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Abstract. In this paper, we study random walks on groups that contain superlinear-divergent
geodesics, in the line of thoughts of Goldsborough and Sisto. The existence of a
superlinear-divergent geodesic is a quasi-isometry invariant which allows us to execute
Gouëzel’s pivoting technique. We develop the theory of superlinear divergence and
establish a central limit theorem for random walks on these groups.
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1. Introduction
Classical limit laws in probability theory concern the asymptotic behaviour of the random
variable (RV)

Zn = ξ1 + ξ2 + · · · + ξn.

for independent and identically distributed (i.i.d.) random variables ξ1, ξ2, . . . on R. As
a non-commuting counterpart, Bellman, Furstenberg and Kesten initiated the study of
random walks on a matrix group G [Bel54, Kes59, FK60, Fur63]. Given a probability
measure μ on G, the random walk generated by μ is a Markov chain on G with transition
probabilities p(x, y) := μ(x−1y). Our goal is to understand the nth step distribution

Zn = g1 · · · gn,

where gi are independent random variables distributed according to μ.
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2 K. Chawla et al

There are several generalizations of Bellman, Furstenberg and Kesten’s theory of
non-commuting random walks: random walks on Lie groups (cf. [BQ16] and the ref-
erences therein) and random conformal dynamics [DK07] to name a few. In geometric
group theory, there is a strong analogy between rank-1 Lie groups and groups with a
non-elementary action on a Gromov hyperbolic space X [MT18]. Given a basepoint o ∈ X,
the sample path (Zno)n≥0 on X tracks a geodesic and the displacement d(o, Zno) at step
n grows like a sum of i.i.d. random variables with positive expectation. From this, one
can derive a number of consequences, such as exponential bounds on the drift [BMSS23,
Gou22], limit laws [KM99, Bjö10, GS21, Gou17, Hor18] and identification of the Poisson
boundary [MT18, Kai00, CFFT22]. If the G-action on X is compatible with the geometry
of G in a suitable sense, one can transfer these results on X to G. One of the most successful
results in this direction is due to Mathieu and Sisto [MS20], who proved a central limit
theorem (CLT) for random walks on acylindrically hyperbolic groups. We refer the readers
to [BHS19, Osi16] for examples of acylindrically hyperbolic groups and hierarchically
hyperbolic groups.

Although the notion of acylindrical hyperbolicity captures a wide range of discrete
groups, acylindrical hyperbolicity of a group is not known to be quasi-isometry (QI)
invariant or even commensurability invariant. This is because there is no known natural
way to transfer a group action through a quasi-isometry. To overcome this, the second
author proposed a theory for random walks using a group-theoretic property that does not
involve hyperbolic actions, namely, possessing a strongly contracting element [Cho22].
Nevertheless, this theory is still not invariant under quasi-isometry.

Meanwhile, certain hyperbolic-like properties are known to be quasi-isometry invariant,
such as the existence of a Morse quasi-geodesic. Hence, one can expect that many
consequences of hyperbolicity should hold under quasi-isometry invariant assumptions.
To address this, Goldsborough and Sisto [GS21] developed a QI-invariant random walk
theory for groups. Given a bijective quasi-isometry f from a group H to a group G, the
pushforward of the random walk from H to G is not necessarily a random walk, but
only an inhomogeneous Markov chain. Nonetheless, if one—equivalently both—groups
are non-amenable, the induced Markov chain satisfies some sort of irreducibility, which
the authors call tameness. At this moment, Goldsborough and Sisto require that G acts on
a hyperbolic space X and contains what they call a ‘superlinear-divergent’ element g, that
is, any path must spend a superlinear amount of time to deviate from the axis of g (see §2
for the definition). Goldsborough and Sisto observed that along a random path arising from
a tame Markov chain on G, some translates of the superlinear-divergent axis are aligned
on X. Such alignment is also realized on the Cayley graph of G, and subsequently on H.
As a consequence, they established a central limit theorem for random walks on H, which
is only quasi-isometric to G.

In the setting of Goldsborough and Sisto, still, G is required to possess an action on a
hyperbolic space. Our purpose is to remove this assumption and establish a central limit
theorem for groups satisfying a QI-invariant property, without referring to a hyperbolic
space. Our main result describes the growth of the word norm |Zn| of a random element
Zn picked by a simple random walk on G.
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THEOREM A. Let G be a finitely generated group with exponential growth, and suppose
that G has a superlinear-divergent quasi-geodesic γ : Z → G. Let (Zn)n≥1 be a simple
random walk on G. Then there exist constants λ, σ ≥ 0 such that

|Zn| − λn√
n

→ N (0, σ 2) in distribution.

Note that we only assume existence of a superlinear-divergent quasi-geodesic, as
opposed to a superlinear-divergent element. This makes our setting invariant under
quasi-isometry; see Lemma 2.2. In addition, our proof only uses the classical theory of
random walks and does not refer to tame Markov chains.

Theorem A does not exclude the possibility that the limiting Gaussian distribution is
degenerate. To address this, Mathieu and Sisto give a sufficient criterion [MS20, Theorem
4.12] for positivity of the limiting variance. By using a variant of their criterion, we show
that the constants λ and σ in Theorem A are strictly positive when G is non-amenable, and
the random walk under consideration is simple and symmetric (see §4.3).

This theorem applies to groups that are not flat but not of rank 1 either. For example, we
can construct a superlinear-divergent element in any right-angled Coxeter group (RACG)
that contains a periodic geodesic with geodesic divergence at least r3.

PROPOSITION 1.1. Let W� be a right-angled Coxeter group of thickness k ≥ 2. Then, any
Cayley graph of W� contains a periodic geodesic σ which is (f , θ)-divergent for some
θ > 0 and f (r) � rk . In particular, simple random walks on W� satisfy the central limit
theorem.

By f (r) � rk , we mean that f (r) ≥ crk for some sufficiently small c > 0 and r
sufficiently large. The proof of this proposition is Appendix A. Such RACGs can be
produced following the method in [BHS17, Lev22] that shows there is an abundance
of such groups. The recent paper of Behrstock, Çiçeksiz and Falgas-Ravry [BCF24,
Theorem 1.2] provides a range of parameters for which the RACG on the corresponding
Erdős–Renyi random graph � has thickness exactly 2 asymptotically almost surely.

Lastly, let us mention the relationship between superlinear divergence and the strongly
contracting property, which is a core ingredient of the second author’s previous work
[Cho22]. In general, a superlinear-divergent axis need not be strongly contracting and vice
versa. Hence, the present theory and the theory in [Cho22] are logically independent. We
elaborate this independence in Appendix B.

1.1. Outline of the paper. Our main idea is to bring Gouëzel’s recent theory of pivotal
time construction for random walks [Gou22]. Here, the key ingredient is a local-to-global
principle for alignments between quasigeodesics. Lacking Gromov hyperbolicity of the
ambient group, we establish such a principle among sufficiently long superlinear-divergent
geodesics (Proposition 3.3). For this purpose, in §2, we continue to develop the theory
of superlinear-divergent sets after Goldsborough and Sisto [GS21]. In §3, we discuss
alignment of superlinear-divergent geodesics. In §4, we estimate the probability for
alignment to happen during a random walk. This yields a deviation inequality (Lemma 4.7)
that leads to the desired central limit theorem.
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2. Superlinear-divergence
For this section, let X be a geodesic metric space. For points x, y ∈ X, we will use the
notation [x, y] to mean an arbitrary geodesic between x and y (which may not be unique in
general). For a quasi-geodesic α with points x, y ∈ α, we use [x, y]|α to denote the
quasi-geodesic segment from x to y along α. Throughout, all paths are continuous maps
from an interval into X.

We adopt the definition in [GS21]. For a set Z ⊆ X and constants A, B > 0, we say a
map π = πZ : X → Z is an (A, B)-coarsely Lipschitz projection if

for all x, y ∈ X, d(π(x), π(y)) ≤ Ad(x, y) + B

and

for all z ∈ Z, d(π(z), z) ≤ B.

We say that a map π is coarsely Lipschitz if it is (A, B)-coarsely Lipschitz for some
A, B > 0. Note that a coarsely Lipschitz projection is comparable to the closest point
projection: for any x ∈ X, we have

d(x, π(x)) ≤ inf
z∈Z

(d(x, z) + d(z, π(z)) + d(π(z), π(x)))

≤ inf
z∈Z

(d(x, z) + B + (Ad(x, z) + B))

≤ (A + 1)d(x, Z) + 2B. (2.1)

We say that a function f : R+ → R+ is superlinear if it is convex, increasing and

lim
x→∞

f (x)

x
= ∞.

Definition 2.1. (Cf. [GS21, Definition 3.1]) Let Z be a closed subset of a geodesic metric
space X, let θ > 0 and let f : R+ → R+ be superlinear. We say that Z is (f , θ)-divergent
if there exists a coarsely Lipschitz projection πZ : X → Z such that for any R > 0 and
any path p outside of the R-neighbourhood of Z, if the endpoints p− and p+ of the path p
satisfy

d(πZ(p−), πZ(p+)) > θ ,

then the length of p is at least f (R).
We say that Z is superlinear divergent if it is (f , θ)-divergent for some constant θ > 0,

for some coarsely Lipschitz projection πZ and for a superlinear function f : R+ → R+.

The following lemma shows that the existence of a superlinear-divergent quasi-geodesic
in a group G is a quasi-isometry invariance.

LEMMA 2.2. Let X and Y be geodesic metric spaces where X contains a superlinear-
divergent subset Z, and let φ : X → Y be a quasi-isometry. Then, φ(Z) is also superlinear
divergent.

Proof. Let Z ⊂ X be (f , θ)-divergent with a coarsely Lipschitz projection πZ (albeit
with potentially different constants). Let φ : X → Y be a (q, Q)-quasi-isometry.
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Then πZ pushes forward to a coarsely Lipschitz projection πφ(Z) = φ ◦ πZ ◦ φ−1.
Here, φ−1 is a quasi-inverse to φ, that is to say, a map φ−1 : Y → X such that
supx∈X dX(x, φ−1(φ(x))) < ∞.

Note that the image under φ−1 of a continuous path in Y may not be a continuous path in
X. However, by the taming quasi-geodesics lemma [BH99, Lemma III.H.1.11], we can find
a continuous path within the (q + Q)-neighbourhood of φ−1(p) with the same endpoints.

