

series computed in (b), and Z represents the times series of control variables

chosen by the researcher.

The goal of both procedures is not to explain changes in average returns

over time (a time-series analysis), but rather to explain differences in average

returns across securities. The first procedure accomplishes this goal through

averaging cross-sectional regressions coefficients computed on explanatory

factors. The second procedure accomplishes this goal through a regression of

quantile-averaged stock returns against the returns attributed to neutralized

factors. Following the econometric canon, researchers state their case by

showing that the estimated value of β is statistically significant, with the

interpretation that investors holding securities with exposure to factor X are

rewarded beyond the reward received from exposure to factors in Z.

6.1 Causal Content

Factor researchers almost never state explicitly the causal assumptions that they

had in mind when they made various modeling decisions, and yet those assump-

tions shape their analysis. A different set of causal assumptions would have led

to different data pre-processing, choice of variables, model specification, choice

of estimator, choice of tested hypotheses, interpretation of results, portfolio

design, etc. Some of these causal assumptions are suggested by the data, and

some are entirely extra-statistical. I denote causal content the set of causal

assumptions, whether declared or undeclared, that are embedded in a factor

model’s specification, estimation, interpretation, and use. Factor investing strat-

egies reveal part of their causal content in at least four ways.

First, the causal structure assumed by the researcher determines the model

specification. A factor investing strategy is built on the claim that exposure to

a particular factor (X ) causes positive average returns above the market’s (Y ),

and that this causal effect (X → Y, a single link in the causal graph) is strong

enough to be independently monetizable through a portfolio exposed to X .

A researcher only interested in modelling the joint distribution X ; Yð Þ would
surely use more powerful techniques from the machine learning toolbox than

a least-squares estimator, such as nonparametric regression methods (e.g.,

random forest regression, support-vector regression, kernel regression, or

regression splines). Factor researchers’ choice of least-squares, explanatory
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variables, and conditioning variables, is consistent with the causal structure that

they wish to impose (Section 5.1).28

Second, the estimation of β prioritizes causal interpretation over predictive

power. If factor researchers prioritized predictive power, they would: (a) use

estimators with lower mean-square error than least-squares, by accepting some

bias in exchange for lower variance (Mullainathan and Spiess 2017; Athey and

Imbens 2019). Examples of such estimators include ridge regression, LASSO,

and elastic nets; or (b) use as loss function ameasure of performance, such as the

Sharpe ratio (for a recent example, see Cong et al. 2021). So not only

researchers believe that Y is a function of X (a causal concept), but they are

also willing to sacrifice as much predictive power (an associational concept)

as necessary to remove all bias from β̂. The implication is that factor

researchers assume that the errors are exogenous causes of Y , uncorrelated

to X (the explicit exogeneity assumption). Factor researchers’ choice of

least-squares is consistent with their interpretation of the estimated β as a causal

effect (Section 5.2).

Third, factor researchers place strong emphasis on testing the null hypothesis

of H0: β ¼ 0 (no causal effect) against the alternative H1: β 6¼ 0 (causal effect),

and expressing their findings through p-values. In contrast, machine-learners

are rarely interested in estimating individual p-values, because they assess the

importance of a variable in predictive (associational) terms, with the help of

associational concepts such as mean-decrease accuracy (MDA), mean-decrease

impurity (MDI), and Shapley values (López de Prado 2018). Factor researchers’

use of p-values is consistent with the claim of a significant causal effect.29

Fourth, factor investors build portfolios that overweight stocks with a high

exposure to X and underweight stocks with a low exposure to X , at the tune of

one separate portfolio for each factor. A factor investor may combine those

separate factor portfolios into an aggregate multifactor portfolio, however the

reason behind that action is diversification, not monetizing a multifactor

prediction. This approach to building portfolios stands in contrast with how

other investors use predictions to form portfolios. Investors who rely on

predictive models build portfolios exposed to the residual (ε) rather than

portfolios exposed to a particular factor (X ), hence for them biased estimates

of β are not a concern. Factor researchers’ approach to portfolio design is

28 This is not to say that least-squares is the only approach to model causality. The point is that least-
squares in particular implies that Y is a function of X (a particular direction of causation), unlike
other types of regression methods, such as Deming regression.

29 Such a causal claim is conditional on satisfying several assumptions, including that the model is
correctly specified, and that p-values are adjusted for multiple testing. Section 6.4 explains why
factor investing models typically do not satisfy these assumptions.
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consistent with the monetization of a causal claim rather than a predictive

(associational) claim.

In conclusion, the objective of a factor model such as Y ¼ Xβþ Zγþ ε is not

to predict Y conditioned onX and Z (E½Y jX ; Z�), but to estimate the causal effect

of X on Y E
�
Y

� ��do½X ��Þ, which can be simulated on the observed sample by

controlling for confounder Z. The implication is that researchers use factors as if

they had assumed explicit exogeneity, and their chosen model specification

Y ¼ Xβþ Zγþ ε is consistent with a particular causal graph (see Section 5.2),

of which Figure 7 is just one possibility among several. It is the responsibility of

the researcher to declare and justify what particular causal graph informed the

chosen specification, such that the exogeneity assumption holds true.

6.2 Omitted Mediation Analysis

Several papers have proposed alternative explanations for various factors,

which can be grouped into two broad themes: (a) investment-based explan-

ations; and (b) production-based explanations. For example, Fama and French

(1996) argue that stocks approaching bankruptcy experience a price correction,

which in turn is reflected as high value (a high book-to-market ratio). According

to this explanation, investors holding portfolios of high-value stocks demand

a premium for accepting a non-diversifiable risk of bankruptcy. Berk et al.

(1999) argue that, should firms’ assets and growth options change in predictable

ways, that would impart predictability to changes in a firm’s systematic risk and

its expected return. Johnson (2002) explains that the momentum effect in stock

returns does not necessarily imply investor irrationality, heterogeneous infor-

mation, or market frictions, because simulated efficient markets for stocks

exhibit price momentum when expected dividend growth rates vary over

time. Gomes et al. (2003) simulate a dynamic general equilibrium economy,

concluding that the size and value factors can be consistent with a single-factor

conditional CAPM. Zhang (2005) simulates an economy that exhibits many

empirical irregularities in the cross-section of returns. Sagi and Seasholes

(2007) claim that backtested performance of momentum strategies is particu-

larly good for firms with high revenue growth, low costs, or valuable growth

options. Liu et al. (2009), Li et al. (2009), and Li and Zhang (2010) associate

Z

X1
Y2

3

Figure 7 Causal graph for which the specification Y ¼ Xβþ Zγþ ε estimates

the causal effect of X on Y , while adjusting for the confounding effect of Z
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market anomalies with corporate investment levels, using Tobin’s q-ratio (the

ratio between a physical asset’s market value and its replacement value). Liu

and Zhang (2008) study the association between momentum portfolio returns

and shifts in factor loadings on the growth rate of industrial production,

concluding that the growth rate of industrial production is a priced risk factor.

See Cochrane (2005, pp. 442–453) for additional explanations of factors, some

of which are highly speculative or mutually contradictory.

These explanations, in the form of plausible economic rationales, do not rise

to the level of scientific theories, for three primary reasons outlined in Sections 3

and 4. First, the authors of these explanations have not declared the causal

relationship hypothetically responsible for the observed phenomenon. Second,

the authors have not elucidated the ideal interventional study that would capture

the causal effect of interest. A Gedankenexperiment, even if unfeasible, has the

benefit of communicating clearly the essence of the causal relationship, and the

counterfactual implications under various scenarios. Third, when the ideal

interventional study is unfeasible, the authors have not proposed a method to

estimate the causal effect through observational data (a natural experiment, or

a simulated intervention). Consequently, while these economic rationales are

plausible, they are also experimentally unfalsifiable. Following Pauli’s criter-

ion, the explanations proposed by factor investing researchers are “not even

wrong” (Lipton 2016). As discussed in Section 3, scientific knowledge is built

on falsifiable theories that describe the precise causal mechanism by which X

causes Y . Value investors may truly receive a reward (Y ) for accepting an

undiversifiable risk of bankruptcy (X ), but how precisely does this happen,

and why is book-to-market the best proxy for bankruptcy risk? Despite of factor

models’ causal content, factor researchers rarely declare the causal mechanism

by which X causes Y . Factor papers do not explain precisely how a firm’s (or

collection of firms’) exposure to a factor triggers a sequence of events that ends

up impacting stock average returns; nor do those papers derive a causal structure

from the observed data; nor do those papers analyze the causal structure (forks,

chains, immoralities); nor do those papers make an effort to explain the role

played by the declared variables (treatment, confounder, mediator, collider,

etc.); nor do those papers justify their chosen model specification in terms of

the identified causal structure (an instance of concealed assumptions).

6.2.1 Example of Factor Causal Mechanism

For illustrative purposes only, and without a claim of accuracy, consider the

following hypothetical situation. A researcher observes the tendency of prices

(pt) to converge toward the value implied by fundamentals (vt). The researcher
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hypothesizes that large divergences between prices and fundamental values

(HML) trigger the following mechanism: (1) As investors observe HML, they

place bets that the divergence will narrow, which cause orderflow imbalance

(OI); (2) the persistent OI causes permanent market impact, which over some

time period (h) pushes prices toward fundamental values (PC, for price

convergence).30 An investment strategy could be proposed, whereby a fund

manager acts upon (1) before (2) takes place.

As stocks rally, investors are more willing to buy them, making some of them

more expensive relative to fundamentals, and as stocks sell off, investors are

less willing to buy them, making some of them cheaper relative to fundamen-

tals. The researcher realizes that the HML → OI → PC mechanism is disrupted

by diverging price momentum (MOM), that is, the momentum that moves prices

further away from fundamentals, thus contributing to further increases of HML.

