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Abstract

This paper examines the issue of derivative pricing within the framework of a fractional
stochastic volatility model. We present a deterministic partial differential equation
system to derive an approximate expression for the derivative price. The proposed
approach allows for the stochastic volatility to be expressed as a composition of
deterministic functions of time and a fractional Ornstein–Uhlenbeck process. We apply
this method to the European option pricing under the fractional Stein–Stein volatility
model, demonstrating its feasibility and reliability through numerical simulations. Our
numerical simulations also illustrate the impact of the parameters in the fractional
stochastic volatility model on the option price.

2020 Mathematics subject classification: primary 60G22; secondary 91G20.
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1. Introduction

The Black–Scholes–Merton pricing formula has long been regarded as a fundamental
tool for derivatives analysis [5, 20]. However, with the continuous fluctuation of
volatilities observed in financial markets, the stochastic volatility models have been
shown to provide a better description of market behaviour than the model with constant
volatility. Stein and Stein [25] examined the stock price distribution under a diffusion
process with a stochastic volatility parameter, known as the Stein–Stein model.
Chernov et al. [7] evaluated the effectiveness of various volatility specifications,
such as multiple stochastic volatility factors and jump components, in the appropriate
modelling of equity return distributions. Furthermore, Johnson and Shanno [18] used
the Monte Carlo method to price a European call option with the stochastic variance,
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while Wiggins [26] numerically solved the call option valuation problem under a
general continuous stochastic process for return volatility.

For continuous sampling, Neuberger [22] proposed a nonparametric approach to
study Delta hedging strategies based on variance swaps under a log contract. This
method applies to arbitrary stochastic volatility processes, eliminating the need to
assume a particular stochastic volatility model. In terms of discrete sampling, Elliot
et al. [10] solved the pricing problem of swaps using probabilistic methods and
partial differential equation methods. Additionally, Sepp [24] analysed the effect of
discrete sampling on the valuation of options on the realized variance in the Heston
stochastic volatility model. Short-term options on the realized variance can be priced
by the semi-analytical Fourier transform methods, while Zhu and Lian [27] proposed
a closed-form exact solution for pricing variance swaps under Heston’s two-factor
stochastic volatility model based on the partial differential equation system. Further,
Rujivan and Zhu [23] developed a simplified analytical approach and explored the
relationship between the parameter space and effectiveness.

While all the aforementioned stochastic volatility models are driven by Brownian
motion, empirical studies showed the presence of long-range correlation in the returns
of stocks in financial markets [3, 17, 19]. To address this phenomenon, Mandelbrot
and Van Ness [19] proposed fractional Brownian motion as a process based on
the path integral form of standard Brownian motion. Decreusefond and Ustunel [8]
used the stochastic calculus of variations to develop stochastic analysis theory for
the functionals of fractional Brownian motions, while Duncan et al. [9] defined the
multiple and iterated integrals of a fractional Brownian motion and provided various
properties of these integrals. Elliott and Van Der Hoek [11] presented an extended
framework for fractional Brownian motion, enabling processes with all indices to be
considered under the same probability measure. Biagini et al. [4] introduced the theory
of stochastic integration for fractional Brownian motion based on white-noise theory
and differentiation (see, for example, [1]). As an application, Necula [21] generalized
the risk-neutral valuation pricing formula in the framework of fractional Wick-type
integrals [9]. Hu and Øksendal [16] proved that the fractional Black–Scholes market
has no arbitrage if using the stochastic integration developed by Duncan et al. [9],
contrary to the situation when the pathwise integration is used.

Gatheral et al. [13] showed that the fractional stochastic volatility (fSV) models
have an excellent fit to financial time series data. Bayer et al. [2] showed how the
rough fractional stochastic volatility model can be used to price claims, and they
found that the rough Bergomi model with fewer parameters fits the volatility of the
S&P 500 index markedly better than conventional Markovian stochastic volatility
models. Cheridito et al. [6] proposed the fractional Ornstein–Uhlenbeck process [12]
as a model for stochastic volatility, by proving the existence of a stationary solution
to the Langevin equation [14] with fractional white noise. Garnier and Sølna [12]
analysed the case where the stationary stochastic volatility model is constructed by a
fractional Ornstein–Uhlenbeck process. However, some classical models (for example,
the Stein–Stein model and the Heston model) introducing fractional Brownian motion
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have more general requirements for the volatility form. In this paper, we propose
an approximate pricing method for the fractional stochastic volatility model by
solving stochastic partial differential equations with variable coefficients, where
the volatility is constructed as a deterministic function of time and the fractional
Ornstein–Uhlenbeck process.