Fix R > 0. Suppose p is a path in Y outside of an R-neighbourhood of φ(Z), and
suppose the endpoints p− and p+ satisfy

d(πφ(Z)(p−), πφ(Z)(p+)) > θ ′,

where θ ′ = qθ + Q. Then, let p′ be a continuous path in the (q + Q)-neighbourhood of
φ−1(p) with endpoints p′− ∈ φ−1(p−) and p′+ ∈ φ−1(p+). It follows that p′ is outside
of the (R/q − q − 2Q)-neighbourhood of Z. Moreover, the endpoints have projections
bounded by

dZ(πZ(p′−), πZ(p′+)) > θ .

Superlinear divergence of Z lets us conclude that

lX(p′) > f

(
R

q
− q − 2Q

)
,

so lY (p) > g(d), where

g(x) = 1
q

f

(
x

q
− q − 2Q

)
− Q

is a superlinear function.

COROLLARY 2.3. Suppose a finitely generated group G contains a superlinear-divergent
bi-infinite quasi-geodesic γ : R → G. Let H be a finitely generated group quasi-isometric
to G. Then, H also contains a superlinear-divergent bi-infinite quasi-geodesic.

We now establish basic consequences of superlinear divergence of a geodesic. In part,
superlinear-divergent geodesics are ‘constricting’ (in the sense of [ACT15, Sis18]) up to a
logarithmic error. This will be formulated more precisely in Lemma 2.6.

LEMMA 2.4. For each superlinear function f and positive constants A, B, K , θ , q, Q,
there exists a constant K0 > 1 such that the following holds.

Let Z be an (f , θ)-divergent subset of X with respect to an (A, B)-coarsely Lipschitz
projection πZ . Let M > 0 be a positive constant and let α : [0, M] → X be a geodesic in
X such that

d(πZα(0), πZα(M)) ≥ θ and d(α(0), Z) > K0.

Then there exists t ∈ [0, M] such that

d(πZα(0), πZα(t)) ≤ θ + B,
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and either

d(α(t), Z) ≥ K · d(α(0), Z) or d(α(t), Z) ≤ 1
K

· d(α(0), Z).

Proof. Let A, B be the coarsely Lipschitz constants of πZ . Choose K ′ > 1 large enough
such that for all t > K ′,

f (t)

t
≥ K(K + 5B + θ + 1)(A + 1).

Let

τ := inf{t ∈ [0, M] : d(πZα(0), πZα(t)) ≥ θ}.
By the (A, B)-coarse Lipschitzness of πZ , we have

d(πZα(0), πZα(t)) ≤ θ + B

for all t ∈ [0, τ ]. We now take K0 = K ′K . For convenience, let dt := d(α(t), Z) for each t.
The desired conclusion holds if dt ≤ d0/K = K ′ for some t ∈ [0, τ ]; suppose not. Under
this assumption, we show that dτ > Kd0. By superlinear divergence of Z,

l(α([0, τ ])) ≥ f

(
d0

K

)
≥ K(K +5B +θ +1)(A+1) ·

(
d0

K

)
≥ (K +5B +θ +1)(A+1)d0.

Using inequality (2.1) and the fact that α is a geodesic, we observe that

l(α([0, τ ])) ≤ d(α(0), πZ(α(0))) + d(πZ(α(0)), πZ(α(τ))) + d(πZ(α(τ)), α(τ))

≤ ((A + 1)d0 + 2B) + (θ + B) + [(A + 1)dτ + 2B].

Combining these, we have

dτ ≥ 1
A + 1

[(K + 5B + θ + 1)(A + 1)d0 − 5B − (A + 1)d0 − θ ]

≥ Kd0 + (5B + θ)

(
d0 − 1

A + 1

)
≥ Kd0,

where the final inequality is due to d0 ≥ K0 = KK ′ > 1 > 1/(A + 1).

The following lemma is a technical calculation that will be used in the proof of
Lemma 2.6 to examine the behaviour of a sequence of points along a geodesic whose
projections are making steady progress.

LEMMA 2.5. Let πZ : X → Z be an (A, B)-coarsely Lipschitz projection onto a subset Z
of X and let K > 0. Suppose that points x, z ∈ X and a point y ∈ [x, z] satisfy

d(πZ(x), πZ(y)) < K ,

d(πZ(y), πZ(z)) < K and

d(x, Z), d(z, Z) ≤ 1
8(A + 1)

d(y, Z).

Then, we have d(y, Z) ≤ 2K + 16B.
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Proof. Suppose in contrast that d(y, Z) > 2K + 16B. First, the assumption together with
inequality (2.1) tells us that

(A + 1)d(x, Z) + 2B ≤ 1
8d(y, Z) + 2B ≤ 1

4d(y, Z).

This forces

d(x, y) ≥ d(y, πZ(x)) − d(x, πZ(x)) ≥ d(y, Z) − (A + 1)d(x, Z) − 2B ≥ 3
4
d(y, Z)

and similarly d(y, z) ≥ 3
4d(y, Z), which leads to

d(x, z) = d(x, y) + d(y, z) ≥ 3
2d(y, Z). (2.2)

Meanwhile, note that

d(x, z)

≤ d(x, πZ(x)) + d(πZ(x), πZ(z)) + d(πZ(z), z) (∵ triangleinequality)

≤ (A + 1)d(x, Z) + d(πZ(x), πZ(z)) + (A + 1)d(z, Z) + 4B (∵ inequality (2.1))

≤ 1
4d(y, Z) + 4B + 2K (∵ theassumption)

≤ 1
2d(y, Z) + 2K . (∵ theassumption)

(2.3)

Combining equations (2.2) and (2.3), we have

3
2d(y, Z) ≤ 1

2d(y, Z) + 2K ,

which contradicts the assumption.

The following is the main lemma.

LEMMA 2.6. Let Z be an (f , θ)-divergent subset of X. Then, for any δ > 0, there exists
K1 = K1(δ, f , θ) > 0 such that the following holds. For any x, y ∈ X, if

d(πZ(x), πZ(y)) > δ(log d(x, Z) + log d(y, Z)) + K1,

then there exist a subsegment [px , py] of [x, y] and points qx , qy ∈ Z such that:
(1) d(px , qx), d(py , qy) < K1;
(2) d(qx , πZ(x)) ≤ δ log d(x, Z) + K1;
(3) d(qy , πZ(y)) ≤ δ log d(y, Z) + K1;
(4) the segment [px , py] is in the K1-neighbourhood of Z.

Roughly speaking, parts (1), (2) and (3) state that the geodesic [x, y] will approach the
K1-neighbourhood of Z exponentially (with respect to the progress made by its projection
along Z) from both sides, and part (4) states that it stays near Z in the middle (see Figure 1).

Proof. Let (A, B) be the coarsely Lipschitz constants for πZ . Let K ′ = 8(A + 1) +
exp((θ + B)/δ), let K ′′ = K0(K

′) + 2K + 16B where K0(K
′) is as in Lemma 2.4 and

let

K1 = (2A + 3)(K ′′ + 2θ + 4B) + 5B + θ + log K ′.
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FIGURE 1. A geodesics whose endpoints project sufficiently far apart onto a superlinear-divergent set Z must
enter and exit a small neighbourhood of Z near the projections.

If [x, y] entirely lies in the (K ′′ + 2θ + 4B)-neighbourhood of Z, we can take px = x,
py = y, qx = πZ(x) and qy = πZ(y).

If not, we analyse the subsegments of [x, y] outside of the (K ′′ + 2θ + 4B)- neighbour-
hood of Z. Fix an arbitrary connected component [x ′, y′] of

[x, y] \ NK ′′+2θ+4B(Z) := {p ∈ [x, y] : d(p, Z) ≥ K ′′ + 2θ + 4B}.
We will take a sequence of points {xi}i=0,1,2,... on [x′, y′], associated with a sequence
of real numbers {ri := d(xi , Z)}i=0,...,M for some M ∈ N (Figure 1). We construct the
sequence recursively. Start by choosing x0 := x′, then recursively choose xi+1 ∈ [xi , y′]
such that

d(πZ(xi), πZ(xi+1)) ≤ θ + B

and either

ri+1 ≥ K ′ri or ri+1 ≤ ri/K
′. (2.4)

Such xi+1 must exist when d(πZ(xi), πZ(y′)) ≥ θ + B, due to Lemma 2.4. We stop the
process at step M when d(πZ(xM), πZ(y′)) < θ + B. By inequality (2.4), for each i, we
have

d(xi , xi+1) ≥ |d(xi , Z) − d(xi+1, Z)| ≥ (K ′ −1) min(ri , ri+1) ≥ (K ′ −1)(K ′′ +2θ +4B).

This implies that M is finite and, in particular, M ≤ d(x, y)/(K ′ − 1)(K ′′ + 2θ + 4B).
We first observe that, by Lemma 2.5, for any i, we cannot simultaneously have

ri ≥ K ′ri−1 and ri ≥ K ′ri+1.

Hence, the only possibilities for the sequence are either:
(i) ri keeps decreasing;

(ii) ri keeps increasing; or
(iii) ri decreases at first and then keeps increasing.
We will apply this observation in two cases depending on the endpoints of [x ′, y′].
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Case 1. One (or both) of the endpoints is x or y. We will first discuss the case x ′ = x.
Note that the sequence (ri)i terminates at step M that satisfies

d(πZ(xM), πZ(y′)) ≤ θ + B. (2.5)

Let rj := mini=0,...,M ri . Then considering scenarios (i)–(iii) discussed above, we have
rM

rj
· r0

rj
≥ (K ′)M . (2.6)

Now, inequality (2.5) and our choices of xi values imply that

M ≥ 1
θ + B

d(πZ(x), πZ(y′)) − 1. (2.7)

Combining inequalities (2.6) and (2.7), we have

log d(y′, Z) + log d(x, Z) − 2 log rj ≥ d(πZ(x), πZ(y′)) · log K ′

θ + B
− log K ′.

This implies that

d(πZ(x), πZ(y′)) ≤ δ(log d(x, Z) + log d(y′, Z))) + log K ′.

Considering the assumption of the lemma, we conclude that y ′ cannot equal y. Hence,
[x, y′] is not the entire [x, y] and d(y′, Z) = K ′′ + 2θ + 4B holds.

Now, at step M, we have either rM ≥ K ′rM−1 or rM ≤ rM−1/K
′. In the former case,

note that

rM ≥ K ′rM−1 ≥ K ′ · (K ′′ + 2θ + 4B).

This implies that rM ≥ K ′d(y′, Z) as well. Now, Lemma 2.5 asserts that d(xM , Z) ≤
2K + 16B ≤ K ′′ + 2θ + 4B, which is a contradiction to the fact that xM ∈ [x′, y′] is
(K ′′ + 2θ + 4B) away from Z. Hence, we are bound to the case that rM ≤ rM−1/K

′, which
means scenario (i) out of the three scenarios mentioned before.