The researcher decides to add this information to the causal mechanism as

follows: (3) high MOM affects future prices in a way that delays PC; and (4)

aware of that delay, investors are wary of acting upon HML in the presence of

high MOM (i.e., placing a price-convergence bet too early). Accordingly, MOM

is a likely confounder, and the researcher must block that backdoor path

HML ← MOM → PC. Fortunately, MOM is observable, thus eligible for back-

door adjustment (Section 4.3.2.2). But even ifMOMwere not observable, a front-

door adjustment would be possible, thanks to the mediator OI (Section 4.3.2.3).

The above description is consistent with the following system of structural

equations:

OIt :¼ f1½pt � vt�|fflfflfflffl{zfflfflfflffl}
HMLt

þ ε1;t ð13Þ

ptþh � vt|fflfflfflfflffl{zfflfflfflfflffl}
PCtþh

:¼ f2½OIt� þ f3½MOMt� þ ε2;tþh ð14Þ

HMLt :¼ f4½MOMt� þ ε3;t ð15Þ

where fi½:�f gi¼1;2;3;4 are the functions associated with each causal effect (the

arrows in a causal graph), and εi;:
� �

i¼1;2;3 are exogenous unspecified causes.

The symbol “:¼” indicates that the relationship is causal rather than associ-

ational, thus asymmetric (e.g., the right-hand side influences the left-hand side,

and not the other way around). The researcher applies causal discovery tools on

a representative dataset, and finds that the derived causal structure is compatible

30 I use the acronyms HML and MOM, common in the literature, without loss of generality. Fama
and French (1993) and Carhart (1997) proposed some of the best-known definitions of value and
momentum, however, this causal theory is congruent with alternative definitions.
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with his theorized data-generating process. Using the discovered causal graph,

he estimates the effect of HML on OI, and the effect of OI on PC, with

a backdoor adjustment for MOM. The empirical analysis suggests that HML

causes PC, and that the effect is mediated by OI. Encouraged by these results,

the researcher submits an article to a prestigious academic journal.

Upon review of the researcher’s journal submission, a referee asks why the

model does not control for bid-ask spread (BAS) and market liquidity factors

(LIQ). The referee argues that OI is not directly observable, and its estimation

may be biased by passive traders. For instance, a large fund may decide to place

passive orders at the bid for weeks, rather than lift the offers, in order to conceal

their buying intentions. Those trades will be labeled as sale-initiated by the

exchange, even though the persistent OI comes from the passive buyer

(a problem discussed in Easley et al. 2016). The referee argues that BAS is

more directly observable, and perhaps a better proxy for the presence of

informed traders. The researcher counter-argues that he agrees that (5) OI

causes market makers to widen BAS, however (6) PC also forces market makers

to realize losses, as prices trend, and market makers’ reaction to those losses is

also the widening of BAS. Two consequences of BAS widening are (7) lower

liquidity provision and (8) greater volatility. Accordingly, BAS is a collider, and

controlling for it would open the noncausal path of association

HML ← OI → BAS ← PC (see Section 6.4.2.2). While the referee is not

convinced with the relevance of (6), he is satisfied that the researcher has clearly

stated his assumptions through a causal graph. Readers may disagree with the

stated assumptions, which the causal graph makes explicit, however, under the

proposed causal graph everyone agrees that controlling for either BAS or LIQ or

VOL would be a mistake.

The final causal path and causal graph are reflected in Figure 8. By providing

this causal graph and mechanism, the researcher has opened himself to falsifi-

cation. Referees and readers may propose experiments designed to challenge

every link in the causal graph. For example, researchers can test link (1) through

a natural experiment, by taking advantage that fundamental data is updated at

random time differences between stocks. The treatment effect for link (1) may

be estimated as the difference in OI over a given period between stocks where

HML has been updated versus stocks where HML has not been updated yet.

Links (2), (5), (6), (7), and (8) may be tested through controlled and natural

experiments similar to those mentioned in Section 3.3. Link (3) is

a mathematical statement that requires no empirical testing. To test link (4),

a researcher may split stocks with similar HML into two groups (a cohort study,

see Section 4.2): the first group is composed of stocks whereMOM is increasing

HML, and the second group is composed of stocks where MOM is reducing
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HML. Since the split is not random, the researchermust verify that the two groups

are comparable in all respects other than MOM’s direction. The treatment effect

may be measured as the two groups’ difference in: (a) sentiment extracted from

text, such as analyst reports, financial news, social media (see Das and Chen

2007; Baker and Wurgler 2007); (b) sentiment from surveys; or (c) exposures

reports in SEC 13F forms. If link (4) is true, MOM dampens investors’ appetite

for HML’s contrarian bets, which is reflected in the groups’ difference.

These experiments are by no means unique, and many alternatives exist. The

opportunities for debunking this theory will only grow as more alternative

datasets become available. Contrast this openness with the narrow opportunities

offered by factor investing articles currently published in journals, which are

essentially limited to: (a) in-sample replication of a backtest, and (b) structural

break analyses for in-sample versus out-of-sample performance.

6.3 Causal Denial

Associational investment strategies do not have causal content. Examples

include statistical arbitrage (Rad et al. 2016), sentiment analysis (Katayama

and Tsuda 2020), or alpha capture (Isichenko 2021, pp. 129–154). Authors of

associational investment strategies state their claims in terms of distributional

properties, for example, stationarity, ergodicity, normality, homoscedasticity,

serial independence, and linearity. The presence of causal content sets factor

investing strategies apart, because these investment strategies make causal

claims. A causal claim implies knowledge of the data-generating process

MOM

HML

4

PC

3

OI
1 2

BAS

5 6

LIQ

7

VOL

8

Figure 8 Example of a hypothesized causal mechanism of HML (in the box)

within a hypothesized causal graph
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responsible, among other attributes, for all distributional properties claimed by

associational studies. Causal claims therefore require stronger empirical evi-

dence and level of disclosure than mere associational claims. In the context of

investment strategies, this translates among other disclosures into: (i) making all

causal assumptions explicit through a causal graph; (ii) stating the falsifiable

causal mechanism responsible for a claimed causal effect; and (iii) providing

empirical evidence in support of (i) and (ii).

Should factor researchers declare causal graphs and causal mechanisms, they

would enjoy two benefits essential to scientific discovery. First, causal graphs like

the one displayed in Figure 8 would allow researchers to make their causal

assumptions explicit, communicate clearly the role played by each variable in the

hypothesized phenomenon, and apply do-calculus rules for debiasing estimates.

This information is indispensable for justifying the proposed model specification.

Second, stating the causal mechanism would provide an opportunity for falsifying

a factor theory without resorting to backtests. Even if a researcher p-hacked the

factor model, the research community would still be able to design creative

experiments aimed at testing independently the implications of every link in the

theorized causal path, employing alternative datasets. Peer-reviewers’ work would

not be reduced to mechanical attempts at reproducing the author’s calculations.

The omission of causal graphs and causal mechanisms highlights the logical

inconsistency at the heart of the factor investing literature: on one hand, researchers

inject causal content into their models, and use those models in a way consistent

with a causal interpretation (Section 6.1). On the other hand, researchers almost

never state a causal graph or falsifiable causalmechanism, in denial or ignorance of

the causal content of factor models, hence depriving the scientific community of

the opportunity to design experiments that challenge the underlying theory and

assumptions (Section 6.2). Under the current state of causal confusion, researchers

report the estimated β devoid of its causal meaning (the effect on Y of an

intervention on X ), and present p-values as if they merely conveyed the strength

of associations of unknown origin (causal and noncausal combined).

The practical implication of this logical inconsistency is that the factor

investing literature remains at a phenomenological stage, where spurious claims

of investment factors are accepted without challenge. Put simply: without

a causal mechanism, there is no investment theory; without investment theory,

there is no falsification; without falsification, investing cannot be scientific.

This does not mean that investment factors do not exist; however, it means that

the empirical evidence presented by factor researchers is insufficient and flawed by

scientific standards. Causal denial (or ignorance) is a likely reason for the prolifer-

ation of spurious claims in the factor investing studies, and the poor performance

delivered by the factor-based investment funds, for the reasons explained next.
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6.4 Spurious Investment Factors

The out-of-sample performance of factor investing has been disappointing. One

of the broadest factor investing indices is the Bloomberg–Goldman Sachs Asset

Management US Equity Multi-Factor Index (BBG code: BGSUSEMF

<Index>). It tracks the long/short performance of the momentum, value, quality,

and low-risk factors in US stocks (Bloomberg 2021). Its annualized Sharpe ratio

from May 2, 2007 (the inception date) to December 2, 2022 (this Element’s

submission date) has been 0.29 (t-stat = 1.16, p-value = 0.12), and the average

annualized return has been 1.13 percent. This performance does not include: (a)

transaction costs; (b) market impact of order execution; (c) cost of borrowing

stocks for shorting positions; (d) management and incentive fees. Also, this

performance assigns a favorable 0 percent risk-free rate when computing the

excess returns. Using the 6-month US Government bond rates (BBG code:

USGG6M <Index>) as the risk-free rates, the Sharpe ratio turns negative.

Figure 9 plots the performance of this broad factor index from inception,

without charging for the above costs (a)–(d). After more than fifteen years of

out-of-sample performance, factor investing’s Sharpe ratio is statistically insig-

nificant at any reasonable rejection threshold.
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Figure 9 Performance of the Bloomberg – Goldman Sachs Asset Management

US Equity Multi-Factor Index, since index inception (base 100 onMay 2, 2007)
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It takes over 31 years of daily observations for an investment strategy with an

annualized Sharpe ratio of 0.29 to become statistically significant at a 95 percent

confidence level (see Bailey and López de Prado (2012) for details of this

calculation). If the present Sharpe ratio does not decay (e.g., due to overcrowd-

ing, or hedge funds preempting factor portfolio rebalances), researchers will

have to wait until the year 2039 to reject the null hypothesis that factor investing

is unprofitable, and even then, they will be earning a gross annual return of

1.13 percent before paying for costs (a)–(d).