The paper is organized as follows. In Section 2, we introduce some basic back-
ground on the fractional Brownian motion and the fractional Ornstein–Uhlenbeck
process. Our main results are presented in Section 3. We derive the approximate
pricing formula, and prove that the approximation error can be limited. In Section 4,
we calculate the price of the European option under the fractional Stein–Stein model
[15] as an example to illustrate the feasibility and operability of the method. Numerical
simulations are presented in Section 5 as well as the conclusions in Section 6.

2. Fractional Brownian motion and Ornstein–Uhlenbeck process

The fractional Brownian motion with Hurst parameter [19] H ∈ (0, 1) is a zero-mean
Gaussian process (BH

t )t∈R with covariance

E[BH
t BH

s ] =
σ2

H

2
(|t|2H + |s|2H − |t − s|2H),

where

σ2
H =

1
Γ(H + 1/2)2

[ ∫ ∞
0

((1 + s)H−1/2 − sH−1/2)2ds +
1

2H

]
=

1
Γ(2H + 1) sin(πH)

.

We use the following moving-average stochastic integral representation of the
fractional Brownian motion [16]:

BH
t =

1
Γ(H + 1/2)

∫
R
(t − s)H−1/2

+ − (−s)H−1/2
+ dBs,

where (Bt)t∈R is a standard Brownian motion. The filtration Ft generated by BH
t is also

the one generated by Bt.
The fractional Brownian motion is self-similar, that is, (BH

ct , t ∈ R) and (cHBH
t , t ∈ R)

have the same probability law for all c > 0. Compared with Brownian motion,
it displays a long-range dependence and positive correlation properties when
1/2 < H < 1, and it displays negative correlation property when 0 < H < 1/2. This
special property of fractional Brownian motion allows it to describe path-dependent
models.
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The fractional Ornstein–Uhlenbeck process [12]

ZH
t =

∫ t

−∞
e−a(t−s) dBH

s = BH
t − a

∫ t

−∞
e−a(t−s)BH

s ds

is a zero-mean, stationary Gaussian process, with variance

σ2
ou = E[(ZH

t )2] = 1
2 a−2HΓ(2H + 1)σ2

H ,

and covariance

E[ZH
t ZH

t+s] = σ
2
ou

1
Γ(2H + 1)

[1
2

∫
R

e−|v||as + v|2H dv − |as|2H
]

= σ2
ou

2 sin(πH)
π

∫ ∞
0

cos(asx)
x1−2H

1 + x2 dx.

Note that ZH
t is neither a martingale nor a Markov process. The fractional

Ornstein–Uhlenbeck process also has the following representation of a moving-average
integral:

ZH
t =

∫ t

−∞
K(t − s) dBs,

where

K(t) =
1

Γ(H + 1/2)

[
tH−1/2 − a

∫ t

0
(t − s)H−1/2e−asds

]
.

3. Main results

Suppose that the market is self-financing and ZH
t is adapted to the Brownian

motion B′t . Here, Bt and B′t are two standard Brownian motions with correlation coef-
ficient ρ. In this section, we consider an option pricing problem, when the dynamics
of the underlying asset is driven by the following stochastic differential equation:⎧⎪⎪⎨⎪⎪⎩dXt = μXt dt + vtXt dBt,

vt = v̄(t) + F(γZH
t ),

(3.1)

where F and v̄ are smooth, positive-valued functions, bounded away from zero, with
bounded derivatives. Here, μ and γ are two constants.

Our objective is to calculate the price of the following derivative:

Wt := E[g(XT ) | Ft]. (3.2)

For notational simplicity, we introduce the operator

Lv̄(t) = ∂t + μx∂x +
1
2 v̄(t)2x2∂2

xx.
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The following theorem gives an approximate expression of derivative price when γ
is small.

THEOREM 3.1. If the underlying asset and the derivative follow the dynamics given by
equations (3.1) and (3.2), we approximate the price of the derivative as follows:

Wt = M(t, Xt) + O(γ2),

where

M(t, Xt) = M1(t, Xt)

+ a(t, Xt)γv̄(t)φt(x2∂2
xx)M1(t, Xt) + a(t, Xt)γρM2(t, Xt)

+ γφtM3(t, Xt) + γM4(t, Xt) + γρM5(t, Xt),

and φt = E[
∫ T

t ZH
s ds | Ft]. The other elements are deterministic, and can be solved by

the following partial differential equation system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lv̄(t)M1(t, x) = 0,
Lv̄(t)M2(t, x) = −v̄(t)2(x∂x(x2∂2

xx))M1(t, x)θt,T ,
Lv̄(t)M3(t, x) = −(x2∂2

xx)M1(t, x)[a(t, x)v̄′(t) + v̄(t)Lv̄(t)a(t, x)],
Lv̄(t)M4(t, x) = −v̄(t)(x∂x)M3(t, x)θt,T ,
Lv̄(t)M5(t, x) = −M2(t, x)Lv̄(t)a(t, x),
(1 − a(t, x))v̄(t)(x2∂2

xx)M1(t, x) −M3(t, x) = 0,
M1(T , x) = g(x),
M2(T , x) = M3(T , x) = M4(T , x) = M5(T , x) = 0,