In particular, (ri)i is decreasing for i = 0, . . . , M , and we have

(K ′)M ≤ r0/rM ,

which implies

M ≤ log r0 − log rM

log K ′ .

This means

d(πZ(xM), πZ(x)) ≤ (θ + B)M ≤ δ log d(x, Z).

Now, recall that y′ ∈ NK ′′+2θ+4B(Z). Let px = y′ and take qx ∈ Z such that

d(px , qx) ≤ K ′′ + 2θ + 4B.

This choice of px and qx guarantees that

d(πZ(px), qx) ≤ d(πZ(px), πZ(qx)) + d(πZ(qx), qx)

≤ (Ad(px , qx) + B) + B

≤ K1
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and consequently

d(qx , πZ(x)) ≤ δ log d(x, Z) + K1.

An analogous argument applies to the connected component [x ′, y] of [x, y] \
NK ′′+2θ+4B(Z) that contains y. In this case, we conclude that x ′ �= x and d(x′, Z) =
K ′′ + 2θ + 4B. Moreover, if we set py = x′ and let qy ∈ Z be such that d(py , qy) =
K ′′ + 2θ + 4B, then we conclude

d(py , qy) ≤ K1 and d(qy , πZ(y)) ≤ δ log d(y, Z) + K1.

Case 2. The endpoints x′ and y′ both belong to the closure of NK ′′+2θ+4B(Z). These
are segments between our choice of px and py . We show that they are within the
K1-neighbourhood of Z.

In this case,

d(x′, Z) = d(y′, Z) = K ′′ + 2θ + 4B ≤ d(p, Z) (for all p ∈ [x′, y′]).

Observe that ri cannot decrease at first since [x′, y′] lies outside the (K ′′ + 2θ +
4B)-neighbourhood of Z. However, ri also cannot keep increasing, because d(x′, Z) =
d(y′, Z). So the process must stop at the very beginning, that is,

M = 0 and d(πZ(x′), πZ(y′)) ≤ θ + B.

Then, we have

d(x′, y′) ≤ d(x′, πZ(x′)) + (θ + B) + d(πZ(y′), y′)
≤ ((A + 1)d(x′, Z) + 2B) + (θ + B) + ((A + 1)d(y′, Z) + 2B)

= 2(A + 1)(K ′′ + 2θ + 4B) + 4B + (θ + B).

The second inequality is due to inequality (2.1). From this, we deduce that [x′, y′] lies in
the K1-neighborhood of Z.

The next lemma helps us strengthen Lemma 2.6 to a statement about Hausdorff
distance.

LEMMA 2.7. Let K, M , M ′ be positive constants, and α : [0, M] →X and β : [0, M ′] →X

be (q, Q)-quasi-geodesics. Suppose that α is contained in a K-neighbourhood of β and

d(α(0), β(m)) < K , d(α(M), β(n)) < K

hold for some 0 ≤ m < n ≤ M ′. Then, we have

dHaus(α, β|[m,n]) ≤ 2(q6 + q4 + q2 + 1)(Q + K).

Proof. Let us define a map h from [0, M] to [0, M ′]. For each t ∈ [0, M], let h(t) ∈
[0, M ′] be such that d(α(t), β(h(t))) ≤ K . This map is well defined, and is a (q2, 2qK +
2qQ)-quasi-isometric embedding of [0, M] into R. Indeed, note that

|h(t) − h(t ′)| ≤ qd(β(h(t)), β(h(t ′))) + qQ

≤ qd(α(t), α(t ′)) + 2qK + qQ

≤ q2|t − t ′| + 2qK + 2qQ
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and

|t − t ′| ≤ qd(α(t), α(t ′)) + qQ

≤ qd(β(h(t)), β(h(t ′))) + 2qK + qQ

≤ q2|h(t) − h(t ′)| + 2qK + 2qQ.

From the very definition, it is clear that α and β(h([0, M])) are within Haus-
dorff distance K. Next, as h is a (q2, 2qK + 2qQ)-QI-embedding of [0, M], its image
h([0, M]) is a (2qK + 2qQ)-connected subset of R. Now, let τ ∈ [0, M] be such that
h(τ) = inf0≤t≤M h(t). Then, h(τ) ≤ m < n = h(M) holds. Since h([0, M]) is (2qK +
2qQ)-connected, there exists τ0 ∈ [τ , M] such that |h(τ0) − m| ≤ 2qK + 2qQ. Now, we
have

|m − h(τ)| = |h(0) − h(τ)| ≤ q2|τ − 0| + 2qK + 2qQ

≤ q2|τ0 − 0| + 2qK + 2qQ

≤ q2(q2|h(τ0) − h(0)| + 2qK + 2qQ) + 2qK + 2qQ

≤ (q4 + q2 + 1)(2qK + 2qQ).

Similarly, we have sup0≤t≤M h(t) < n + (q4 + q2 + 1)(2qK + 2qQ). In other words,
h([0, M]) is contained in

[m − 2(q5 + q3 + q)(Q + K), n + 2(q5 + q3 + q)(Q + K)].

In particular, h([0, M]) and [m, n] are within Hausdorff distance 2(q5 + q3 + q)(Q + K).
By applying β, we deduce that β(h([0, M])) and β|[m,n] are within Hausdorff distance
2(q6 + q4 + q2)(Q + K) + Q. Combining all these, we conclude that

dHaus(α, β|[m,n]) ≤ 2(q6 + q4 + q2)(Q + K) + Q + K .

COROLLARY 2.8. In the setting of Lemma 2.6, assume that Z is a (q, Q)-quasi-geodesic.
Then for some constant K2 depending on f , θ , q, Q, δ,

dHaus([px , py], [qx , qy]|Z) ≤ K2.

As another corollary of Lemma 2.6, we can replace a superlinear-divergent quasi-
geodesic on X with a superlinear-divergent geodesic.

COROLLARY 2.9. Let γ be a bi-infinite (f , θ)-divergent quasigeodesic on a proper
space X. Then there exists a bi-infinite (f ′, θ ′)-divergent geodesic γ ′ such that dHaus(γ , γ ′)
is finite. Specifically, f ′(x) = f (x − C), θ ′ = θ + 2C, where C is the Hausdorff distance
between γ and γ ′.

Proof. Let γ : Z → X be an (f , θ)-divergent (q, Q)-quasigeodesic on X. Let K1 be the
constant given by Lemma 2.6 for Z = γ and δ = 0. For each sufficiently large n, we note
that

d(πγ (γ (n)), πγ (γ (−n))) ≥ d(γ (n), γ (−n)) − 2B >
2n

q
− Q − 2B > K1.
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Lemma 2.6 tells us that there exists a subsegment [p−n, pn] of [γ (−n), γ (n)] and
j−n, jn ∈ Z such that

d(p−n, γ (j−n)) ≤ K1, d(pn, γ (jn)) ≤ K1,

d(γ (j−n), γ (−n)) ≤ d(γ (j−n), πγ (γ (−n))) + d(πγ (γ (−n)), γ (−n)) ≤ K1 + B,

d(γ (jn), γ (n)) ≤ d(γ (jn), πγ (γ (n))) + d(πγ (γ (n)), γ (n)) ≤ K1 + B,

and such that [p−n, pn] ⊆ NK1(γ ). By Lemma 2.7, [p−n, pn] and γ ([j−n, jn]) are
within Hausdorff distance (q5 + q3 + q)(2K1 + 2qQ) + Q + K1. For simplicity, let
C = (q5 + q3 + q)(2K1 + 2qQ) + Q + K1. Note also that

j−n < −n + q(K1 + B) + Q < 0 < n − q(K1 + B) − Q < jn

for large enough n. In conclusion, [p−n, pn] contains a point p that is C-close to γ (0).
Moreover, the distance

d(γ (0), pn) > d(γ (0), γ (jn)) − 2K1 − B

grows linearly, and likewise so does d(γ (0), p−n). Using the properness of X and
Arzelà–Ascoli theorem, we conclude that the sequence {[p−n, pn]}n>1 converges to a
bi-infinite geodesic γ ′, within a K1-neighbourhood of γ . By Lemma 2.7 again, we have
dHaus(γ , γ ′) ≤ C.

It remains to declare a coarsely Lipschitz projection πγ ′ onto γ ′ and show that γ ′ is
(f ′, θ ′)-divergent with respect to πγ ′ . Since dHaus(γ , γ ′) ≤ C, we can define πγ ′(z) to be
a point on γ ′ such that

d(πγ ′(z), πγ (z)) < C.

Any path p outside of the R-neighbourhood of γ ′ is outside of the (R − C)-neighbourhood
of γ . Moreover, if the endpoints p− and p+ of p satisfy that

d(πγ ′(p−), πγ ′(p+)) > θ + 2C,

then by the construction of πγ ′ ,

d(πγ (p−), πγ (p+)) > θ .

Superlinear divergence of γ implies that the length of p is at least f (R − 2C). This
concludes the proof.

2.1. Convention. From now on, we fix a finitely generated group G with exponential
growth which contains a superlinear-divergent bi-infinite geodesic γ : R → G: this is a
QI-invariant property thanks to Corollaries 2.3 and 2.9.

3. Alignment
In this section, we define the alignment of sequences of (subsegments of) superlinear-
divergent geodesics. The key lemma is Proposition 3.3, which promotes alignment between
consecutive pairs to global alignment of a sequence.
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FIGURE 2. The segments satisfy (γ ′
1, γ ′

2) is (ηε log n)-aligned and (γ ′
2, γ ′

3) is (2ηε log n)-aligned.

Definition 3.1. Given paths γ1, . . . , γN : Z → G equipped with (A, B)-coarse Lipschitz
projections πγ1 , . . . , πγN

, integers mi ≤ ni and subpaths γ ′
i := γi([mi , ni]), we say that

(γ ′
1, . . . , γ ′

N) is K-aligned if:
(1) πγi

(γ ′
i−1) lies in γi((−∞, mi + K]); and

(2) πγi
(γ ′

i+1) lies in γi([ni − K , +∞)).

Note that γi can be a single point. We will construct linkage words using K-aligned
paths, starting with the following lemma.

LEMMA 3.2. Given a superlinear function f, positive constants θ , A, B and 0 < ε,
η < 0.1, there exists a constant K3 = K3(f , θ , A, B, ε, η) such that the following holds.