There is a profound disconnect between the unwavering conviction

expressed by academic authors and the underwhelming performance experi-

enced by factor investors. A root cause of this disconnect is that factor investing

studies usually make spurious claims, of two distinct types.

6.4.1 Type-A Spuriosity

I define an empirical claim to be of type-A spurious when a researcher mistakes

random variability (noise) for signal, resulting in a false association. Selection

bias under multiple testing is a leading cause for type-A spuriosity. Type-A

spuriosity has several distinct attributes: (a) it results in type-1 errors (false

positives); (b) for the same number of trials, it has a lower probability to take

place as the sample size grows (López de Prado 2022b); and (c) it can be

corrected through multiple-testing adjustments, such as Hochberg (1988) or

Bailey and López de Prado (2014).

In the absence of serial correlation, the expected return of a type-A spurious

investment factor is zero, before transaction costs and fees (Bailey et al. 2014).

Next, I discuss the twomain reasons for type-A spuriosity in the factor investing

literature.

6.4.1.1 P-Hacking

The procedures inspired by Fama and MacBeth (1973) and Fama and French

(1993) involve a large number of subjective decisions, such as fit window length,

fit frequency, number of quantiles, definition of long-short portfolios, choice of

controls, choice of factors, choice of investment universe, data cleaning and

outlier removal decisions, start and end dates, etc. There are millions of potential

combinations to pick from, many of which could be defended on logical grounds.

Factor researchers routinely run multiple regressions before selecting a model

with p-values below their null-rejection threshold. Authors report those minimal

p-values without adjusting for selection bias under multiple testing, a malpractice

known as p-hacking. The problem is compounded by publication bias, whereby

journals accept papers without accounting for: (a) the number of previously
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rejected papers; and (b) the number of previously accepted papers. Harvey et al.

(2016) conclude that “most claimed research findings in financial economics are

likely false.” The consequence is, factor investments do not perform as expected,

and results are not replicated out-of-sample.

Other fields of research have addressed p-hacking decades ago. Statisticians

have developed methods to determine the familywise error rate (Hochberg

1988; White 2000; Romano and Wolf 2005) and false discovery rate

(Benjamini and Hochberg 1995).31 Medical journals routinely demand the

logging, reporting, and adjustment of results from all trials. Since 2008, labora-

tories are required by U.S. law to publish the results from all trials within a year

of completion of a clinical study (Section 801 of the Food and Drug

Administration Amendments Act of 2007).

While most disciplines are taking action to tackle the replication crisis, the

majority of members of the factor investing research community remain

unwaveringly committed to p-hacking. There are two possible explanations for

their choice: ignorance and malpractice. Factor researchers have not been trained

to control formultiple testing. To this day, all major econometrics textbooks fail to

discuss solutions to the problem of conducting inference whenmore than one trial

has taken place. As Harvey (2017, p. 1402) lamented, “our standard testing

methods are often ill equipped to answer the questions that we pose. Other fields

have thought deeply about testing” (emphasis added). However, ignorance alone

does not explain why some factor investing authors argue that multiple testing is

not a problem, against the advice of mathematical societies (Wasserstein and

Lazar 2016). Harvey (2022) explains the stance of p-hacking deniers by pointing

at the commercial interests that control financial academia.

6.4.1.2 Backtest Overfitting

A backtest is commonly defined as a historical simulation of how a systematic

strategy would have performed in the past (López de Prado 2018, chapter 11).

Factor researchers often present backtests as evidence that a claimed causal effect is

real. However, a backtest is neither a controlled experiment, nor an RCT, nor

a natural experiment, because it does not allow the researcher to intervene on the

data-generating process (a do-operation), and a simulation does not involve the

researcher’s or Nature’s random assignment of units to groups. Accordingly,

a backtest has no power to prove or disprove a causal mechanism. At best,

a backtest informs investors of the economic potential of an investment strategy,

31 For an introduction to the concepts of familywise error rate and false discovery rate, see Efron
and Hastie (2021, chapter 15).
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under the assumption that history repeats itself (a distributional inductive belief,

hence associational and noncausal).

Factor researchers rarely report or adjust for the number of trials involved in

a backtest (Fabozzi and López de Prado 2018; López de Prado and Lewis 2019;

López de Prado 2019). As demonstrated by the False Strategy Theorem, it is

trivial to overfit a backtest through selection bias under multiple testing, making

it hard to separate signal from noise (Bailey et al. 2014; Bailey and López de

Prado 2014, 2021).

The outcome from a backtest is yet another associational claim. Replicating that

associational claimdoes not prove that the association is causal, or that the noncausal

association is true. Two researchers can independently mistake the same noise for

signal, particularly when they narrow their modeling choices to linear regressions

with similar biases. Obtaining similar backtest results on different sets of securities

(e.g., from a different sector, or geography, or time period) does not constitute causal

evidence, as those findings can be explained in terms of the same noncausal

association being present on the chosen sets, or in terms of a statistical fluke.

6.4.2 Type-B Spuriosity

An association is true if it is not type-A spurious, however that does not mean that

the association is causal. I define an empirical claim to be type-B spurious when

a researcher mistakes association for causation. A leading cause for type-B

spuriosity is systematic biases due to misspecification errors. A model is mis-

specified when its functional form is incongruent with the functional form of the

data-generating process, and the role played by the variables involved. Type-B

spuriosity has several distinct attributes: (a) it results in type-1 errors and type-2

errors (false positives and false negatives); (b) it can occur with a single trial; (c) it

has a greater probability to take place as the sample size grows, because the

noncausal association can be estimated with lower error; and (d) it cannot be

corrected through multiple-testing adjustments. Its correction requires the injec-

tion of extra-statistical information, in the form of a causal theory.

The expected return of a type-B spurious investment factor is misattributed,

as a result of the biased estimates. Also, type-B spurious investment factors can

exhibit time-varying risk premia (more on this in Section 6.4.2.1).

Type-A and type-B spuriosity are mutually exclusive. For type-B spuriosity

to take place, the association must be noncausal but true, which precludes that

association from being type-A spurious. While type-A spuriosity has been

studied with some depth in the factor investing literature, relatively little has

been written about type-B spuriosity. Next, I discuss the main reasons for type-

B spuriosity in factor investing.
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6.4.2.1 Under-Controlling

Consider a data-generating process where one of its equations is

Y :¼ Xβþ Zγþ u, such that γ 6¼ 0 and u is white noise. The process is

unknown to a researcher, who attempts to estimate the causal effect of X on Y

by fitting the equation Y ¼ Xβþ ε on a sample Xt; Ytf gt¼1;...;T produced by the

process. This incorrect specification choice makes ε ¼ Zγþ u, and

E½εjX � ¼ E½Zγþ ujX � ¼ γE½ZjX �. However, if Z is correlated with X ,

E½ZjX � 6¼ 0, hence E½εjX � 6¼ 0. This is a problem, because the least-squares

method assumes E½εjX � ¼ 0 (the exogeneity assumption, see Section 5.2).

Missing one or several relevant variables biases the estimate of β, potentially

leading to spurious claims of causality. A false positive occurs when jβ̂ j≫ 0 for

β ≈ 0, and a false negative occurs when β̂ ≈ 0 for jβj≫ 0.

Econometrics textbooks do not distinguish between types of missing vari-

ables (see, for example, Greene 2012, section 4.3.2), yet not all missing

variables are created equal. There are two distinct cases that researchers

must consider. In the first case, the second equation of the data-generating

process is Z :¼ Xδþ v, where δ 6¼ 0 and v is white noise. In this case, Z is

a mediator (X causes Z, and Z causes Y ), and the chosen specification biases the

estimation of the direct effect β̂ ; however, β̂ can still be interpreted as a total

causal effect (through two causal paths with the same origin and end). The

causal graph for this first case is displayed at the top of Figure 10. In the second

case, the second equation of the data-generating process is X :¼ Zδþ v, where

δ 6¼ 0 and v is white noise. In this case, Z is a confounder (Z causes X and Y ), the

chosen specification also biases β̂ , and β̂ does not measure a causal effect

(whether total or direct).32 The causal graph for this second case is displayed

at the bottom of Figure 10.

X

Z�
Y�

�

X

Y

�
Z

�

�

Figure 10 Variable Z as mediator (top) and confounder (bottom)

32 This example illustrates once again that a causal graph conveys extra-statistical information, in
this case through the direction of the causal link between X and Z. The correct model specifica-
tion depends on the direction implied by the proposed theory.
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Assuming that the white noise is Gaussian, the expression E½β̂ jX � reduces to

E½β̂ jX � ¼ ðX 0
X Þ�1X

0
E½Xβþ Zγþ ujX � ¼

βþ γδ 1þ δ2
� 	�1 ¼ βþ θ ð16Þ

where θ ¼ γδ 1þ δ2
� 	�1

is the bias due to the missing confounder. The

Appendix contains a proof of the above proposition. The intuition behind θ is

that a necessary and sufficient condition for a biased estimate of β is that γ 6¼ 0

and δ 6¼ 0, because when both parameters are nonzero, variable Z is

a confounder.

A first consequence of missing a confounder is incorrect performance

attribution and risk management. Part of the performance experienced by the

investor comes from amisattributed risk characteristic Z, which should have been

hedged by a correctly specified model. The investor is exposed to both, causal

association (from β), as intended by the model’s specification, and noncausal

association (from θ), which is not intended by the model’s specification.