(3.3)

where θt,T =
∫ T−t

0 K(v) dv.

PROOF. For the smooth function M1(t, x), we have by Itô’s formula [1],

dM1(t, Xt) =
(
γv̄(t)ZH

t +
γ2gγ(ZH

t )
2

)
(x2∂2

xx)M1(t, Xt) dt

+ vt(x∂x)M1(t, Xt) dBt,

and

d(φt(x2∂2
xx)M1(t, Xt)) = (x2∂2

xx)M1(t, Xt)dφt + φtd[(x2∂2
xx)M1(t, Xt)]

+ dφtd((x2∂2
xx)M1(t, Xt))

= −ZH
t (x2∂2

xx)M1(t, Xt)dt + (x2∂2
xx)M1(t, Xt)dψt

+ φtvt(x∂x(x2∂2
xx))M1(t, Xt) dBt

+ φt

(
γv̄(t)ZH

t +
γ2gγ(ZH

t )
2

)
(x2∂2

xx(x2∂2
xx))M1(t, Xt) dt

+ vt(x∂x(x2∂2
xx))M1(t, Xt)d〈φt, Bt〉,

https://doi.org/10.1017/S1446181123000202 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000202


234 Y. Han and X. Zheng [6]

where

ψt = E
[ ∫ T

0
ZH

s ds | Ft

]
, gγ(y) = 2v̄(t)

F(γy) − γy
γ2 +

F(γy)2

γ2 .

Notice that v(t) is a function of t, so we cannot eliminate the first term in dM1(t, Xt)
using d(φt(x2∂2

xx)M1(t, Xt)) only. This problem is solved by introducing the function
a(t, x) in equation (3.3). We have 〈φt, Bt〉 = ρ〈ψt, B′t〉, and therefore,

d(M1(t, Xt) + a(t, Xt)γv̄(t)φt(x2∂2
xx)M1(t, Xt))

=

(
γ(1 − a(t, Xt))v̄(t)ZH

t +
γ2gγ(ZH

t )
2

)
(x2∂2

xx)M1(t, Xt) dt

+ a(t, Xt)φt

(
γ2v̄(t)2ZH

t +
γ3v̄(t)gγ(ZH

t )
2

)
(x2∂2

xx(x2∂2
xx))M1(t, Xt) dt

+ a(t, Xt)γρv̄(t)vtXt(∂x(x2∂2
xx))M1(t, Xt)d〈ψt, B′t〉

+ γ(φt(x2∂2
xx)M1(t, Xt))da(t, Xt)v̄(t) +M(1)

t ,

where M(1)
t is a martingale satisfying

dM(1)
t = a(t, Xt)vtXt∂xM1(t, Xt) dBt

+ a(t, Xt)γv̄(t)(x2∂2
xx)M1(t, Xt) dψt

+ a(t, Xt)γv̄(t)φtvtXt(∂x(x2∂2
xx))M1(t, Xt) dBt.

We partially eliminate the first term in dM1(t, Xt). To eliminate it completely, we
introduce M2(t, x) and M3(t, x). Applying [12, Lemma A.1], notice that

d〈ψt, B′t〉 = θt,T dt.

Thus, we can write

d(M1(t, Xt) + a(t, Xt)γv̄(t)φt(x2∂2
xx)M1(t, Xt))

+ d(a(t, Xt)γρM2(t, Xt) + γφtM3(t, Xt))

= γρM2(t, Xt)da(t, Xt) + γvt(x∂x)M3(t, Xt)θt,T dt

+ dR(1)
t + dM(1)

t + dM(2)
t ,

where

dM(2)
t = γ(φt(x2∂2

xx)M1(t, Xt))v̄(t)vt(x∂x)a(t, Xt) dBt

+ a(t, Xt)γρvt(x∂x)M2(t, Xt) dBt

+ γM3(t, Xt) dψt

+ γvtφt(x∂x)M3(t, Xt) dBt,
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and

dR(1)
t =

γ2gγ(ZH
t )