For i = 1, 2, let γi be an (f , θ)-divergent geodesic with respect to an (A, B)-coarsely
Lipschitz projection πγi

: X → γi and let γ ′
i = γi([mi , ni]) be a subpath of γi . Let z ∈ X

and let D > K3 be a constant such that:
(1) diam(γ ′

1 ∪ γ ′
2 ∪ z) ≤ D;

(2) |n2 − m2| ≥ ε log D;
(3) (γ ′

1, γ ′
2) is (ηε log D)-aligned and (γ ′

2, z) is (2ηε log D)-aligned.
Then (γ ′

1, z) is (2ηε log D)-aligned (see Figure 2).

Proof. We will assume that D is much larger than the constants K1 and K2 that appear in
the argument. For i = 1, 2, denote xi = γ (mi) and yi = γ (ni). Suppose for contradiction
that πγ1(z) lies in γ1((−∞, n1 − 2ηε log D)) as in Figure 3. This implies that

d(πγ1(y2), πγ1(z)) ≥ ηε log D >
ηε

3
(log d(y2, γ1) + log d(z, γ1)) + K1,

where K1 is the constant given in Lemma 2.6 taking δ = ηε/3. By Lemma 2.6, there exist a
subsegment [p1, p2] of [z, y2] and time parameters s, t of γ1 such that d(p1, γ1(s)) < K1,
d(p2, γ1(t)) < K1 and

d(γ1(s), πγ1(z)) <
ηε

3
log d(z, γ1) + K1,

d(γ1(t), πγ1(y2)) <
ηε

3
log d(y2, γ1) + K1.
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FIGURE 3. If πγ1 (z) lies in γ1((−∞, n1 − 2ηε log(n))), then the geodesic [y2, z] would fellow travel γ ′
1 then γ ′

2,
causing a contradiction.

In particular, we have

s < γ −1
1 (πγ1(z)) +

(
ηε

3
log d(y2, γ1) + K1

)

≤ n1 − 5
3
ηε log D.

A similar calculation shows that t > n1 − 4
3ηε log D. Now let K2 be the constant in

Corollary 2.8 so that γ1([s, t]) and [p1, p2] are within Hausdorff distance K2 of each other.
In particular, for p′ := γ1(n1 − 1.5ηε log D) ∈ γ1([s, t]), we have a point p ∈ [p1, p2] ⊆
[z, y2] such that d(p, p′) ≤ K2.

Let us now investigate the relationship between [p, y2] and γ ′
2. First, the coarse

Lipschitzness of πγ2 tells us that

d(πγ2(p), πγ2(y2)) ≥ d(πγ2(p
′), y2) − d(πγ2(p

′), πγ2(p)) − d(y2, πγ2(y2))

≥ d(πγ2(p
′), y2) − AK2 − 2B.

Since πγ2(p
′) ∈ πγ2(γ

′
1) is contained in γ2((−∞, m2 + ηε log D)), we deduce that

d(πγ2(p), πγ2(y2)) > (n2 − m2) − ηε log D − AK2 − 2B >
ηε

3
(log d(p, γ2)) + K1.

Again, by Lemma 2.6, there exist a subsegment [p′
1, p′

2] ⊆ [p, z] and time parameters s′, t ′
of γ2 with d(p′

1, γ2(s
′)) < K1, d(p′

2, γ2(t
′)) < K1 and

d(γ2(s
′), πγ2(p)) <

ηε

3q
log d(p, γ2) + K1,

d(γ2(t
′), πγ2(y2)) < K1.
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This means that

d(p′
1, p′

2) ≥ d(πγ2(p), πγ2(y2)) − d(γ2(t
′), πγ2(y2)) − d(γ2(s

′), πγ2(p))

− d(p′
1, γ2(s

′)) − d(p′
2, γ2(t

′))

≥ (n2 − m2) − ηε log D

q
− Q − 1

3
ηε log D − 4K1

≥ 2
3
ηε log D.

Hence, [y2, p′
2] is longer than 2

3ηε log D. However,

d(p′
2, y2) ≤ d(p′

2, γ2(t
′)) + d(γ2(t

′), πγ2(y2)) + d(y2, πγ2(y2)) ≤ 2K1 + B.

This is a contradiction for sufficiently large D.

PROPOSITION 3.3. Let f be a superlinear function, θ , A, B > 0, 0 < ε, η < 0.1 and let
K3 be the constant given in Lemma 3.2. Let x, y ∈ X, and for i = 1, . . . , N , γi be an
(f , θ)-divergent geodesic with respect to an (A, B)-coarse-Lipschitz projection and let
γ ′
i = γi([mi , ni]) be a subpath of γi . Let D > K3 be a constant such that:

(1) diam(γ ′
1 ∪ · · · ∪ γ ′

N) ≤ D;
(2) |ni − mi | ≥ ε log D for each i; and
(3) (x, γ ′

1, . . . , γ ′
N , y) is (ηε log D)-aligned.

Then for each i, (x, γ ′
i , y) is (2ηε log D)-aligned.

Proof. This follows inductively from Lemma 3.2. Fixing i < j , we show that

πγi
(γ ′

j ) ∈ γi((−∞, mi + 2ηε log D]).

If i = j − 1, immediately by assumption, we have

πγi
(γ ′

j ) ∈ γi((−∞, mi + ηε log D]) ⊂ γi((−∞, mi + 2ηε log D]).

Now assuming

πγi+1(γj ) ∈ γi+1((−∞, mi+1 + 2ηε log D]),

since (γi , γi+1) are (ηε log D)-aligned, the triple (γi , γi+1, γj ) satisfies the assumptions
in Lemma 3.2. We conclude that

πγi
(γj ) ∈ γi((−∞, mi + 2ηε log D]).

Applying the same argument to πγj
(γi), πγj

(γk) and πγk
(γj ) shows that

πγj
(γi) ∈ γj ([nj − 2ηε log D, +∞)),

πγj
(γk) ∈ γj ((−∞, mj + 2ηε log D]) and

πγk
(γj ) ∈ γk([nk − 2ηε log D, +∞)).

LEMMA 3.4. Given a superlinear function f, positive constants θ , A, B and 0 < ε,
η < 0.1, there exist constants K4 = K4(f , θ , A, B, ε, η) and C = C(A) such that the
following holds.
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Let α and β be (f , θ)-divergent geodesics with respect to (A, B)-coarsely Lipschitz
projections. Let α′ and β ′ be their subsegments with beginning points x1 and x2,
respectively, such that:
(1) D := diam(α′ ∪ β ′) ≥ K4;
(2) diam(α′) ≥ ε log D; and
(3) (α′, x2) and (x1, β ′) are ηε log D-aligned.
Then, (α′, β ′) is (Cηε log D)-aligned.

Proof. Let α′ = α([m1, n1]) and β ′ = β([m2, n2]). Denote x1 = α(m1), y1 = α(n1),
x2 = β(m2), y2 = β(n2). Let C′ = 16(A + 1) + 1 and C = (C′)2 + 2. We first show that

πβ(α′) ⊂ β((−∞, m2 + C′ε log D]) ⊂ β((−∞, m2 + Cε log D]).

Suppose in contrast that for some point a ∈ α′, the projection

πβ(a) ∈ β([m2 + C′ε log D, +∞)).

Then, we have

d(πβ(x1), πβ(a)) ≥ (C′ − 1)ηε log D

≥ 1
16A

(C′ − 1)ηε(log d(x1, β) + log d(a, β)) + K1,

where K1 > 0 is the constant as in Lemma 2.6 taking δ = 1/16A(C′ − 1)ηε. Then, there
exists a subsegment [px1 , pa]|α ⊂ [x1, a]|α ⊂ [x1, y1]|α and points qx1 , qa on β such that

d(px1 , qx1), d(pa , qa) < K1,

d(qx1 , πβ(x1)) ≤
(

1
16A

(C′ − 1)ηε

)
log d(x1, β) + K1,

d(qa , πβ(a)) ≤
(

1
16A

(C′ − 1)ηε

)
log d(a, β) + K1.

Then, by Corollary 2.8, there is a point p′
x1

∈ [px1 , pa]|α close to x2. The point p′
x1

is
chosen to be px1 if qx1 ∈ β((m2, ∞)), or the point where the Hausdorff distance K2 is
attained if qx1 ∈ β((−∞, m2]). The distance is bounded by

d(x2, p′
x1

) ≤ max
((

1
16A

(C′ − 1)ηε

)
log d(x1, β) + 2K1, K2

)

≤
(

1
16A

(C′ − 1)

)
ηε log D + O(1)

=
(

A + 1
A

)
ηε log D + O(1),

where K2 is the constant in Corollary 2.8 and O(1) is the implied constant. Projecting to
α gives that

d(πα(x2), p′
x1

) ≤ d(πα(x2), πα(p′
x1

)) + B ≤ (A + 1)qηε log D + O(1).
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However, since (α′, x2) is (ηε log D)-aligned,

d(πα(x2), p′
x1

) ≥ d(y1, p′
x1

) − ηε log D

≥ d(pa , p′
x1

) − ηε log D

≥ d(x2, πβ(a)) − d(x2, p′
x1

) − d(πβ(a), pa) − ηε log D

≥
(

1
q

C′ηε log D

)
− 2

(
C′ − 1

16A
ηε log D

)
− ηε log D − O(1)

≥ (14(A + 1) − 1)ηε log D − O(1)

contradicting the previous inequality when D is sufficiently large.
We now show that

πα(β ′) ⊂ α((n1 − Cε log D, ∞)).

Suppose in contrast that for some point b ∈ β ′, the projection

πα(b) ∈ α((−∞, n1 − Cε log D)).

We will discuss in two cases. If

πα(b) ∈ α((m1, n1 − Cε log D)) ⊂ α′,

then the previous calculation shows that

πβ(πα(b)) ∈ β((−∞, m2 + C′ηε log D]).

This shows that (πα(b), [x2, b]|β , ) and (b, [πα(b), y1]|α) are (C′ηε log D)-aligned.
Moreover, diam([x2, b]|β ∪ [πα(b), y1]|α) < D. So the exact same calculation as before
shows that

πα([x2, b]|β) ⊂ α((−∞, πα(b) + C′2ε log D)) ⊂ α((−∞, n1 − 2ε log D)).

This contradicts that

πα(x2) ∈ α((n1 − ηε log D, ∞)).

The remainder case is when πα(b) ∈ α((−∞, m1)). We will show that this is impossible
assuming η < min(1/(q + 2q2), (A + 2)/(A + q + 2)) and α′ is long. In this case,

d(πα(b), πα(x2)) ≥ 1
q

(1 − η)ε log D

≥ 1
(2 + A)

ηε log d(b, α) + log d(x2, α) − K1,

where K1 is the constant in Lemma 2.6 choosing δ = 1/(2 + A)ηε. Then, by Lemma 2.6,
there are points px2 , pb ∈ [x2, b] such that

d(px2 , y1) ≤ 1
2 + A

ηε log D + K1 and

d(pb, x1) ≤ 1
2 + A

ηε log D + K1.
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Then,

d(πβ(x1), pb) ≤ A

2 + A
ηε log D + O(1).