A second consequence of missing a confounder is time-varying risk premia.

Consider the case where the market rewards exposure to X and Z (β > 0, γ > 0).

Even if the two risk premia remain constant, changes over time in δ

will change β̂ . In particular, for a sufficiently negative value of δ, then β̂ < 0.

Performance misattribution will mislead investors into believing that the market

has turned to punish exposure to risk characteristic X , when in reality their

losses have nothing to do with changes in risk premia. The culprit is a change in

the covariance between the intended exposure (X ) and the unintended exposure

that should have been hedged (Z). Authors explain time-varying risk premia as

the result to changes in expected market returns (e.g., Evans 1994; Anderson

2011; and Cochrane 2011), and asset managers’ marketing departments justify

their underperformance in terms of temporary changes in investor or market

behavior. While these explanations are plausible, they seem to ignore that time-

varying risk premia is consistent with a missing confounder (an arguably more

likely and parsimonious, hence preferable, explanation). For example, consider

the causal graph in Figure 8, where MOM confounds the estimate of the effect

of HML on PC. If an asset manager under-controls for MOM, the value

investment strategy will be exposed to changes in the covariance between

MOM and HML. The asset manager may tell investors that the value strategy

is losing money because of a change in value’s risk premium, when the correct

explanation is that the product is defective, as a result of under-controlling.

Changes in the covariance between MOM and HML have nothing to do with

value’s or momentum’s true risk premia, which remain unchanged (like the
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direct causal effects, HML → PC and MOM → PC). This flaw of type-B

spurious factor investing strategies makes them untrustworthy.

The partial correlations method allows researchers to control for observable

confounders when the causal effect is linear and the random variables jointly

follow an elliptical (including multivariate normal) distribution, multivariate

hypergeometric distribution, multivariate negative hypergeometric distribution,

multinomial distribution, or Dirichlet distribution (Baba et al. 2004). A researcher

is said to “control” for the confounding effect of Z when he adds Z as a regressor

in an equation set to model the effect of X on Y . Accordingly, the new model

specification for estimating the effect of X on Y is Y ¼ Xβþ Zγþ ε. This is

a particular application of the more general backdoor adjustment

(Section 4.3.2.2), and by far the most common confounder bias correction

method used in regression analysis. This adjustment method relies on a linear

regression, thus inheriting its assumptions and limitations. In particular, the

partial correlations method is not robust when the explanatory variables exhibit

high correlation (positive or negative) with each other (multicollinearity).

6.4.2.2 Over-Controlling

The previous section explained the negative consequences of under-controlling

(e.g., missing a confounder). However, over-controlling is not less pernicious.

Statisticians have been trained for decades to control for any variable Z associ-

ated with Y that is not X (Pearl and MacKenzie 2018, pp. 139, 152, 154, 163),

regardless of the role of Z in the causal graph (the so-called omitted variable

problem). Econometrics textbooks dismiss as a harmless error the inclusion of

an irrelevant variable, regardless of the variable’s role in the causal graph. For

example, Greene (2012, section 4.3.3) states that the only downside to adding

superfluous variables is a reduction in the precision of the estimates. This grave

misunderstanding has certainly led to countless type-B spurious claims in

economics.

In recent years, do-calculus has revealed that some variables should not be

controlled for, even if they are associated with Y . Figure 11 shows two examples

of causal graphs where controlling for Z will lead to biased estimates of the

effect of X on Y .

Common examples of over-controlling include controlling for variables that

are mediators or colliders relative to the causal path from X to Y .33 Controlling

for a collider is a mistake, as it opens a backdoor path that biases the effect’s

33 In the words of Pearl andMacKenzie (2018, p. 276): “[M]istaking a mediator for a confounder is
one of the deadliest sins in causal inference andmay lead to themost outrageous errors. The latter
invited adjustment; the former forbids it.”
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estimation (Berkson’s fallacy, see Berkson 1946). Controlling for a mediator inter-

feres with the mediated effect (X → Z → Y ) and the total causal effect

(X → Z → Y plus X → Y ) that the researcher may wish to assess, leaving only

the direct effectX → Y . In the case of the top causal graph in Figure 11, a researcher

could estimate the mediated effect X → Z → Y as the difference between the total

effect (X → Z → Y plus X → Y ) and the direct effect (X → Y ).

Over-controlling a collider and under-controlling a confounder have the same

impact on the causal graph: allowing the flow of association through a backdoor

path (Section 4.3.2.2). Consequently, over-controlled models can suffer from

the same conditions as under-controlled models, namely (i) biased estimates, as

a result of noncompliance with the exogeneity assumption; and (ii) time-

varying risk premia. Black-box investment strategies take over-controlling to

the extreme. Over-controlling explains why quantitative funds that deploy

black-box investment strategies routinely transition from delivering systematic

profits to delivering systematic losses, and there is not much fund managers or

investors can do to detect that transition until it is too late.

The only way to determine precisely which variables a researcher must control

for, in order to block (or keep blocked) noncausal paths of association, is through

the careful analysis of a causal graph (e.g., front-door criterion and backdoor

criterion). The problem is, factor researchers almost never estimate or declare the

causal graphs associated with the phenomenon under study (Section 6.2). Odds

are, factor researchers have severely biased their estimates of β by controlling for

the wrong variables, which in turn has led to false positives and false negatives.

6.4.2.3 Specification-Searching

Specification-searching is the popular practice among factor researchers of choos-

ing a model’s specification (including the selection of variables and functional

forms) based on the resulting model’s explanatory power. To cite one example,

consider the three-factor model introduced by Fama and French (1993), and the

five-factor model introduced by Fama and French (2015). Fama and French

X

Z�
Y�

�

X

Y�
Z�

�

Figure 11 Variable Z as controlled mediator (top) and controlled collider

(bottom)
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(2015)’s argument for adding two factors to their initial model specificationwas that

“the five-factor model performs better than the three-factor model when used to

explain average returns.”

These authors’ line of argumentation is self-contradictory. The use of

explanatory power (an associational, noncausal concept) for selecting the

specification of a predictive model is consistent with the associational goal

of that analysis; however, it is at odds with the causal content of a factor

model. In the context of factor models, specification-searching commingles

two separate and sequential stages of the causal analysis: (1) causal discovery

(Section 4.3.1); and (2) control (Section 4.3.2). Stage (2) should be informed

by stage (1), not the other way around. Unlike a causal graph, a coefficient of

determination cannot convey the extra-statistical information needed to de-

confound the estimate of a causal effect, hence the importance of keeping

stages (1) and (2) separate.

Stage (1) discovers the causal graph that best explains the phenomenon as

a whole, including observational evidence and extra-statistical information. In

stage (2), given the discovered causal graph, the specification of a factor model

should be informed exclusively by the aim to estimate one of the causal effects (one

of the arrows or causal paths) declared in the causal graph, applying the tools of

do-calculus. In a causalmodel, the correct specification is not the one that predicts Y

best, but the one that debiases β̂ best, for a single treatment variable, in agreement

with the causal graph. Choosing a factor model’s specification based on its

explanatory power incurs the risk of biasing the estimated causal effects. For

example, a researcher may achieve higher explanatory power by combining

multiple causes of Y , at the expense of biasing the multiple parameters’

estimates due to multicollinearity or over-controlling for a collider.34 It is

easy to find realistic causal structures where specification-searching leads to

false positives, and misspecified factor models that misattribute risk and

performance (see Section 7.3).

There are two possible counter-arguments to the above reasoning: (a)

A researcher may want to combine multiple causes of Y in an attempt to

model an interaction effect. However, such attempt is a stage (2) analysis

that should be justified with the causal graph derived from stage (1), showing

that the total effect involves several variables that are observed separately, but

that need to be modeled jointly; and (b) a researcher may want to show that the

two causes are not mutually redundant (a multifactor explanation, see Fama

and French 1996). However, there exist far more sophisticated tools for

34 When the Gauss-Markov assumptions hold, multicollinearity does not introduce bias, and it only
inflates standard errors. However, when those assumptions do not hold, multicollinearity can
amplify the bias introduced by a misspecified model (Kalnins, 2022).
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making that case, such as mutual information or variation of information

analyses (López de Prado 2020, chapter 3).

While specification-searching may involve multiple testing, specification-

searching is not addressed bymultiple testing corrections, as it has to dowith the

proper modeling of causal relationships, regardless of the number of trials

involved in improving the model’s explanatory power. Accordingly,

specification-searching is a source of spuriosity that is distinct from p-hacking,

and whose consequence is specification bias rather than selection bias. As

argued in an earlier section, investors interested in predictive power should

apply machine learning algorithms, which model association, not causation.

6.4.2.4 Failure to Account for Temporal Properties

In the context of time-series analysis, two independent variables may appear to

be associated when: (a) their time series are nonstationary (Granger and

Newbold 1974); and (b) their time series are stationary, however they exhibit

strong temporal properties, such as positively autocorrelated autoregressive

series or long moving averages (Granger et al. 2001). This occurs regardless

of the sample size and for various distributions of the error terms.

Unit root and cointegration analyses help address concerns regarding the

distribution of residuals, however they cannot help mitigate the risk of making

type-B spurious claims. Like their cross-sectional counterparts, time-series

models also require proper model specification through causal analysis, as

discussed in the earlier sections. Section 5.3 exemplified one way in which

econometricians mistake association for causation in time-series models.

6.5 Hierarchy of Evidence

Not all types of empirical evidence presented in support of a scientific claim are

equally strong. The reason is, some types of evidence are more susceptible to being

spurious than other types. Figure 12 ranks the types of empirical evidence often

used in financial research, in accordance with their scientific rigor. Categories

colored in red support associational claims, and hence are phenomenological.