2
(x2∂2

xx)M1(t, Xt) dt

+ a(t, Xt)φt

(
γ2v̄(t)2ZH

t +
γ3v̄(t)gγ(ZH

t )
2

)
(x2∂2

xx(x2∂2
xx))M1(t, Xt) dt

+ a(t, Xt)γ
2ρv̄(t)ZH

t (x∂x(x2∂2
xx))M1(t, Xt)θt,T dt

+

(
a(t, Xt)γ

2ρv̄(t)ZH
t +

a(t, Xt)γ3ρgγ(ZH
t )

2

)
(x2∂2

xx)M2(t, Xt) dt

+
1
2

(φt(x2∂2
xx)M1(t, Xt))v̄(t)

(
γ2v̄(t)ZH

t +
γ3gγ(ZH

t )
2

)
(x2∂2

xx)a(t, Xt) dt

+ φt

(
γ2v̄(t)ZH

t +
γ3gγ(ZH

t )
2

)
(x2∂2

xx)M3(t, Xt) dt.

In summary,

d(M1(t, Xt) + a(t, Xt)γv̄(t)φt(x2∂2
xx)M1(t, Xt))

+ d(a(t, Xt)γρM2(t, Xt) + γφtM3(t, Xt))

+ d(γM4(t, Xt) + γρM5(t, Xt))

= dR(1)
t + dR(2)

t + dM(1)
t + dM(2)

t + dM(3)
t ,

where

dR(2)
t = M2(t, Xt)

(
γ2ρv̄(t)ZH

t +
γ3ρgγ(ZH

t )
2

)
dt

+ γ2ρZH
t (x∂x)M3(t, Xt)θt,T dt

+

(
γ2v̄(t)ZH

t +
γ3gγ(ZH

t )
2

)
(x2∂2

xx)M4(t, Xt) dt

+

(
γ2ρv̄(t)ZH

t +
γ3ρgγ(ZH

t )
2

)
(x2∂2

xx)M5(t, Xt) dt,

dM(3)
t = vtXtM2(t, Xt)dBt + γvt(x∂x)M4(t, Xt) dBt

+ γρvt(x∂x)M5(t, Xt) dBt.

Therefore,

dM(t, Xt) = dM(1)
t + dM(2)

t + dM(3)
t + dR(1)

t + dR(2)
t ,

where M(1)
t , M(2)

t , M(3)
t are martingales. Let

Mt = M(1)
t +M(2)

t +M(3)
t , Rt = R(1)

t + R(2)
t .

In addition, according to equation (3.3), we have M(T , XT ) = g(XT ) and

Wt = E[g(XT ) | Ft]

= E[M(T , XT ) | Ft]
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= M(t, Xt) + E[MT −Mt | Ft] + E
[ ∫ T

t
dRs | Ft

]
= M(t, Xt) + E

[ ∫ T

t
dRs | Ft

]
.

Note that gγ(y) is bounded uniformly in γ by

|gγ(y)| ≤ (‖v̄‖∞‖F′′‖∞ + ‖F′‖2∞)y2.

This completes the proof of Theorem 3.1, since E[
∫ T

t dRs | Ft] is of order γ2. �

4. European option pricing under the fractional Stein–Stein volatility model

In this section, we calculate the approximate price of a European call option with a
strike price of K under the fractional Stein–Stein volatility model as an example, that is,⎧⎪⎪⎨⎪⎪⎩dXt = μXt dt + |vt |Xt dBt,

dvt = β(α − vt)dt + γ dBH
t ,

(4.1)

Wt = E[(XT − K)+ | Ft], (4.2)

where Xt is risky asset price process. Here, μ is the drift rate of the risk asset price
process. Since the volatility process is a mean-reverting process, vt tends towards a
long-term value α with rate β. Here, γ is a constant and BH

t is a fractional Brownian
motion with Hurst parameter H > 1/2.

LEMMA 4.1. The equation

dvt = β(α − vt) dt + γ dBH
t (4.3)

has a unique solution of the form

vt = e−βtv0 + βα

∫ t

0
eβ(s−t) ds + γBH

t − β
∫ t

0
γeβ(s−t)BH

s ds

= v̄(t) + γZH
t .

PROOF. By using Itô’s formula under fractional Brownian motion [9, Theorem 4.3],
proof of Lemma 4.1 can be obtained directly. �

PROPOSITION 4.2. If the underlying asset and the derivative follow the dynamics
given by equations (4.1) and (3.2) instead of equations (3.1) and (3.2), then Theorem
3.1 still holds.

PROOF. Applying Lemma 4.1 and noting that |vt |2 = v2
t , we replace vt in the proof of

Theorem 3.1 with |vt |, such as

dM1(t, Xt) =
(
γv̄(t)ZH

t +
γ2gγ(ZH

t )
2

)
(x2∂2

xx)M1(t, Xt) dt

+ |vt |(x∂x)M1(t, Xt) dBt.
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Then, the proof of Proposition 4.2 is complete, since Mt is still a martingale and
E[
∫ T

t dRs | Ft] is still of order γ2. �

If the underlying asset and the derivative follow the dynamics given by equations
(4.1) and (4.2), applying Proposition 4.2, our approximate pricing method proceeds as
follows.