However, πβ(x1) ∈ β((−∞, m2 + ηε log D]) implies that

d(πβ(x1), pb) ≥ d(x2, pb) − ηε log D

≥ d(px2 , pb) − ηε log D

≥ d(x1, y1) − d(x1, pb) − d(y1, px2)ηε log D

≥ ε log D − 2
2 + A

ηε log D − ηε log D − O(1)

>
A

2 + A
ηε log n + O(1).

The last step is due to η < 1/3. This is a contradiction.

We now construct linkage words. These play the role of Schottky sets in [BMSS23,
Gou22]. We use the notation B(g, R) := {h ∈ G : d(g, h) ≤ R} to mean the ball of
radius R around g, and S(g, R) := {h ∈ G : d(g, h) = R} to mean the sphere of radius
R around g.

LEMMA 3.5. Let γ : R → G be an (f , θ)-divergent quasi-geodesic and let ε > 0. For K
sufficiently large, the following holds. For each m ∈ Z, there exists a subset S ⊆ G with
100 elements such that for each pair of distinct elements a, b ∈ S, we have:
(1) |a|, |b| = K and |ba−1|, |a−1b| ≥ 0.5K;
(2) πγ (γ (0)a−1) and πγ (γ (0)a−1b) ∈ B(γ (0), εK); and
(3) πγ (γ (m)a) and πγ (γ (m)ab−1) ∈ B(γ (m), εK).

Proof. Let K1 = K1(0.1ε, f , θ) be as in Lemma 2.6.
Let λ > 1 be the growth rate of G. For n large enough, we have

λn ≤ #S(id, n) ≤ λ(1+0.1ε)n.

We consider the sets

O1 := {g ∈ S(id, K) : d(γ (0), πγ (γ (0)g)) ≥ 0.5εK},
O2 := {g ∈ S(id, K) : d(γ (m), πγ (γ (m)g)) ≥ 0.5εK}.

We will argue that both of these sets are much smaller than S(id, K) and use a certain
subset of S(id, K) \ (O1 ∪ O2) to construct our set S.

To show that O1, O2 are relatively small, let us now consider a word a with |a| = K

and d(πγ (γ (0)a−1), γ (0)) ≥ 0.5εK . Then, since (assuming K is sufficiently large)

d(πγ (γ (0)a−1), πγ (γ (0))) ≥ 0.5εK − B ≥ K1 + 0.1ε log B + 0.1ε log K ,
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FIGURE 4. Decomposing a−1 as a concatenation of well-controlled paths.

Lemma 2.6 asserts that there exist p ∈ [γ (0), γ (0)a−1] and q ∈ γ such that d(p, q) ≤ K1

and d(p, πγ (γ (0)a−1)) ≤ log |a| + K1. In this case, we have

d(p, γ (0)a−1) = d(γ (0), γ (0)a−1) − d(γ (0), p)

≤ |a| − d(γ (0), πγ (γ (0)a−1)) + d(p, πγ (γ (0)a−1))

≤ K − 0.5εK + log K + K1.

In summary,

a−1 = (γ (0)−1q) · (q−1p) · (p−1γ (0)a−1)

where, as in Figure 4:
• γ (0)−1q = γ (0)−1γ (k) for some k between −2qK − Q and 2qK + Q;
• |q−1p| ≤ K1; and
• |p−1γ (0)a−1| ≤ (1 − 0.5ε)K + log(1.5K) + K1.

For large enough K, the number of such elements is at most

5QK · λ(1+0.1ε)(1−0.4ε)K ≤ 5QKλ(1−0.3ε)K .

Hence, the cardinality of

A := {(g1, . . . , g100) ∈ S(id, K)100 : gi ∈ O1 for some i ∈ [1, 100]}
is at most 100 · (#S0)

99 · 3QKλ(1+0.3)εK—we pick some index i which satisfies the given
condition and draw the rest of the elements from S(id, K). This is exponentially small
compared with (#S(id, K))100.

By a similar logic,

B := {(g1, . . . , g100) ∈ S(id, K)100 : gi ∈ O2 for some i ∈ [1, 100]}
is exponentially small compared with S(id, K)100.

Finally, we observe that for each h ∈ S(id, K), there are at most

#B(h, 0.5K) ≤ λ(1+ε)0.5K

elements g such that |g−1h| ≤ 0.5K .
Hence, we deduce that the cardinality of

C := {(g1, . . . , g100) ∈ S100
0 : d(gi , gj ) ≤ 0.5K for some i �= j}
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is at most 100 · 99 · 2 · λ0.6K · (#S(id, K)99, which is exponentially small compared with
(#S(id, K))100. Given these estimates, we conclude that for sufficiently large K,

S(id, K)100 \ (A ∪ B ∪ C)

is non-empty.
Letting (g1, . . . , g100) be one of its elements, we claim that the choice S = {gi , i = 1,

. . . , 100} satisfies the conditions of the lemma.
Note in particular that g−1

i gj �= id since its norm is at least 0.5K . We observe that:
(1) gi are all distinct;
(2) |gi | = K for all 1 ≤ i ≤ 100;
(3) |gig

−1
j |, |g−1

i gj | ≥ 0.5K for each i �= j ;

(4) πγ (γ (0)g−1
i ) ∈ B(γ (0), 0.5εK) and πγ (γ (m)gi) ∈ B(γ (m), 0.5εK) for each

1 ≤ i ≤ 100.
It remains to show that d(γ (0), πγ (γ (0)g−1

i gj )) < εK for each i �= j . Suppose not;
then for large enough K, we have

d(πγ (γ (0)g−1
i ), πγ (γ (0)g−1

i gj )) ≥ εK − 0.5εK

> 2ε log K

> ε log |gi | + ε log(|gi | + |gj |) + K ′
1

≥ ε log d(γ , γ (0)g−1
i ) + ε log d(γ , γ (0)g−1

i gj ) + K ′
1,

where K ′
1 = K1(ε, f , θ) defined as in Lemma 2.6. Then by Lemma 2.6, there exists

p ∈ [γ (0)g−1
i , γ (0)g−1

i gj ] such that

d(p, πγ (γ (0)g−1
i )) < ε log d(γ , γ (0)g−1

i ) + 2K ′
1 ≤ ε log K + 2K ′

1

and d(γ (0), p) < 0.6εK . Here, we have

d(p, γ (0)g−1
i ) ≥ d(γ (0), γ (0)g−1

i ) − d(γ (0), p) ≥ K − 0.6εK

and

d(γ (0), γ (0)g−1
i gj ) ≤ d(γ (0), p) + d(p, γ (0)g−1

i (gj )

≤ 0.6εK + [d(γ (0)g−1
i , γ (0)g−1

i gj ) − d(γ (0)g−1
i , p)]

≤ 0.6εK + 0.6εK .

However, this contradicts |g−1
i gj | ≥ 0.5K .

Given a translate of γ , we can naturally define the projection

πgγ (x) := gπγ (g−1x).

Since G acts by isometries, this is an (A, B)-coarse Lipschitz projection so long
as πγ is as well. The following lemma describes projections between translates of
superlinear-divergent quasi-geodesics.
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FIGURE 5. The geodesic [α(i), β ′(j)] comes near β ′(0).

LEMMA 3.6. Let α and β be (f , θ)-divergent quasi-geodesics equipped with
(A, B)-coarse Lipschitz projections and let 0 < ε < 1/10(A + 1). Then, there exists
K6 > 0 such that the following holds. Suppose a ∈ G and i ∈ Z satisfy that:

(i) |a| > K6;
(ii) πβ(β(0)a−1) ∈ B(β(0), ε|a|); and

(iii) πα(α(i)a) ∈ B(α(i), ε|a|).
Then, for each j ∈ Z, πα(α(i)aβ(0)−1β(j)) is within distance ε log |j | + 2|a| from α(i).

Proof. For simplicity, we denote and parametrize the translate of β

β ′(j) = α(i)aβ(0)−1β(j).

Let γ : [0, M] → G be a geodesic connecting α(i) and β ′(j), see Figure 5. The projection
of α(i) onto β ′ is near α(i)a:

d(α(i)a, πβ ′(α(i))) = d(β(0), πβ(β(0)a−1)) ≤ ε|a|.
Then, there exists t ∈ [0, M] such that γ (t) ∈ B(α(i)a, 2ε|a|). If d(β ′(j), α(i)a) <

2ε|a|, simply take t = M so that γ (t) = β ′(j). Additionally, if d(β ′(j), α(i)a) ≥ 2ε|a|,
we obtain such t by applying Lemma 2.6. Notice

d(πβ ′(α(i)a), πβ ′(β ′(j)))

≥ d(α(i)a, β ′(j)) − d(α(i)a, πβ ′(α(i)a)) − d(πβ ′(β ′(j)), β ′(j)))

≥ 2ε|a| − ε|a| − B

≥ ε(log d(β ′(j), β ′) + log d(α(i), β ′)) + K1,
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where K1 is the constant from Lemma 2.6 taking δ = ε. The last inequality holds when
|a| is sufficiently large. Then Lemma 2.6 implies that for some t,

d(γ (t), α(i)a) ≤ d(γ (t), πβ ′(α(i))) + d(πβ ′(α(i)), α(i)a)

≤ (ε log |a| + K1) + ε|a|
≤ 2ε|a|

for sufficiently large |a|. Note that

t = d(γ (0), γ (t)) ≤ d(α(i), α(i)a) + 2ε|a| ≤ 3
2 |a|.

Now, if

d(πα(γ (0)), πα(γ (M))) > ε log(|j | + |a|)
≥ ε(log d(γ (0), α) + log d(γ (M), α)) − K1,

where K1 is the constant from Lemma 2.6 taking δ = ε, then there exists τ ∈ [0, M] such
that

d(γ (τ), πα(γ (M))) ≤ ε log(|j | + |a|) + K1

and γ |[0,τ ] is contained in the K1-neighbourhood of α. Notice that τ cannot be larger than
t, otherwise γ (t) is K1-close to α; let p ∈ α be the point such that d(γ (t), p) ≤ K1. Then,
when |a| is sufficiently large,

d(α(i), πα(α(i)a)) ≥ d(α(i), p) − d(πα(α(i)a), p)

≥ d(α(i)a, α(i))) − d(α(i)a, q) − (Ad(p, α(i)a) + 2B)

≥ |a| − (A + 1)(2ε|a| + K1) − 2B > ε|a|.
This is a contradiction, so we must have τ ≤ t . We then have

d(πα(α(i)aβ(0)−1β(j)), α(i)) ≤ d(πα(γ (M)), γ (τ)) + d(γ (τ), γ (0))

≤ ε log(|j | + |a|) + K1 + 3
2 |a|

≤ ε log |j | + 2|a|.