Categories colored in green make use of the formal language of causal inference,

hence enabling the statistical falsification of a causal claim (see Section 3.4).

At the bottom of the hierarchy is the expert opinion, such as the discretionary

view of an investment guru, which relies on rules of thumb and educated

guesses (heuristics) to reach a conclusion. A case study proposes a rationale

to explain multiple aspects of a phenomenon (variative induction), however it

typically lacks academic rigor and suffers from confirmation or selection biases.

An econometric (observational) study, such as an investment factor model or
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backtest, relies primarily on statistical patterns observed on numerous

instances (enumerative induction). Econometric studies can be academically

rigorous, however they are afflicted by the pitfalls explained in Section 6.4.

These three associational types of evidence are highly susceptible to type-A

and type-B spuriosity.

A simulated intervention is qualitatively different from the bottom three

categories because it uses the formal language of causal inference to communi-

cate a falsifiable theory. The deduced causal effects rely on the strong assump-

tion that the causal graph is correct.35 Natural experiments are yet superior to

simulated experiments because the former involve an actual do-operation.

The deduced causal effects rely on the weaker assumption that Nature’s assign-

ment of units to the treatment and control groups has been random. Finally, the

top spot belongs to RCTs, because they offer the greatest level of transparency

and reproducibility. The deduced causal effects rely on the assumption that the

underlying causal mechanism will continue to operate (a form of induction). At

the present, controlled experiments on financial systems are not possible, due to

Rank Type Inference Rigor Example

1 Randomized
controlled trials

Deduction
(with partial
induction)

Very high Algo-wheel experiments
(e.g., Section 3.3)

2 Natural
experiments

Deduction
(with weak
assumptions)

High Market-maker reaction
to random spikes in
order imbalance
(e.g., Section 3.3)

3 Simulated
interventions

Deduction
(with strong
assumptions)

Medium Estimate effect of HML
using a causal graph
(e.g., Section 6.2.1)

4 Econometric
(observational)
studies

Enumerative
induction

Low Factor investing
literature; backtested
investment strategies
(e.g., Section 6.4.1)

5 Case studies Variative induction Very low Broker report / analysis

6 Expert opinion Heuristic Anecdotal Investment guru’s
prediction

Figure 12 Hierarchy of evidence in financial research, ranked by scientific rigor

35 I use here the term “strong assumption” to denote assumptions whose validity implies the
validity of other (weaker) assumptions. However, the validity of weak assumptions does not
imply the validity of strong assumptions. For example, the validity of a causal graph is a strong
assumption that implies weaker assumptions, such as invariance, stationarity, and ergodicity.
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the complexity of these systems, but also due to ethical and regulatory

considerations.

The reader should not conclude from Figure 12 that associational evidence is

useless. As explained in Section 3.1, associations play a critical role in the

phenomenological step of the scientific method. Furthermore, the causal mechan-

ism embedded in a theory implies the existence of key associations which, if not

found, falsify the theory (see Section 3.3). In standard sequent notation, the claim

that C ) A is not enough to assert A ) C, however it is enough to assert that

:A ) :C, where C stands for causation and A stands for association. The

reason is, causation is a special kind of association (i.e., the kind that flows

through a causal path), hence the absence of association is enough to debunk the

claim of causation by modus tollens.

Figure 12 does not include out-of-sample evidence as a category, because “out-

of-sample” is not a type of causal evidence but rather a description of when the data

was collected or used. Evidence collected out-of-sample is of course preferable to

evidence collected in-sample, as the former is more resilient to type-A spuriosity,

however evidence collected out-of-sample is not necessarily more resilient to type-

B spuriosity. For example, a researcher may collect out-of-sample evidence of the

correlation between stocks and bonds, and from that measurement be tempted to

deduce that changes in one’s price cause changes in the other’s price. While

a causal link between stocks and bonds would be a possible explanation for the

observed association, the existence of correlation does not suffice to claim a direct

causal relationship, regardless of whether the measurement was taken in-sample or

out-of-sample.
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7 Monte Carlo Experiments

As explained in Section 6.4.2, factor model specification errors can lead to

false positives and false negatives. This section presents three instances of

causal structures where the application of standard econometric procedures

leads to mistaking association with causation, and ultimately to type-B

spurious factor claims. Standard econometric procedures are expected to

perform equally poorly on more complex causal structures.

7.1 Fork

Three variables X ; Y ; Zgf form a fork when variable Z is a direct cause of

variable X and variable Y (see Figure 13). Consider a researcher who wishes

to model Y as a function of X . In that case, Z is said to be a confounding

variable because not controlling for the effect of Z on X and Y will bias the

estimation of the effect of X on Y . Given a probability distribution P, the

application of Bayesian network factorization on the fork represented by

Figure 13 yields36:

P½X ; Y ; Z� ¼ P½Z�P½X jZ�P½Y jZ� ð17Þ

which implies a (noncausal) association between X and Y , since

P½X ; Y � ¼
X
Z

P½Z�P½X jZ�P½Y jZ� 6¼ P½X �P½Y �: ð18Þ

This is an example of noncausal association, because X and Y are associated

through the backdoor path Y ← Z → X , even though there is no causal path

between X and Y . The effect of conditioning by Z is equivalent to simulating

a do-operation (an intervention), because it blocks the backdoor path, result-

ing in the conditional independence of X and Y ,

X

Y

Z

1

2

X

Z

1

Y
2

Figure 13 Causal graph with a confounder Z, before (left) and after (right)

control

36 For an introduction to the calculus of Bayesian network factorization, see Pearl et al. (2016,
pp. 29–32) and Neal (2020, pp. 20–22).
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P½X ; Y jZ� ¼ P½X ; Y ; Z�
P½Z� ¼ P½X jZ�P½Y jZ�: ð19Þ

Conditioning by variable Z de-confounds P½X ; Y � in this causal graph, however
not in other causal graphs. The widespread notion that econometricians should

condition (or control) for all variables involved in a phenomenon is misleading,

as explained in Section 6.4.2.2. The precise de-confounding variables are

determined by do-calculus rules (see Section 4.3.2). The above conclusions

can be verified through the following numerical experiment. First, draw 5,000

observations from the data-generating process characterized by the structural

equation model,

Zt :¼ ξt ð20Þ

Xt :¼ Zt þ �t ð21Þ

Yt :¼ Zt þ ζ t ð22Þ

where ξ t; �t; ζ tgf are three independent random variables that follow a

standard Normal distribution. Second, fit on the 5,000 observations the linear

equation,

Yt ¼ αþ βXt þ εt: ð23Þ

Figure 14 reports the results of the least-squares estimate. Following the

econometric canon, a researcher will conclude that β̂ is statistically significant.

Figure 14 False positive due to missing confounder Z
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Given the causal content injected by the researcher through the least-squares

model specification, a statistically significant β̂ implies the statement “X causes

Y ,” not the statement “X is associated with Y” (Section 5.2). If the researcher

intended to establish association, he should have used an associational model,

such as Pearson’s correlation coefficient, or orthogonal regression (Section 5.1).

At the same time, Figure 13 shows that there is no causal path from X to Y . The

claim of statistical significance is type-B spurious because Y is not a function of

X , as implied by the model’s specification. This is the effect of missing a single

confounder.

As explained in Section 6.4.2.1, it is possible to remove the confounder-

induced bias by adding Z as a regressor (the partial correlations method),

Yt ¼ αþ βXt þ γZt þ εt ð24Þ

Figure 15 reports the result of this adjustment. With the correct model specifi-

cation, the researcher will conclude that X does not cause Y . The code for this

experiment can be found in the Appendix.

7.2 Immorality

Three variables X ; Y ; Zgf form an immorality when variable Z is directly

caused by variable X and variable Y (see Figure 16). Consider a researcher

who wishes to model Y as a function of X . In that case, Z is said to be a collider

variable.

Figure 15 De-confounding through the partial correlations method
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Colliders should be particularly concerning to econometricians because

controlling for the effect of Z on X and Y biases the estimation of the effect

of X on Y . Given a probability distribution P, the application of Bayesian

network factorization on the immorality represented by Figure 16 yields:

P½X ; Y ; Z� ¼ P½X �P½Y �P½ZjX ; Y �: ð25Þ

There is no association between X and Y because

P½X ; Y � ¼
X
Z

P½X �P½Y �P½ZjX ; Y � ¼ P½X �P½Y �
X
Z

P½ZjX ; Y � ¼ P½X �P½Y �:

ð26Þ

However, conditioning on Z opens the backdoor path between X and Y that Z

was blocking Y → Z ← Xð Þ. The following analytical example illustrates this

fact. Consider the data-generating process

Xt :¼ �t ð27Þ

Yt :¼ ζ t ð28Þ

Zt :¼ Xt þ Yt þ ξ t ð29Þ

where ξ t; �t; ζ tgf are three independent random variables that follow a standard

Normal distribution. Then, the covariance between X and Y is

Cov½X ; Y � ¼ E½ X � E½Xð �Þ Y � E½Yð �Þ� ¼ E½XY � ¼ E½X �E½Y � ¼ 0 ð30Þ

The problem is, a researcher who (wrongly) conditions on Z will find a negative

covariance between X and Y , even though there is no causal path between X and

Y , because

Cov½X ; Y jZ� ¼ � 1

3
ð31Þ

The Appendix contains a proof of the above proposition. Compare the causal

graph in Figure 16 with the causal graph in Figure 13. Figure 13 has a structure

X ← Z → Y , where not controlling for confounder Z results in under-controlling.