STEP 1. We solve M1(t, x) by ⎧⎪⎪⎨⎪⎪⎩Lv̄(t)M1(t, x) = 0,
M1(T , x) = (x − K)+.

(4.4)

Let ⎧⎪⎪⎨⎪⎪⎩u = M1(t, x),
y = xeμ(T−t),

then equation (4.4) becomes ⎧⎪⎪⎨⎪⎪⎩∂tu + 1
2 v̄(t)2y2∂2

yyu = 0,
u|t=T = (y − K)+.

(4.5)

Likewise, let τ =
∫ t

0 v̄(s)2 ds, then equation (4.5) becomes⎧⎪⎪⎨⎪⎪⎩∂τu + 1
2 y2∂2

yyu = 0,
u|τ=T̂ = (y − K)+,

where T̂ =
∫ T

0 v̄(s)2 ds. Applying the Black–Scholes formula (see, [5, 20]),

M1(t, x) = u(y, τ)

= yN(d̂1) − KN(d̂2)

= xeμ(T−t)N(d̂1) − KN(d̂2),

where

d̂1 =
ln (y/K) + (T̂ − τ)/2√

T̂ − τ
=

ln (x/K) + μ(T − t) + (1/2)
∫ T

t v̄(s)2 ds√∫ T
t v̄(s)2 ds

,

and

d̂2 = d̂1 −
√

T̂ − τ = d̂1 −

√∫ T

t
v̄(s)2 ds, N(x) =

1
√

2π

∫ x

−∞
e−s2/2 ds.
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Moreover,

∂xM1(t, x) = eμ(T−t)N(d̂1) +
eμ(T−t)e−d̂1

2
/2√

2π
∫ T

t v̄(s)2 ds
− Ke−d̂2

2
/2

x
√

2π
∫ T

t v̄(s)2 ds
,

∂2
xxM1(t, x) =

eμ(T−t)e−d̂1
2
/2

x
√

2π
∫ T

t v̄(s)2 ds
− eμ(T−t)e−d̂1

2
/2d̂1

x
√

2π
∫ T

t v̄(s)2 ds

+
Ke−d̂2

2
/2d̂2

x2
√

2π
∫ T

t v̄(s)2 ds
+

Ke−d̂2
2
/2

x2
√

2π
∫ T

t v̄(s)2 ds
.

STEP 2. We solve M2(t, x) by⎧⎪⎪⎨⎪⎪⎩Lv̄(t)M2(t, x) = −v̄(t)2(x∂x(x2∂2
xx))M1(t, x)θt,T = M1(t, x),

M2(T , x) = 0.
(4.6)

Let ⎧⎪⎪⎨⎪⎪⎩z = lnx,
τ = T − t,

then equation (4.6) becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩∂τM2 −
v̄2

2
∂2

zzM2 −
(
μ − v̄2

2

)
∂zM2 = M1,

M2|τ=0 = 0.
(4.7)

Let

M2 = ueατ+βz, ζ =

∫ τ

0
v̄2 ds,

where

α =
(1
2
+
μ

v̄2

)(3μ
2
− v̄2

4

)
, β =

1
2
+
μ

v̄2 .

Then equation (4.7) becomes⎧⎪⎪⎨⎪⎪⎩∂ζu − 1
2∂

2
zzu = M̃1(ζ, z),

u|ζ=0 = 0,
(4.8)

where

M̃1(ζ, z) =
M1

eατ+βz v̄2 .
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We get the solution of equation (4.8) as follows:

u(ζ, z) =
∫ ζ

0

∫ z+(ζ−m)/2

z−(ζ−m)/2
M̃1(m, n) dn dm,

M2 = eατ+βz
∫ ζ

0

∫ z+(ζ−m)/2

z−(ζ−m)/2
M̃1(m, n) dn dm.

STEP 3. We solve M3(t, x) and a(t, x) by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Lv̄(t)M3(t, x) = −(x2∂2

xx)M1(t, x)
[
a(t, x)v̄′(t) + v̄(t)Lv̄(t)a(t, x)

]
,

(1 − a(t, x))v̄(t)(x2∂2
xx)M1(t, x) −M3(t, x) = 0,

M3(T , x) = 0.
(4.9)

Let

ã(t, x) = a(t, x) − 1, z = lnx,

then equation (4.9) is translated into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
v̄(t)∂tf (t, x) + μv̄(t)∂zf (t, x) + 1

2 v̄(t)3∂2
zzf (t, x) − 1

2 v̄(t)3∂zf (t, x)
]

×ã(t, x) + v̄(t)3∂zf (t, x)∂zã(t, x) = v̄′(t)f (t, x),
M3(t, x) = ã(t, x)v̄(t)f (t, x),
ã(T , x) = 0.