4. Probabilistic part
In this section, fixing a small enough ε > 0, we study the situation where a random path
(id =: Z0, Z1, . . . , Zn) is seen by a superlinear-divergent direction, or to be precise, where
(Zi , . . . , Zi+ε log n) is (a part of) an (f , θ)-divergent quasigeodesic and

(id, (Zi , Zi+1, . . . , Zi+ε log n), Zn)

is ε2-aligned for some i � n. We will prove in Corollary 4.6 and Lemma 4.7 that this
happens with overwhelming probability.

To make an analogy, consider a random path (id =: Z0, Z1, . . . , Zn) arising from a
simple random walk on the Cayley graph of a free group F2 � 〈a, b〉. Here, we similarly
expect that Zn = id is not desirable and (id, (Zi , Zi+1), Zn) is aligned for some i � n.
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In fact, the alignment fails with exponentially decaying probability. A classical argument
using martingales can be described as follows:
(1) construct a ‘score’ that marks the progress made till step i;
(2) prove that at each step i, it is more probable to earn a score rather than lose one;
(3) sum up the difference at each step and use concentration inequalities to deduce an

exponential bound.
Here, the score at step i should be determined by information up to time i. Moreover, when
the score grows, the recorded local progresses should also pile up. To realize these features
on a general Cayley graph other than tree-like ones, we employ the concatenation lemma
proven in §3.

4.1. Combinatorial model. In the following, let γ be an (f , θ)-divergent geodesic on G
with γ (0) = id and ε > 0 be a small enough constant. Let us fix some constants:
• K3 = K3(f , θ , q, Q, A, B, ε3, ε) be as in Lemma 3.2;
• K is larger than K5 = K5((1/10q)ε4) and the twice of K6 = K6(0.1ε4) given by

Lemmas 3.5 and 3.6, respectively;
• N0 is a threshold such that

ε4n > 10(K + K3 + log n)

for all n > N0.
After multiple applications of our alignment lemmas, the exponent on ε will decrease,
which is why we start with ε4.

Throughout this section, we will consider the following combinatorial model. Fix
w0, w1, . . . ∈ G. Now, given a sequence of 3-tuples si = (ai , bi , ci) ∈ S3, we consider
a word of the form

Wk = w0 · a1γ (ε log n)b1γ (ε log n)c1 · w1 · · · akγ (ε log n)bkγ (ε log n)ck · wk .

To ease the notation, let us also define

Vk = Wk−1ak , Uk = Wk−1akγ (ε log n)bk .

We also denote

s = (a1, b1, c1, . . . , ak , bk , ck).

We will argue that for most choices of s ∈ S3k , a certain subsequence of

(id, V1γ |[0,ε log n], U1γ |[0,ε log n] . . . , Uk−1γ |[0,ε log n], Wk)

is well aligned. In §4.2, we will derive from this a deviation inequality (Lemma 4.7) and
deduce a central limit theorem.

To show well alignment, we argue analogously to [BMSS23, Gou22, Cho22], by
keeping track of times in which the random walk may travel along different translates
of γ |[0,ε log n] and arguing that, at most of these times, most directions of the random walk
do not backtrack. To implement, we need the following Proposition 4.1. We remark that for
the rest of the paper, whenever we discuss alignment of a sequence of points and geodesic
segments, the only segments used are translates of γ |[0,ε log n].
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PROPOSITION 4.1. Let g ∈ G and let n be an integer greater than N0 and |g|. Let S be the
subset of S(id, K) described in Lemma 3.5 for m = ε log n. Then for any distinct a, b ∈ S,
at least one of

(γ |[0,ε log n], γ (ε log n)ag) and (γ |[0,ε log n], γ (ε log n)bg)

is ε4 log n-aligned. Likewise, at least one of

(a−1g, γ |[0,ε log n]) and (b−1g, γ |[0,ε log n])

is ε4 log n-aligned.

Proof. We prove the first claim only. Let t ∈ Z be such that γ (t) = πγ (γ (ε log n)ag).
If t is greater than ε(1 − ε3) log n, we deduce that (γ |[0,ε log n], γ (ε log n)ag) is
ε4 log n-aligned as desired. Let us deal with the remaining case: we assume

t ∈ (−∞, ε log n − ε4 log n]. (4.1)

Consider two translates of γ :

γ1 = a−1γ (ε log n)−1γ and γ2 = b−1γ (ε log n)−1γ ,

and their subpaths

γ ′
1 := γ1|[t ,ε log n] and γ ′

2 := γ2|[0,ε log n].

Let γ̄ ′
2 be the reversal of γ ′

2.
By the definition of t, (γ (ε log n)ag, γ |[t ,ε log n]) is automatically 0-aligned or, equiva-

lently, (g, γ ′
1) is 0-aligned. Next, since a and b are chosen from S, the subset of S(id, K)

as described in Lemma 3.5, we have that

πγ (γ (ε log n)ab−1) is within B(γ (ε log n), 0.1ε4|ab−1|)
and

πγ (γ (ε log n)ba−1) is within B(γ (ε log n), 0.1ε4|ab−1|).
Moreover, we have

|ba−1| ≥ 0.5K ≥ K6.

By plugging in α = γ and β = γ̄ (that is, β(t) = γ (ε log n − t) for each t ∈ Z), we can
apply Lemma 3.6. The required assumptions are

πβ(β(0)(ba−1)−1) = πγ (γ (ε log n)ab−1)

∈ B(γ (ε log n), 0.1ε4|ab−1|) = B(β(0), 0.1ε4|ab−1|)
and

πα(α(ε log n), ba−1) = πγ (γ (ε log n), ba−1) ∈ B(γ (ε log n), 0.1ε4|ab−1|).
As a result, for each j ∈ Z, we have

d(πγ (γ (ε log n)ab−1γ (ε log n)−1γ (j)), γ (ε log n)) ≤ 0.1ε4 log |j − ε log n|+2|ab−1|.
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In other words, we have

πγ1(γ
′
2) ∈ γ1((ε log n − 0.1ε4 log(ε log n) − 2K , +∞)).

Similarly, we deduce that

πγ2(γ
′
1) ∈ γ2((ε log n − 0.1ε4 log(ε log n) − 2K , +∞)).

We conclude that (γ ′
1, γ̄ ′

2) is (0.1ε4 log(ε log n) + 2K)-aligned.
We now let D = |g| + 2ε log n + 2K + K3; note that

D > diam(g−1 ∪ γ ′
1 ∪ γ ′

2).

Moreover, the lengths of γ ′
1 and γ ′

2 are at least ε4 log n and we have

ε4 log n ≥ ε3 log D.

Finally, (g, γ ′
1, γ̄ ′

2) is (0.1ε4 log m + 2K)-aligned, and hence 0.2ε4 log D-aligned.
Lemma 3.2 now tells us that (g−1, γ̄ ′

2) is ε4 log D-aligned. This implies that
(γ |[0,m], γ (m)bg) is ε4 log n-aligned, as desired.

Following Boulanger et al [BMSS23] and Gouëzel [Gou22], we define the set of
pivotal times Pk(s) inductively. We will suppress the notation Pk := Pk(s) when it is
unambiguous, and the remaining notation follows from the beginning of this section.
First, set P0 = ∅ and z0 = id. Given Pk−1 ⊆ {1, . . . , k − 1} and zk−1 ∈ G, Pk and zk

are determined by the following criteria.
(a) When (zk−1, Vkγ |[0,ε log n], Ukγ |[0,ε log n], Wk) is ε3 log n-aligned, we set Pk =

Pk−1 ∪ {k} and zk = Uk .
(b) Otherwise, we find the maximal index m ∈ Pk−1 such that (Vmγ |[0.ε log n], Wk) is

ε3 log n-aligned and let Pk = Pk−1 ∩ {1, . . . , m − 1} (that is, we gather all pivotal
times in Pk−1 smaller than m) and zk = Vm. If such an m does not exist, then we set
Pk = ∅ and zk = id.

Given input w0, w1, . . . , wk ∈ G and s ∈ S3k , this algorithm outputs a subset Pk(s) of
{1, . . . , k}. Our first lemma tells us that Pk(s) effectively records the alignment.

LEMMA 4.2. The following holds for all n > N0.
Let Pk = {i(1) < · · · < i(M)} and suppose that ε log(|w0| + · · · + |wk| + kε log n) ≤

log n. Then, there exists N ∈ N and g1, . . . , gN = zk such that (Vi(1), Ui(1), . . . , Vi(M),
Ui(M)) is a subsequence of (g1, . . . , gN) and

(id, g1γ |[0,ε log n], . . . , gNγ |[0,ε log n], Wk)

is ε2 log n-aligned.

Proof. We induce on k. If we added a pivot, Pk = Pk−1 ∪ {k}, there are the following two
cases.

(1) Pk−1 = ∅. Then, (id, Vkγ |[0,ε log n], Ukγ |[0,ε log n], Wk) is (ε3 log n)-aligned, with
zk = Uk , as desired.
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(2) Pk−1 = {i(1) < · · · < i(M − 1)} is non-empty. Then, there exist g1, . . . , gN such
that (Vi(1), . . . , Vi(M−1)) is a subsequence of (g1, . . . , gN), gN = zk−1 and

(id, g1γ |[0,ε log n], . . . , gNγ |[0,ε log n], Wk−1)

is ε2 log n-aligned. Moreover,

(zk−1, Vkγ |[0,ε log n], Ukγ |[0,ε log n], Wk)

is (ε3 log n)-aligned. Here, since (zk−1γ |[0,ε log n], Wk−1) is ε3 log n-aligned,

(zk−1γ |[0,ε log n], Wk−1ak) = (zk−1γ |[0,ε log n], Vk)

is also (ε3 log n + AK + B)-aligned. Now, Lemma 3.4 asserts that for large enough n,
(zk−1γ |[0,ε log n], Vkγ |[0,ε log n]) is ε2 log n-aligned. As a result,

(id, g1γ |[0,ε log n], . . . , gNγ |[0,ε log n], Vkγ |[0,ε log n], Ukγ |[0,ε log n], Wk)

is ε2 log n-aligned, with zk = Uk .
Now, suppose we backtracked: Pk = Pk−1 ∩ {1, . . . , m − 1} for some m ∈ Pk−1.