X

Z

1

Y
2

X

Z

1

Y
2

Figure 16 Causal graph with a collider Z, with (left) and without (right) control
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The direction of causality is reversed in Figure 16, transforming the confoun-

der into a collider. In the structure X → Z ← Y , controlling for Z results in

over-controlling. This is an instance of Berkson’s fallacy, whereby

a noncausal association is observed between two independent variables, as

a result of conditioning on a collider (Pearl 2009, p. 17).

This finding is problematic for econometricians because the direction of

causality cannot always be solely determined by observational studies

(Peters et al. 2017, pp. 44–45), and solving the confounder-collider conun-

drum often requires the injection of extra-statistical (beyond observational)

information. Causal graphs inject the required extra-statistical information,

by making explicit assumptions that complement the information contrib-

uted by observations.37 Accordingly, the statistical and econometric mantra

“data speaks for itself” is in fact misleading, because two econometricians

who rely solely on observational evidence can consistently reach contradict-

ing conclusions from the analysis of the same data. With a careful selection

of colliders, a researcher can present evidence in support of any type-B

spurious investment factor. The correct causal treatment of a collider is to

indicate its presence and explain why researchers should not control for it.

A key takeaway is that researchers must declare and justify the hypothesized

causal graph that supports their chosen model specification, or else submit to

the healthy skepticism of their peers.

We can verify the above conclusions with the following numerical experi-

ment. First, draw 5,000 observations from the above data-generating process.

Second, fit on the 5,000 observations the linear equation

Yt ¼ αþ βXt þ γZt þ εt ð32Þ

Figure 17 reports the results of the least-squares estimate. Following the

econometric canon, a researcher will conclude that β̂ is statistically significant.

This claim of statistical significance is type-B spurious because Y is not

a function of X , as implied by the model’s specification. This is the effect of

controlling for a collider.

We can remove the bias induced by collider Z by excluding that variable from

the model’s specification,

Yt ¼ αþ βXt þ εt ð33Þ

37 In the absence of an interventional study or a natural experiment, the statement X causes Y is an
assumption, which may be consistent with, however not proved by, observational evidence
(Section 4.3).
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Figure 18 reports the results of this adjustment. Note that the misspecified

model delivered higher explanatory power, hence specification-searching

would have misled the researcher into a false positive. With the correct model

specification, the researcher will conclude that X does not cause Y . The code for

this experiment can be found in the Appendix.

Figure 17 False positive due to adding collider Z

Figure 18 Debiasing by removing collider Z
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7.3 Chain

Three variables X ; Y ; Zgf form a chain when variable Z mediates the causal

flow from variable X to variable Y (see Figure 19). Consider a researcher who

wishes to model Y as a function of X . In that case, Z is said to be a mediator

variable.

Given a probability distribution P, the application of Bayesian network

factorization on the chain represented by Figure 19 yields:

P½X ; Y ; Z� ¼ P½X �P½ZjX �P½Y jZ� ð34Þ

which implies an association between X and Y , since

P½X ; Y � ¼
X
Z

P½X �P½ZjX �P½Y jZ� 6¼ P½X �P½Y � ð35Þ

There is no backdoor path in Figure 19. This is an example of association with

causation, because X and Y are associated only through the causal path

mediated by Z. Like in the case of a fork, the effect of conditioning by Z is

equivalent to simulating a do-operation (an intervention), resulting in the

conditional independence of X and Y ,

P½X ; Y jZ� ¼ P½X ; Y ; Z�
P½Z� ¼ P½X �P½ZjX �P½Y jZ�

P½Z� ¼ P½X ; Z�
P½Z� P½Y jZ� ¼ P½X jZ�P½Y jZ�

ð36Þ

The problem with conditioning on a mediator is that it may disrupt the very

causal association that the researcher wants to estimate (an instance of over-

controlling, see Section 6.4.2.2), leading to a false negative. Making matters

more complex, conditioning on a mediator can also lead to a false positive. This

statement can be verified through the following numerical experiment. First,

draw 5,000 observations from the data-generating process characterized by the

structural equation model

Z Y
2

X
1

Z Y
2

X
1

Figure 19 Causal graph with mediator Z, before (top)

and after (bottom) control
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Xt :¼ �t ð37Þ

Wt :¼ ηt ð38Þ

Zt :¼ Xt þWt þ ξt ð39Þ

Yt :¼ Zt þWt þ ζ t ð40Þ

where ξt; �t; ζ t; ηtgf are four independent random variables that follow

a standard Normal distribution. Figure 20 displays the relevant causal

graph.38 Second, fit on the 5,000 observations the linear equation

Yt ¼ αþ βXt þ γZt þ εt: ð41Þ

Figure 21 reports the results of the least-squares estimate. While it is true that X

causes Y (through Z), this result is still a false positive, because the reported

association did not flow through the causal path X → Z→ Y . The reason is, Z

also operates as a collider toX andW , and controlling forZ has opened the backdoor

path X → Z ← W → Y . This is the reason β̂≪ 0, despite of all effects being

positive. This phenomenon is known as the mediation fallacy, which involves

conditioning on the mediator when the mediator and the outcome are con-

founded (Pearl and MacKenzie 2018, p. 315). This experiment also illustrates

Simpson’s paradox, which occurs when an association is observed in several

groups of data, but it disappears or reverses when the groups are combined

(Pearl et al. 2016, pp. 1–6).

Following the rules of do-calculus, the effect of X on Y in this causal graph

can be estimated without controls. The reason is, the noncausal path throughW

is already blocked by Z. Controlling forW is not strictly necessary to debias β̂ ,

however it can help improve the precision of the estimates. The following

model specification produces an unbiased estimate of β:

X Z1

Y
W 4

3
2

X Z1

Y
W 4

3
2

Figure 20 A confounded mediator (Z), with (left) and without (right) control

38 The reader may find this diagram familiar, from Section 4.3.2.4. Should Z be the treatment
variable, X would be an instrumental variable capable of de-confounding the effect of Z on Y
from the bias introduced by W. However, in this case Z is a mediator, and X is the treatment
variable, not an instrument.
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Yt ¼ αþ βXt þ εt ð42Þ

Figure 22 reports the results. Note that the correct model specification has much

lower explanatory power: the adjusted R-squared drops from 0.784 to 0.144,

and the F-statistic drops from 9,069 to 840.8. A specification-searching

researcher would have chosen and reported the wrong model, because it has

Figure 21 False positive due to adding a confounded mediator Z

Figure 22 De-confounding by removing the confounded mediator
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higher explanatory power, resulting in a misspecified model that misattributes

risk and performance (Section 6.4.2.3).

With the proper model specification, as informed by the declared causal graph,

the researcher correctly concludes that X causes Y , and that β̂ ≫ 0. The code for

this experiment can be found in the Appendix.

7.4 An Alternative Explanation for Factors

Consider the influential three-factor and five-factor models proposed by Fama

and French (1993) and Fama and French (2015). These journal articles, hence-

forth referred to as FF93 and FF15 respectively, have inspired and served as

template for thousands of academic papers purporting the discovery of hundreds

of factors. FF93 postulates that the cross-section of average stock returns is

partly explained by a linear function of three factors, namely the broad market,

size (quantified as stock price times number of shares), and value (quantified as

book-to-market equity). FF15 added to this mix two quality-inspired factors,

profitability and investment, on the premise of improving the model’s explana-

tory power. The model specifications proposed by FF93 and FF15 raise several

objections: First, the authors fail to report and adjust for all the trials carried out

before selecting their model, thus p-hacking has likely taken place

(Section 6.4.1.1). Second, the authors justify the proposed specifications in

terms of explanatory power, instead of a causal graph, thus the model is likely

misspecified due to specification-searching (Section 6.4.2.3). Third, the authors

ignore known macroeconomic confounders, such as inflation, GDP, stage of the

business cycle, steepness of the yield curve, etc. Strangely, section 2.1.2 of FF93

makes explicit mention to the confounding effect of business cycles on size, and

yet that confounder is inexplicably absent in the model. This points to a missing

confounder (Section 6.4.2.1). Fourth, it is well documented that there is an

interaction between the momentum and value factors (Barroso and Santa-Clara

2015). This interaction could be explained by a confounding relation between

momentum and value, making momentum another likely missing confounding

variable. Fifth, the authors do not provide the causal mechanism responsible for

the reported observations, in denial of the causal content of their model, hence

obstructing mediation analysis and falsification efforts (Section 6.3).

Carhart (1997) (henceforth C97) expanded FF93 by adding momentum as

a fourth factor; however, the justification for that expansion was that the four-

factor model achieved higher explanatory power (an associational argument),

not that controlling for momentum de-confounded the estimate of value’s causal

effect. This is the same self-contradictory argument that FF15 used to add the

two quality factors (Section 6.4.2.3). As demonstrated in Section 7.3, a correctly
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specified model can deliver lower explanatory power than a misspecified model

on the same dataset. Improving on FF93’s explanatory power does not make

C97’s model better specified, or its estimates less biased. Furthermore, the

de-confounding control variable (momentum) is highly correlated with the

confounded variable (value), thus exchanging confounder bias for multi-

collinearity. There are better ways of debiasing value’s causal effect estimate.

Instead of the partial correlations method, authors could apply the backdoor

adjustment (or some other do-calculus adjustment), in order to avoid the

multicollinearity caused by the inversion of that covariance matrix.

There is a plausible sixth objection to the specification of FF93, FF15, and

C97. Suppose that (1) a company’s stock returns and size are independent

variables; and (2) both variables influence the company’s book-to-market

equity (a collider). In this case, as explained in Section 6.4.2.2 and illustrated

in Section 7.2, conditioning on book-to-market equity introduces a negative

noncausal association between the two independent variables in (1). In other

words, by adding book-to-market equity to their model specification, FF93,

FF15, and C97 may have inadvertently induced a noncausal negative correl-

ation between stock returns and size, making the size factor a false discovery.