(4.10)

The solutions of equation (4.10) are as follows:

ã = e−
∫ z

0 m(t,s) ds
∫ T

t

∫ z

0
n(τ, s) ds dτ, M3(t, x) = ãv̄(t)f (t, x),

where

m(t, z) =
∂tf

v̄2∂zf
+
μ

v̄2 +
∂2

zzf
2∂zf

− 1
2

,

n(t, z) = −∂t(q(t, z)e
∫ z

0 m(t,s) ds),

q(t, z) =
v̄′f

v̄3∂zf
.

STEP 4. Using a similar approach as in Step 2, we solve the M4(t, x) and M5(t, x) by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Lv̄(t)M4(t, x) = −v̄(t)(x∂x)M3(t, x)θt,T = M3,
Lv̄(t)M5(t, x) = −M2(t, x)Lv̄(t)a(t, x) = M2,
M4(T , x) = M5(T , x) = 0.

(4.11)
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We get the solution of the above equation as follows:

M4 = eατ+βz
∫ ζ

0

∫ z+(ζ−m)/2

z−(ζ−m)/2
M̃3(m, n) dn dm,

M5 = eατ+βz
∫ ζ

0

∫ z+(ζ−m)/2

z−(ζ−m)/2
M̃2(m, n) dn dm,

where

M̃3(ζ, z) =
M3

eατ+βz v̄2 , M̃2(ζ, z) =
M2

eατ+βz v̄2 .

5. Numerical simulations

In this section, we compare the fractional Stein–Stein volatility model with
different H. Taking European options as an example and applying the Proposition 4.2,
we illustrate and analyse the properties of the model with different volatilities,
maturities and strike prices. Subsequently, we fix other parameters and adjust γ to
illustrate the reliability of the asymptotic analysis.

To simplify the analysis, we set t = 0, μ = 0 and ρ = 0. In the following numerical
examples, H = 0.5, 0.7, 0.9, respectively, and X0 = 50, β = 0.5. Notice that the
volatility process is an Ornstein–Uhlenbeck process when H = 0.5.

First, we let γ = 0.1, T = 1 and show the impact of K, α and H (see Table 1,
Figures 1 and 2). For Figure 1, when α is small, the effect of H is weak. When α
takes a larger value, the option prices under stochastic volatility models with different
H reflect significant differences. Compared with the case where the volatility process
is an Ornstein–Uhlenbeck process, when α = 2.5, the option prices under stochastic
volatility models with H = 0.7 and H = 0.9 are lower and higher, respectively. This
indicates that option prices under this model are not positively or negatively correlated
with the Hurst parameter. According to Lemma 4.1 and Proposition 4.2, α directly
affects v̄(t), and H affects

φt = E
[ ∫ T

t
ZH

s ds | Ft

]
by directly affecting ZH

t . When the other parameters except H are fixed, the solution
of the partial differential equation system of equation (3.3) is fixed. Thus, H only
affects M(t, Xt) through φt. See Table 2 for the relationship between H and φ0 in
this simulation. When H = 0.7, φ0 obtained from this simulation takes a higher value
compared with the other two cases in Figure 1, which leads to lower approximation
results. This result also shows that the method requires us to better work out the
conditional expectation φt. Unlike the case with α = 2.5, when α = 0.5, we observe
that options with different strike prices are influenced by K in different ways. More
specifically, options with K < 50 are more affected by changes in K, that is, the curve
is steeper, while options with K > 50 are less affected. In Figure 2, notice that the
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TABLE 1. Option prices with different H, α and K.

K 30 35 40 45 50 55 60 65 70

H = 0.5
α = 0.5 21.53 17.88 14.75 12.10 9.90 8.09 6.61 5.41 4.42
α = 1.0 27.07 24.70 22.61 20.76 19.12 17.65 16.35 15.17 14.12
α = 1.5 33.33 31.72 30.27 28.97 27.78 26.69 25.69 24.77 23.91
α = 2.0 38.20 37.12 36.15 35.26 34.44 33.68 32.98 32.32 31.70
α = 2.5 42.25 41.54 40.90 40.31 39.76 39.25 38.77 38.32 37.89