Letting M = #Pk−1, so that #Pk = M + 1, our induction hypothesis tells us that there
exist g1, . . . , gN such that (Vi(1), Ui(1), . . . , Vi(M+1), Ui(M+1)) is a subsequence of
(g1, . . . , gN) and

(id, g1γ |[0,ε log n], . . . , gNγ |[0,ε log n], Wk−1)

is ε2 log n-aligned. Moreover, we have that (Vi(M+1)γ |[0,ε log n], Wk) is ε3 log n-aligned
by the criterion. It follows that

(id, g1γ |[0,ε log n], . . . , Vi(M+1)γ |[0,ε log n], Wk)

is ε2 log n-aligned, with zk = Vm = Vi(M+1), as desired.

Next, we have the following lemma.

LEMMA 4.3. Let us fix a1, b1, c1, . . . , ak , bk , ck and draw ak+1, bk+1, ck+1 in S3

according to the uniform measure. For n ∈ N sufficiently large, the probability that
#Pk+1 = #Pk + 1 is at least 9/10.

Proof. We need to choose ak+1, bk+1, ck+1 in S3 such that

(zk , Vk+1γ |[0,ε log n], Uk+1γ |[0,ε log n], Wk+1)

is ε3 log n-aligned. By Proposition 4.1, there are at least 99 choices of ak+1 such that

(zk , Vk+1γ |[0,ε log n])

is ε3 log n-aligned.
Likewise, there are at least 98 choices of bk+1 such that both

(Vk , Uk+1γ |[0,ε log n]) and (Vk+1γ |[0,ε log n], Uk+1)

are ε4 log n-aligned. From Lemma 3.4, for sufficiently large n, this tells us there are at
least 98 choices of bk+1 such that (Vk+1γ |[0,ε log n], Uk+1γ |[0,ε log n]) is ε4 log n-aligned.
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Finally, there are at least 99 choices of ck+1 such that (Uk+1γ |[0,ε log n], Wk+1) is
ε3 log n-aligned.

We are done as 99/100 · 98/100 · 99/100 > 9/10.

Given a sequence s = (ai , bi , ci)
k
i=1, we say that another sequence s′ = (a′

i , b′
i , c′

i )
k
i=1

is pivoted from s if they have the same pivotal times, (al , cl) = (a′
l , c′

l ) for all l = 1, . . . , k,
and bl = b′

l for all l except for l ∈ Pk(s). We observe that being pivoted is an equivalence
relation. The following lemma shows that these equivalence classes are large.

LEMMA 4.4. Given s = (ai , bi , ci)
k
i=1 and a pivotal time � ∈ Pk(s), construct a new

sequence s′ by replacing b� with another b′
� ∈ S such that

(z�−1, V�γ |[0,ε log n], U�γ |[0,ε log n], W�)

is ε3 log n-aligned. Then, s′ is pivoted from s.

Proof. We need to show that both sequences s and s′ have the same set of pivotal times.
Before time �, the sequences are identical, so that Pj (s) = Pj (s

′) for j < �. By our choice
of b′

�, we know that the time � is added as a pivot, and so z′
� = U ′

�. Now we induce on
j > �: suppose that all pivotal times in Pj−1(s) are still in Pj−1(s

′).
To determine Pj (s), either we added a new pivotal time j or we backtracked. In the

former case, we have that (zj−1, Vjγ |[0,ε log n], Ujγ |[0,ε log n], Wj) is ε3 log n-aligned.
Since G acts on itself by isometries, this happens if and only if the sequence

(z′
�(z

−1
� )zj−1, z′

�(z
−1
� )Vjγ |[0,ε log n], z′

�(z
−1
� )Ujγ |[0,ε log n], z′

�(z
−1
� )Wj )

is ε3 log n-aligned. However, this is the same as requiring that

(z′
j−1, V ′

j γ |[0,ε log n], U ′
j γ |[0,ε log n], W ′

j )

is ε3 log n-aligned, so that j ∈ Pj (s
′).

In the latter case, we found the maximum M such that (VMγ |[0.ε log n], Wk) is
ε3 log n-aligned. Since � ∈ Pk(s), we know that M > �. Hence, this is the same as
requiring that

(z′
�(z

−1
� )VMγ |[0.ε log n], z′

�(z
−1
� )Wk) = (V ′

Mγ |[0.ε log n], W ′
k)

is ε3 log n-aligned. Therefore, j ∈ Pk(s
′).

Now fixing wi terms, we regard Wk as a random variable depending on the choice of

(a1, b1, c1, . . . , ak , bk , ck),

which are distributed according to the uniform measure on S3k .
Fixing a choice s = (a1, . . . , ck), let Ek(s) be the set of choices s′ that are pivoted

from s. Since being pivoted is an equivalence relation, the collection of Ek(s) terms
partitions the space of sequences S3k . We claim that most of these equivalence classes are
large: at pivotal times � ∈ Pk , one can replace b� with one of many other b′

� terms while
remaining pivoted.
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LEMMA 4.5. Let s = (a1, b1, c1, . . . , ak , bk , ck). Draw (ak+1, bk+1, ck+1) according to
the uniform measure on S3. Then, for all j ≥ 0,

P(#Pk+1(s
′, sk+1) < #Pk(s

′) − j | (s′, sk+1) ∈ Ek(s) × S3) ≤ ( 1
10 )j+1.

We remark that the conditional measure P(·|Ek(s) × S3) on S3(k+1) is the same as the
uniform measure on Ek(s) × S3 ⊂ S3(k+1), because P(·) is the uniform measure on a finite
set.

Proof. We induce on j ≥ 0. The j = 0 case is Lemma 4.3. We prove it for j = 1. Suppose
that we made some choice of sk+1 := (ak+1, bk+1, ck+1) that led to backtracking. We must
show that for such an sk+1,

P(#Pn+1(s
′, sk+1) < #Pn(s

′) − 1 | s′ ∈ Ek(s)) ≤ 1
10 .

To this end, we examine the final pivot s�. By Lemma 4.4, we can replace b� with any
distinct b′

� ∈ S such that

(z�−1, V�γ |[0,ε log n], U�γ |[0,ε log n], W�)

is ε4 log n-aligned. There are at least 98 choices of such a b′
�, by Proposition 4.1.

Likewise, there are at least 98 choices of b′
� �= b� such that (U�γ[0,ε log n], Wk) is

ε4 log n-aligned. From Lemma 3.2, we know that

(V�γ |[0,ε log n], Wk)

is ε3 log n-aligned. For this choice of s′, we have Pk+1(s
′) = Pk(s

′) ∩ {0, . . . , � − 1}.
In particular, #Pk+1 = #Pk − 1. Hence,

P(#Pk+1 < #Pk − 1 | Ek(s), sk+1) ≤ ( 4
100 ) < ( 1

10 ).

To handle the induction step for j ≥ 2, the same argument works, except we condition not
only on sk+1 but also on the final j pivotal increments which resulted in backtracking.

COROLLARY 4.6. Let Pk be the set of pivotal times. Then we have

P(#Pk ≤ k/2) < (1/10)k .

4.2. Random walks. Recall that G contains an (f , θ)-superdivergent (q, Q)-quasi-
geodesic γ : Z → G with γ (0) = id.

Let μ be a probability measure on G whose support generates G as a semigroup. Passing
to a convolution power if necessary, assume that μ(a) > 0 for all a in our finite generating
set A ⊂ G. Let (Zn)n≥1 be the simple random walk generated by μ and let α ∈ (0, 1). We
can define

p = min{μ(a), a ∈ A},
ε = α/100

log(1/p)
,

so that pε log n = n−α/100. Then for any path η of length 100ε log n and any k ∈ Z, we have

P((gk+1, . . . , gk+100ε log n) = η) ≥ n−α .
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Also recall that for any three points o, x, y ∈ G, we can define the Gromov product,
given by

(x, y)o = 1
2 (d(o, x) + d(o, y) − d(x, y)).

We now have the following lemma.

LEMMA 4.7. For any 0 < α < 1, there exists K > 0 such that for each n ∈ N and
x ∈ B(id, 2n), we have

P[(x, Zn)id ≥ n3α)] ≤ Ke−nα/K .

Proof. First, we would like to find a nice decomposition of our random walk, which will
allow us to analyse the sample paths using our combinatorial model in §4.1.

Let λi be i.i.d. distributed according to the uniform measure on the subset S ′ ⊂ G5

defined by

S′ := {(a, γ ′, b, γ ′, c) : a, b, c ∈ S, γ ′ = γ (ε log n)}.
Then, the evaluation λi = a · γ ′ · b · γ ′ · c is distributed according to the measure

μS ∗ γ ′ ∗ μS ∗ γ ′ ∗ μS , where μS is uniform over S.
Let N = 3K + 2ε log n. By our choice of p, for each a, b, c ∈ S, we have

μ∗N(aγ ′bγ ′c) ≥ pN . Then, we can decompose

μ∗N = 106pN(μS ∗ γ ′ ∗ μS ∗ γ ′ ∗ μS) + (1 − 106pN)ν

for some probability measure ν.
Now, we consider the following coin-toss model. Let ρi be independent 0-1 valued

random variables, each with probability 106 · pN of being equal to 1. Also, let ξi be i.i.d.
distributed according to ν. We set

gi =
{

λi if ρi = 1,

ξi otherwise.

Then, (g1 · · · gn)n has the same distribution as (ZNn), because each gi is distributed
according to μ∗N .

Hoeffding’s inequality tells us that

P

( n3α∑
i=1

ρi ≥ 0.5n3α · n−α

)
≥ 1 − 2 exp

(
− 2(0.5n2α)2

n3α

)
≥ 1 − 2 exp(−0.5nα).

After tossing away an event of probability at most 2 exp(−0.5nα), we assume
∑n3α

i=1 ρi ≥
0.5n2α .