The numerical experiments in Section 7 demonstrate that general causal

structures can explain away the findings in FF93, FF15, and C97 as type-B

spurious. Figure 23 provides an example of a causal graph under which the

estimates in FF93, FF15, and C97 are biased by confounders and colliders. This

particular graph may not be correct, however, the burden of proving it wrong

belongs to the authors claiming the existence of investment factors. To address

these concerns, those authors should make their models’ causal content explicit,

declare the hypothesized causal mechanism, control for the missing confounders,

and justify their belief that none of the chosen explanatory variables is a collider.

If FF93, FF15, and C97 had proposed a predictivemodel, producing such biased

estimates of the factor coefficients would not be problematic, because the predic-

tion might still lead to a profitable investment strategy. However, as explained in

Market

Ret

1

MOM

HML

4

5

2

SML
3

Figure 23 Example of a causal graph under which the findings in FF93, FF15,

and C97 are biased
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Section 6.1, the purpose of a factormodel (such as FF93, FF15, andC97) is to build

portfolios exposed to a particular risk characteristic presumably rewarded by the

market. This is the reason value factor funds typically create a portfolio by ranking

stocks in terms of their book-to-market ratio, not the model’s residuals.

To summarize, the findings in FF93, FF15, and C97 are likely type-A spurious,

due to p-hacking, or type-B spurious, due to under-controlling of confounders,

over-controlling of mediators, specification-searching, and missing mediation

analysis. This is not a criticism of these three papers relative to the rest of the

factor investing literature. On the contrary, with all their flaws, these three papers

are as good as any other associational financial econometric study, and continue to

be deeply influential. Other papers in this field share the same or similar methodo-

logical errors that make their promoted factors likely spurious.
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8 Conclusions

A scientific theory is a falsifiable statement of the form “X causes Y through

mechanismM .” Observed associations amount to phenomenological evidence,

but do not rise to the status of scientific knowledge, for three reasons: (i) the

observed association can be type-A spurious, due to p-hacking or backtest

overfitting; (ii) even if true, the association is not necessarily causal; and (iii)

even if causal, the association does not propose a falsifiable mechanism M by

which X causes Y .

Scientific theories should matter to investors for at least three reasons: First,

theories are a deterrent against type-A spuriosity, because they force scientists

to justify their modelling choices, thus curtailing efforts to explain random

variation (Section 6.4.1). A researcher who engages in p-hacking or backtest

overfitting may build an ad hoc theory that explains an observed random

variation. However, other researchers will use the theory to design an experi-

ment where the original random variation is not observed (Section 3.3). Second,

causality is a necessary condition for investment efficiency. Causal models

allow investors to attribute risk and performance to the variables responsible

for a phenomenon (Section 6.4.2). With proper attribution, investors can build

a portfolio exposed only to rewarded risks, and aim for investment efficiency. In

contrast, associational models misattribute risks and performance, thus prevent-

ing investors from building efficient portfolios. Third, causal models enable

counterfactual reasoning, hence the stress-testing of investment portfolios in

a coherent and forward-looking manner (see Rebonato 2010; Rebonato and

Denev 2014; Denev 2015; Rodríguez-Domínguez 2023). In contrast, associ-

ational models cannot answer counterfactual questions, such as what would be

the effect of Y on a not-yet-observed scenario X , thus exposing those relying on

associations to black-swan events.

Despite the above, the majority of journal articles in the investment literature

make associational claims and propose investment strategies designed to profit

from those associations. For instance, authors may find that observation X often

precedes the occurrence of event Y , determine that the correlation between X

and Y is statistically significant, and propose a trading rule that presumably

monetizes such correlation. A caveat of this reasoning is that the probabilistic

statement “X often precedes Y” provides no evidence that Y is a function of X ,

thus the relationship between X and Y may be coincidental or unreliable. One

possibility is that variables X and Y may appear to have been associated in the

past by chance (type-A spuriosity), in which case the investment strategy will

likely fail. Another possibility is that X and Y are associated even though Y is

not a function of X (type-B spuriosity), for example due to a confounding
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variable Z which researchers have failed to control for, or due to a collider

variable Z which researchers have mistaken for a confounder. These misspeci-

fication errors make it likely that the correlation between X and Y will change

over time, and even reverse sign, exposing the investor to systematic losses.

The main conclusion of this Element is that, in its current formulation, factor

investing has failed to achieve its objectives. Academically, it is a data-mining

exercise that has yielded countless type-A and type-B spurious findings.

Commercially, it is falsely promoted as a scientific product, and it has failed

to deliver statistically significant returns, against the profit expectations gener-

ated by its promoters.

To find the path forward, factor researchers must first understand how they

ended up with a black-box. Part of the answer is the strong grip that commercial

interests hold on financial academia. Financial academics interested in starting

over on the more solid foundations of causal factor investing should pursue

collaborations with the research arms of noncommercial asset managers, such

as sovereign wealth managers and endowments.

8.1 Factor Investing Is a Black-Box

Virtually all journal articles in the factor investing literature deny or ignore the

causal content of factor models. Authors do not identify the causal graph

consistent with the observed sample, they justify their chosen model specifica-

tion in associational terms (e.g., optimizing the coefficient of determination),

and they rarely theorize a falsifiable causal mechanism able to explain their

findings. Absent a causal theory, it is nearly impossible to falsify their claims

thoroughly (Section 3). It could take decades to collect enough out-of-sample

evidence to determine that the association is false, and in-sample evidence is

highly susceptible to p-hacking and backtest overfitting. The outcome from

a backtest or a factor model is yet another associational claim, prone to the same

misunderstandings and spurious claims discussed in Sections 5 and 6. For

example, the factor models and backtests of strategies based on FF93, FF15,

and C97 do not prove that holding value stocks causes a portfolio to outperform

the market, because that causal claim can only be tested by the methods

described in Section 4. Even if it were true that holding value stocks causes

a portfolio to outperform the market, neither a factor model nor a backtest tells

us why.

Consider the large losses experienced by value funds between late 2017 and

early 2022. Investors never received a straight answer to the question “why did

value funds perform so poorly?” The reason is, in absence of a causal theory,

nobody knows why value funds should have performed well in the first place, or
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what turned the sign of value’s β̂ (a hallmark of type-B spurious factors, see

Section 6.4.2). Asset managers will not admit their confusion to clients, as that

would invite large-scale redemptions. Answering the “why” question requires

a falsifiable causal mechanism, which to this day remains unknown for value

investments.

Due to the omission of causal mechanisms (Section 6.2), factor investment

strategies are promoted like associational investment strategies, through induct-

ive arguments. For example, a researcher may find that value and momentum

strategies have been profitable for many years (enumerative induction) or in

many different geographies (variative induction). This associational finding

generates the expectation that, whatever the unknown cause of value and

momentum, and whatever the mechanism responsible for their profitability,

history will continue to repeat itself, even though there is no scientific-deductive

basis for such belief. Ironically, commercial asset managers routinely require

investors to accept disclaimers such as “past performance is not indicative of

future results,” in direct contradiction with the inductive claims that authors

promote and managers sell to customers.

Answering the “why” question is of particular importance for institutional

investors, such as pension funds, sovereign wealth funds, endowments, and

insurance companies. These investors manage funds for the benefit of the

general public, and have a limited appetite for gambling. Factor investing may

be an appropriate strategy for a high-net-worth individual, who can afford

losing a large portion of his fortune. However, a salaried worker who has

saved for 50 years and depends on those savings to retire should not be induced

to wager his future wellbeing on investment strategies that, even if apparently

profitable, are black-boxes. As long as asset managers remain unable to answer

the “why” question, they should refrain from promoting to the general public

factor investing products as scientific, and institutional investors should ques-

tion whether factor investing products are investment grade.

8.2 The Economic Incentives for Associational Studies

In 2019, J.P. Morgan estimated that over USD 2.5 trillion (more than 20 percent

of the US equity market capitalization) was managed by quant-style funds

(Berman 2019). BlackRock estimates that the factor investing industry man-

aged USD 1.9 trillion in 2017, and it projects that amount will grow to USD 3.4

trillion by 2022 (BlackRock 2017). This massive industry has been built on

academic output, not on results for investors.

Harvey (2022) argues that economic incentives, instead of scientific consid-

erations, may be driving the academic agenda. The financial industry funds

66 Quantitative Finance

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
39

73
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009397315


associational studies, because they are cheaper and easier to produce than causal

(scientific) studies, while they help achieve annual revenues in the tens of

billions of US dollars. Unless asset owners demand change, the academic

establishment will dismiss the need for causality, just as it continues to dismiss

the existence of a reproducibility crisis caused by rampant p-hacking and

backtest overfitting, in defiance of warnings issued by the American

Statistical Association, the American Mathematical Society, and the Royal

Statistical Society, among other scientific bodies.