H = 0.7
α = 0.5 21.65 18.00 14.85 12.18 9.97 8.14 6.65 5.43 4.44
α = 1.0 26.89 24.52 22.44 20.60 18.96 17.50 16.20 15.02 13.97
α = 1.5 32.28 30.67 29.23 27.94 26.75 25.67 24.68 23.76 22.91
α = 2.0 39.55 38.48 37.51 36.63 35.82 35.07 34.37 33.72 33.11
α = 2.5 38.58 37.88 37.25 36.67 36.13 35.63 35.16 34.71 34.29

H = 0.9
α = 0.5 21.47 17.82 14.68 12.02 9.81 7.99 6.50 5.28 4.30
α = 1.0 27.19 24.82 22.73 20.89 19.26 17.80 16.50 15.33 14.27
α = 1.5 33.09 31.47 30.03 28.72 27.53 26.44 25.43 24.50 23.65
α = 2.0 38.72 37.64 36.66 35.76 34.93 34.16 33.44 32.77 32.14
α = 2.5 43.80 43.09 42.44 41.85 41.30 40.79 40.32 39.87 39.44
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FIGURE 1. Option prices with different H, α and K.
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FIGURE 2. Option prices with different H, α and K.

TABLE 2. Simulated φ0 = E[
∫ T

0 ZH
s ds | F0] with different H and α.

H 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α = 2.5 2.499926 2.50001 2.499773 2.500149 2.500011 2.499999 2.500085 2.500262 2.499959

α = 0.5 0.499936 0.499901 0.499958 0.500249 0.499885 0.499722 0.500092 0.499778 0.499782

change of option price caused by the change of strike price narrows with the increase
of α. Moreover, it is by no means the case that larger α leads to higher option prices.
When the other parameters except α are fixed, the solution of the complex partial
differential equation system of equation (3.3) is affected by v̄(t). The solution and v̄(t)
together lead to the complex result in Figure 2.

Second, we let γ = 0.1 and show the impact of T (see Table 3 and Figure 3). In most
cases (except when H = 0.9, α = 2.5, K = 30, 35), the option prices with the same
strike price increase as time to maturity T increases. As can be seen from the data
in Table 3, option prices with different parameters have different sensitivities to T.
In-the-money options are less sensitive to T compared to out-of-the-money options.
Options with higher T and higher mean-reversion level α are less sensitive to K when
other parameters are fixed. For short-term maturity option cases (when T = 0.25), they
are most sensitive to K and least affected by H.

Finally, we let H = 0.9 and show the impact of γ (see Table 4 and Figure 4). How
γ affects the option price depends on the value of α. For this part of the numerical
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TABLE 3. Option prices with different H, α, T and K.

K 30 35 40 45 50 55 60 65 70

H = 0.5, α = 0.5
T = 0.25 20.02 15.31 11.09 7.60 4.96 3.09 1.86 1.09 0.62
T = 0.50 20.43 16.18 12.50 9.45 7.01 5.13 3.71 2.66 1.90
T = 1.00 21.53 17.88 14.75 12.10 9.90 8.09 6.61 5.41 4.42
T = 2.00 23.75 20.75 18.14 15.88 13.94 12.27 10.82 9.57 8.49

H = 0.7, α = 0.5
T = 0.25 20.02 15.30 11.07 7.58 4.92 3.06 1.83 1.06 0.60
T = 0.50 20.47 16.22 12.53 9.47 7.02 5.13 3.71 2.67 1.91
T = 1.00 21.65 18.00 14.85 12.18 9.97 8.14 6.65 5.43 4.44
T = 2.00 23.59 20.58 17.96 15.70 13.75 12.07 10.61 9.36 8.28

H = 0.9, α = 0.5
T = 0.25 20.09 15.38 11.15 7.65 4.98 3.10 1.86 1.09 0.62
T = 0.50 20.52 16.27 12.58 9.51 7.06 5.17 3.74 2.69 1.92
T = 1.00 21.47 17.82 14.68 12.02 9.81 7.99 6.50 5.28 4.30
T = 2.00 23.46 20.45 17.84 15.59 13.65 11.99 10.56 9.32 8.25

H = 0.5, α = 2.5
T = 0.25 30.00 28.05 26.31 24.76 23.35 22.08 20.92 19.86 18.89
T = 0.50 36.60 35.29 34.10 33.03 32.04 31.13 30.29 29.50 28.76
T = 1.00 42.25 41.54 40.90 40.31 39.76 39.25 38.77 38.32 37.89
T = 2.00 57.38 57.14 56.92 56.71 56.52 56.34 56.17 56.01 55.86

H = 0.7, α = 2.5
T = 0.25 30.19 28.24 26.50 24.95 23.54 22.28 21.12 20.06 19.09
T = 0.50 35.55 34.25 33.07 32.01 31.03 30.13 29.29 28.51 27.78
T = 1.00 38.58 37.88 37.25 36.67 36.13 35.63 35.16 34.71 34.29
T = 2.00 44.20 43.95 43.73 43.52 43.32 43.14 42.97 42.80 42.65

H = 0.9, α = 2.5
T = 0.25 30.45 28.51 26.77 25.22 23.82 22.55 21.40 20.34 19.37
T = 0.50 34.80 33.49 32.31 31.24 30.26 29.35 28.51 27.73 27.00
T = 1.00 43.80 43.09 42.44 41.85 41.30 40.79 40.32 39.87 39.44
T = 2.00 43.13 42.89 42.66 42.45 42.26 42.07 41.90 41.73 41.57

simulation results, when α = 0.5, an increasing γ generally leads to a decrease in the
option price. However, when α = 2.5, an increasing γ generally leads to an increase
in the option price. Moreover, as the γ decreases from 1 to 0.001, the option prices
calculated by the approximation method in this paper gradually converge to a relatively
stable level. This result is consistent with Proposition 4.2 we have obtained and
demonstrates the reliability of the approximation method.
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FIGURE 3. H = 0.9. Option prices with different T, α and K.

TABLE 4. Option prices with different α and K.

K 30 35 40 45 50 55 60 65 70

H = 0.9, γ = 1
α = 0.5 23.34 19.87 16.83 14.25 12.14 10.43 9.06 7.96 7.07
α = 1.0 27.53 25.12 23.00 21.14 19.52 18.09 16.83 15.71 14.73
α = 1.5 32.47 30.82 29.34 28.02 26.82 25.73 24.74 23.83 22.99
α = 2.0 39.02 37.89 36.88 35.96 35.11 34.33 33.60 32.93 32.29
α = 2.5 42.94 42.20 41.53 40.92 40.35 39.82 39.33 38.86 38.43

H = 0.9, γ = 0.1
α = 0.5 21.47 17.82 14.68 12.02 9.81 7.99 6.50 5.28 4.30
α = 1.0 27.19 24.82 22.73 20.89 19.26 17.80 16.50 15.33 14.27
α = 1.5 33.09 31.47 30.03 28.72 27.53 26.44 25.43 24.50 23.65
α = 2.0 38.72 37.64 36.66 35.76 34.93 34.16 33.44 32.77 32.14
α = 2.5 43.80 43.09 42.44 41.85 41.30 40.79 40.32 39.87 39.44

H = 0.9, γ = 0.01
α = 0.5 21.62 17.96 14.81 12.15 9.93 8.11 6.61 5.40 4.41
α = 1.0 27.40 25.03 22.95 21.11 19.47 18.01 16.70 15.52 14.46
α = 1.5 32.89 31.29 29.85 28.56 27.38 26.30 25.31 24.40 23.55
α = 2.0 38.24 37.15 36.17 35.27 34.44 33.67 32.95 32.28 31.65
α = 2.5 45.26 44.56 43.92 43.33 42.78 42.27 41.79 41.34 40.92

H = 0.9, γ = 0.001
α = 0.5 21.58 17.93 14.79 12.13 9.91 8.08 6.57 5.34 4.34
α = 1.0 27.52 25.15 23.06 21.21 19.57 18.10 16.79 15.61 14.54
α = 1.5 33.33 31.70 30.24 28.92 27.72 26.62 25.62 24.69 23.82
α = 2.0 36.95 35.87 34.89 34.00 33.17 32.41 31.71 31.05 30.43
α = 2.5 45.06 44.35 43.71 43.13 42.58 42.07 41.59 41.13 40.71
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FIGURE 4. α = 0.5. Option prices with different γ and K.

It is important to note that the requirement for γ for the option price to reach a
relatively stable level is related to the value of the α. When α = 0.5, γ = 0.1 is sufficient
to make the option price reach a relatively stable level. However, when α = 2.5,
γ = 0.01 is required to achieve this goal.

6. Conclusions

In this paper, we investigate the problem of pricing derivatives under a fractional
stochastic volatility model. We obtain a method for approximating the prices of
derivatives where the stochastic volatility can be composed of deterministic functions
of time and the fractional Ornstein–Uhlenbeck process. Some fractional stochastic
volatility models can be generalized to this type of problem. As an example, we give an
approximate pricing expression and numerical simulation of a European option under
the fractional Stein–Stein model. Numerical simulation results demonstrate the impact
of the parameters in the fractional stochastic volatility model on the option price. By
numerical simulation, we also show that the price of the option can reach a relatively
stable level as γ decreases, which is consistent with the main results we have obtained
and demonstrates the reliability of the approximation method.
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