8.3 The Dawn of Causal Factor Investing

Answering the “why” question is more than an academic pursuit. Causal factor

theories would be highly beneficial to all types of investors, for several reasons:

First, efficiency: causal models attribute risk and performance correctly. With

proper risk and performance attribution, researchers can build portfolios that

concentrate exposure on rewarded risks and hedge unrewarded risks. Second,

interpretability: every institutional investor owes it to its beneficial owners to

explain why they may have to delay their plans (e.g., retirement). Third,

transparency: a causal graph makes explicit all the assumptions involved in

a theorized mechanism. Investment strategies based on causal theories are not

black-boxes. Fourth, reproducibility: a causal explanation reduces the chances

of (i) random variation (type-A spuriosity), by confining the search space to

plausible theories, and (ii) noncausal association (type-B spuriosity), by pro-

viding some assurances that the phenomenon will continue to occur as long as

the mechanism remains. Fifth, adaptability: the profitability of investment

strategies founded on associational relations relies on the stability of the joint

distribution’s parameters, which in turn depends on the stability of the entire

causal graph (variable levels and parameters). In contrast, investment strategies

based on causal relations are resilient to changes that do not involve the

parameters in the causal path (see Section 6.4.2.1). This makes causal invest-

ment strategies more reliable than associational investment strategies. Sixth,

extrapolation: only an investment strategy supported by a causal theory is

equipped to survive and profit from black-swan events, by monitoring the

conditions that trigger them (e.g., liquidity strategies based on the PIN theory

performed well during the 2010 flash crash). Seventh, surveillance: the validity

of a causal mechanism can be assessed in more direct and immediate ways than

estimating the probability of a structural break in performance. This attribute is

of critical importance in a complex dynamic system like finance: (i) an investor

in a causal factor investing strategy may be able to divest when the causal

mechanism weakens, before losses compound to the point that a statistical test
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detects a structural break; (ii) causal mechanisms enable factor timing, dynamic

bet sizing, and tactical asset allocation. Eighth, improvability: causal theories

can be refined, as a researcher learns more about the mechanism responsible for

the observations. The fate of investment strategies based on causal theories is

not unavoidable decay toward zero performance. These are all attributes that

make an investment strategy appealing and trustworthy, and that current factor

investments lack.

Financial economists’ adoption of causal inference methods has the potential

to transform investing into a truly scientific discipline. Economists are best

positioned to inject, make explicit, and argue the extra-statistical information

that complements and enriches the work of statisticians. Financial economists

interested in causal research would do well in partnering with noncommercial

asset managers, such as sovereign wealth funds and endowments. These insti-

tutional investors are not conflicted by commercial interests, and their object-

ives are aligned with their beneficial owners.

The new discipline of “causal factor investing” will be characterized by the

adaptation and adoption of tools from causal discovery and do-calculus to the

study of the risk characteristics that are responsible for differences in asset

returns. Every year, new alternative datasets become available at an increasing

rate, allowing researchers to conduct natural experiments and other types of

causal inference that were not possible in the twentieth century. Causal factor

investing will serve a social purpose beyond the reach of (associational) factor

investing: help asset managers fulfill their fiduciary duties with the transparency

and confidence that only the scientific method can deliver. To achieve this noble

goal, the dawn of scientific investing, the factor investing community must first

wake up from its associational slumber.
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Appendix

A.1 Proof of Proposition in Section 6.4.2.1

Consider a data-generating process with equations:

X :¼ Zδþ v ð43Þ

Y :¼ Xβþ Zγþ u ð44Þ

where γ 6¼ 0, δ 6¼ 0, and variables u; v; Zð Þ are independent and identically

distributed as a standard Normal, u; v; Zð Þ∼N ½0; I�. The causal graph for

this process is displayed in Figure 10 (bottom). The process is unknown to

observers, who attempt to estimate the causal effect of X on Y by fitting the

equationY ¼ Xβþ ε on a sample produced by the process. Then, the expression

E½ β̂jX � is,

E½ β̂jX � ¼ X 0Xð Þ�1X 0E½Y jX �: ð45Þ

Replacing Y , we obtain

E½ β̂jX � ¼ X 0Xð Þ�1X 0E½Xβþ Zγþ ujX �: ð46Þ

Since the expected value is conditioned by X, we replace Z to obtain

E½ β̂jX � ¼ X 0Xð Þ�1X 0E½Xβþ γδ�1 X � vð Þ þ ujX � ¼

X 0Xð Þ�1X 0 Xβþ γδ�1X � γδ�1E½v� ��X � þ E½ujX �Þ: ð47Þ

Knowledge of X does not convey information on u, hence E½ujX � ¼ 0, however

knowledge of X conveys information on v, since X :¼ Zδþ v. Accordingly, we

can reduce the above expression to

E½ β̂jX � ¼ βþ γδ�1ð1� X 0Xð Þ�1X 0E½vjX �Þ: ð48Þ

This leaves us with an expression E½vjX � that we would like to simplify. Note that

variables v;Xð Þ follow a Gaussian distribution with known mean and variance,

v
X


 �
∼N

0
0

� 

;

1 1
1 1þ δ2

� 

 �
ð49Þ

vjX ¼ x∼Nμ;ΣÞ: ð50Þ
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We can compute E½vjX � explicitly, using the formulas for the conditional

Gaussian distribution (Eaton 1983, pp. 116–117),39

μ ¼ μ1 þ Σ1;2Σ
�1
2;2 x� μ2ð Þ ¼

0þ 1 1þ δ2
� 	�1

x� 0ð Þ ¼

x

1þ δ2
: ð51Þ

For completeness, we can derive the variance Σ as

Σ ¼ Σ1;1 � Σ1;2Σ
�1
2;2Σ2;1 ¼

1� 1
1

1þ δ2
1 ¼

δ2

δ2 þ 1
: ð52Þ

Using the above results, the expression of E½ β̂jX � reduces to,

E½ β̂jX � ¼ βþ γδ 1þ δ2
� 	�1

: ð53Þ

This completes the proof.

A.2 Proof of Proposition in Section 7.2

Consider the data-generating process with equations:

Xt :¼ �t ð54Þ

Yt :¼ ζ t ð55Þ

Zt :¼ Xt þ Yt þ ξt ð56Þ

where ξt; �t; ζ tð Þ are three independent random variables that follow a standard

Normal distribution, ξ t; �t; ζ tð Þ∼N ½0; I�. The random variable X ; Y ; Zð Þ is still
Gaussian,

X
Y
Z

0
@

1
A∼N

0
0
0

0
@

1
A;

1 0 1
0 1 1
1 1 3

0
@

1
A

2
4

3
5 ¼ N

μ1
μ2

� 

;

Σ1;1 Σ1;2

Σ2;1 Σ2;2

� 

 �
: ð57Þ

The conditional distribution has the form

39 Special thanks to Vincent Zoonekynd for making this observation.
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X
Y

� 
���Z ¼ z∼N ½ μ;Σ� ð58Þ

where the parameters can be derived using the formulas for the conditional

Gaussian distribution (Eaton 1983, pp. 116–117),

μ ¼ μ1 þ Σ1;2Σ
�1
2;2 z� μ2ð Þ ¼

0
0

� 

þ 1

1

� 

3�1z ¼

z=3
z=3

� 

ð59Þ

Σ ¼ Σ1;1 � Σ1;2Σ
�1
2;2Σ2;1 ¼

1 0
0 1

� 

� 1

1

� 

3�1 1 1ð Þ ¼ 2=3 �1=3

�1=3 2=3

� 

: ð60Þ

Then, the covariance between X and Y conditional on Z is

Cov½X ; Y jZ� ¼ � 1

3
: ð61Þ

This completes the proof.

B.1 Code for Experiment in Section 7.1

Snippet 1 lists the Python 3 code used to produce the results of the Monte Carlo

experiment that simulates a fork.

SNIPPET 1 FALSE POSITIVE DUE TO A CONFOUNDER

import numpy as np,statsmodels.api as sm1

# Set data-generating process

np.random.seed(0)

z=np.random.normal(size=5000) # observable confounder

x=z+np.random.normal(size=z.shape[0]) # false cause

y=z+np.random.normal(size=z.shape[0]) # false effect

# Correct estimate of X->Y

X=np.column_stack((x,z))

ols1=sm1.OLS(y,sm1.add_constant(X)).fit()

print(ols1.summary(xname=[’const’,’X’,’Z’],yname=‘Y’)) # true negative

# Incorrect estimate of X->Y

ols0=sm1.OLS(y,sm1.add_constant(x)).fit()

print(ols0.summary(xname=[’const’,’X’],yname=‘Y’)) # false positive
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B.2 Code for Experiment in Section 7.2

Snippet 2 lists the Python 3 code used to produce the results of the Monte Carlo

experiment that simulates an immorality.

B.3 Code for Experiment in Section 7.3

Snippet 3 lists the Python 3 code used to produce the results of the Monte Carlo

experiment that simulates a chain.

SNIPPET 3 FALSE POSITIVE DUE TO A CONFOUNDED MEDIATOR

import numpy as np,statsmodels.api as sm1

# Set data-generating process

np.random.seed(0)

x=np.random.normal(size=5000) # cause

w=np.random.normal(size=x.shape[0]) # confounder

z=x+w+np.random.normal(size=x.shape[0]) # mediator

y=z+w+np.random.normal(size=x.shape[0]) # effect

# Correct estimate of X->Y

ols1=sm1.OLS(y,sm1.add_constant(x)).fit()

print(ols1.summary(xname=[’const’,’X’],yname=‘Y’)) # true positive

# Incorrect estimate of X->Y

X=np.column_stack((x,z))

ols1=sm1.OLS(y,sm1.add_constant(X)).fit()

print(ols1.summary(xname=[’const’,’X’,’Z’],yname=‘Y’)) # false positive

SNIPPET 2 FALSE POSITIVE DUE TO A COLLIDER

import numpy as np,statsmodels.api as sm1

# Set data-generating process

np.random.seed(0)

x=np.random.normal(size=5000) # false cause

y=np.random.normal(size=x.shape[0]) # false effect

z=x+y+np.random.normal(size=x.shape[0]) # collider

# Correct estimate of X->Y

ols0=sm1.OLS(y,sm1.add_constant(x)).fit()

print(ols0.summary(xname=[’const’,’X’],yname=‘Y’)) # true negative

# Incorrect estimate of X->Y

X=np.column_stack((x,z))

ols1=sm1.OLS(y,sm1.add_constant(X)).fit()

print(ols1.summary(xname=[’const’,’X’,’Z’],yname=‘Y’)) # false positive
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