To apply the analysis of our combinatorial model, we condition on the values of ρi , ξi

and only keep the randomness coming from the ηi terms. Let

i(1) < i(2) < · · · < i(M)
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be the indices in [1, n3α], where ρi = 1. Then, we can write

x−1 · Zn

= w0 · a1γ (ε log n)b1γ (ε log n)c1 · w1 · · · aMγ (ε log n)bMγ (ε log n)cM · wM ,

where

w0 = x−1g1 · · · gN(i(1)−1)−1,

w1 = gNi(1)+1 · · · gN(i(2)−1)−1,
...

wM = gNi(M)+1 · · · gn

and ai , bi , ci are i.i.d.s distributed according to the uniform measure on S. As in the
previous section, we set s = (a1, b1, c1, . . . , aM , bM , cM). By Lemma 4.6, the set of
pivots PM(s) is non-empty with probability at least 1 − (1/10)M ≥ 1 − (1/10)0.5n2α

. By
Proposition 3.3, for any pivotal time i ∈ PM(s), we have

(id, x−1ZN(i−1)γ |ε log n, x−1Zn) = (id, (x−1ZN(i−1), . . . , x−1ZN(i−1)+ε log n), x−1Zn)

is ε log n-aligned. Lemma 2.6 implies that [id, x−1Zn] passes through the K1- neigh-
bourhood of (x−1ZN(i−1), . . . , x−1ZN). In other words, [x, Zn] passes through the
(Ni + K0)-neighbourhood of id, which is within the n3α-neighbourhood of id when n
is large.

COROLLARY 4.8. For any α > 0, there exists K ′ such that for each 0 ≤ m ≤ n, we have

E[(id, Zn)
2
Zm

] ≤ n6α + Ke−nα/K · n ≤ n6α + K ′.

The following lemma states that our deviation inequality (Corollary 4.8) implies a rate
of convergence in Fekete’s subadditivity lemma.

LEMMA 4.9. Let

λ := lim
n→∞

1
n
E[d(id, Zn)].

Then,

λ − 1
n
E[d(id, Zn)] = o

(
1√
n

)
.

Proof. Note that by the definition of the Gromov product, we have

E[d(id, Zn2k )] =
2k∑

i=1

E[d(Zn(i−1), Zni)] − 2
k∑

i=1

2k−i∑
t=1

E[(Zn2i (t−1)), Zn2i t )Zn(2i t−1)
].

Also, by Corollary 4.8,

E[(Zn2i (t−1)), Zn2i t )Zn(2i t−1)
] ≤ 2(n2i−1)6α + K ′
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and we also know that E[d(Zn(i−1), Zni)] = E[d(id, Zn)] for any i ∈ N. Hence, for any
sufficiently small α > 0, we have

∣∣∣∣ 1
2k

E[d(id, Zn2k )] − E[d(id, Zn)]
∣∣∣∣ ≤ 2

2k

k∑
i=1

2k−i · (2(n2i−1)6α + K ′)

� n6α

k∑
i=1

2−i/2.

As k → ∞, the quantity 2−k
E[d(id, Zn2k )] converges to L. Picking α < 1/12, we can send

k → ∞ and divide by n to conclude.

We now prove the CLT (Theorem A). It is essentially the same argument as [MS20],
but with a different deviation inequality as input.

Proof. We claim that for any ε > 0, there exists N sufficiently large, such that the sequence

1√
Nk

(d(id, ZNk) − E[d(id, ZNk)])

converges to a Gaussian distribution up to an error at most ε in the Lévy distance.
Indeed, the sequence {

1√
k
(d(id, Zk) − E[d(id, Zk)])

}
k>0

is eventually 2ε-close to a distribution X (in the Lévy distance) as long as its N-jump
subsequence {1/

√
Nk(d(id, ZNk) − E[d(id, ZNk)])}k>0 is eventually ε close to X for

some N ∈ N. To see this, we note that the difference

1√
k
(d(id, Zk) − E[d(id, Zk)]) − 1√

k + 1
(d(id, Zk+1) − E[d(id, Zk+1)])

is O(k−1/2) with probability 1 − ok(1) (in fact, since the step sizes are bounded, this holds
with probability 1, but when we consider unbounded step distributions, only 1 − ok(1) is
necessary). Moreover, from Lemma 4.9, we know that

E[d(id, ZNk)] = LNk + o(
√

Nk).

To show the claim, we first take a sequence

0 = j (0) < j (1) < · · · < j(2�log2 k�) = k

such that j (t + 1) − j (t) = 1 or 2 for each t. The easiest way is to keep halving the
numbers, that is,

j (2t k) :=
⌊

j (2t (k − 1)) + j (2t (k + 1))

2

⌋

for each t and odd k. Let T be the collection of j (t) terms such that j (t + 1) − j (t) = 2.
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Then,

1√
Nk

(d(id, ZNk) − E[d(id, Znk)]) = I1 − I2 − I3m,

where

I1 =
k∑

i=1

1√
k

[
d(ZN(i−1), ZNi) − E[d(ZN(i−1), ZNi)]√

N

]
,

I2 = 2√
Nk

∑
t∈T

((ZNj(t), ZN(j (t)+2)ZN(j (t)+1) − E[(ZNj(t), ZN(j (t)+2)ZN(j (t)+1)])

and

I3 = 2√
Nk

�log2 k−1�∑
t=1

2�log2 k�−t−1∑
l=1

((ZN2t l , ZN2t (l+2))ZN2t (l+1)
− E[(ZN2t l , ZN2t (l+2))ZN2t (l+1)

]).

We claim that for sufficiently large N ∈ N, I2 and I3 are small (in terms of the
Lévy distance). Then the only non-negligible term I1 is a sum of i.i.d random variables,
normalized to converge to a Gaussian as k → ∞.

The second summation I2 is the sum of at most k independent RVs whose variance is
bounded by

4
Nk

· 3N6α .

Hence, the second summation has variance at most 12N6α−1 and

P(|I2| ≥ N−α) ≤ 12N8α−1

by Chebyshev.
Now, for each t,

I3;t := 2√
Nk

2�log2 k�−t−1∑
l=1

((ZN2t l , ZN2t (l+2))ZN2t (l+1)
− E[(ZN2t l , ZN2t (l+2))ZN2t (l+1)

])

is the sum of at most k/2t independent RVs whose variance is bounded by 4/Nk ·
3(N2t )6α . This means that I3;t has variance at most 12N6α−1 · 2(6α−1)t and

P(|I3;t | ≥ N−α2−αt ) ≤ 12N8α−12(8α−1)t

by Chebyshev.
Summing them up, we have∣∣∣∣I2 +

∑
t

I3;t

∣∣∣∣ ≤ N−α
∑

t

2−αt

outside a set of probability N8α−1 ∑
t 2(8α−1)t . These are small, regardless of the range

of t. More precisely, by setting α = 1/10, we deduce that

|I2 + I3| = O(N−1/10)

outside a set of probability O(N−1/10), ending the proof.
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4.3. Some comments on Theorem A. We can also establish the CLT for random walks
with finite pth moment for some p > 2. It suffices to show that Corollary 4.8 holds for
such random walks.

For some q > 0, let E be the event that
∑n

i=1 |gi | is at least nq . We note the following
inequality:

E[nq(p−2)

( n∑
i=1

|gi |
)2

1∑n
i=1 |gi |≥nq

]
≤ E

[( n∑
i=1

|gi |
)p]

≤ E

[
(n

n
max
i=1

|gi |)p
]

≤ np
E

[ n∑
i=1

|gi |p
]

≤ np+1
E|g|p.

This implies that E[(
∑n

i=1 |gi |)21E] ≤ Cn(p+1)−q(p−2). By taking q > (p + 1)/(p − 2),
we can keep this bounded.

Now, on the event Ec, we argue as in Lemma 4.7. We remark that the only place we
used the finite support assumption was to invoke Lemma 4.2. In particular, we needed

ε log(|w0| + · · · + |wk| + kε log n) ≤ log n,

where wi . However, on the event Ec, this assumption is still met, replacing ε with ε/q if
necessary. Then, we may still apply Lemma 4.2. Hence, we get

E[(id, Zn)
2
Zm

] ≤ n6α + Ke−nα/K ≤ 2n6α + K ′.

Given this estimate, we get the following theorem.

THEOREM 4.10. Let G be a finitely generated group with exponential growth and suppose
that G has a superlinear-divergent quasi-geodesic. Let μ be an admissible measure on G
with finite p-moment for some p > 2, and (Zn)n be the random walk on G generated by μ.
Then, there exist constants λ, σ ≥ 0 such that

|Zn| − λn√
n

→ N (0, σ 2).

We now discuss the positivity of the escape rate λ and the asymptotic variance σ in
Theorem A. We first recall a classical result about non-amenable groups [Gui80, Kes59].

THEOREM 4.11. For any simple symmetric random walk (Zn)n>0 on a non-amenable
group, we have

lim
n→∞

E[|Zn|]
n

> 0.

Using this theorem and [MS20, Theorem 4.12], we observe the following.

https://doi.org/10.1017/etds.2024.75 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.75


34 K. Chawla et al

THEOREM 4.12. Let G be a finitely generated non-amenable group and suppose that G has
a superlinear-divergent quasi-geodesic γ : Z → G. Let (Zn)n≥1 be a simple symmetric
random walk on G. Then, there exist λ, σ > 0 such that

|Zn| − λn√
n

→ N (0, σ 2).

Proof. First note that the escape rate λ := limn E|Zn|/n is positive by Theorem 4.11.
Let

σ 2
n := V ar

(
1√
n
d(id, Zn)

)
.

In the proof of Theorem A, we showed that for each ε > 0, for sufficiently large N,{
1√
k
(d(id, Zk) − E[d(id, Zk)])

}
k≥1

converges to a Gaussian RV N (0, σ 2
N) in distribution (by the classical CLT) up to an error

of O(N−1/10) in Lévy distance. From this, we deduce that σN converges to a constant
σ ≥ 0 as N tends to infinity. If we show that σ > 0, then the sequence of random variables
{|Zn| − E|Zn|/√n}n≥1 converges in distribution to a non-degenerate Gaussian N (0, σ 2),
as desired.

First, the proof of [MS20, Theorem 4.12] guarantees an ε > 0 such that

E((|Z2n| − 2λn)2) + E((|Z2n+2�√n�| − 2λn − 2λ�√n�)2) > εn

holds for all large enough n. This follows from the fact that μ∗2 puts non-zero weight on
the identity element (since μ is symmetric), which implies that the even-step distributions
(Z2n)n>0 are {id}-consistent. Note that, even though [MS20, Theorem 4.12] is stated
with the second moment deviation inequality assumption, the above claim only requires
{id}-consistency. As a result, we conclude that

lim sup
n

1
n
E((|Z2n| − 2λn)2) > ε.

Now, observe that

1
n
E((|Z2n| − 2λn)2) = 1

n
E((|Z2n| − E|Z2n| + E|Z2n| − 2λn)2)

= 1
n
(E((|Z2n| − E|Z2n|)2) + (E|Z2n| − 2λn)2),

and (E|Z2n| − 2λn)2 is o(n) by Lemma 4.9. Combining these, we also deduce that

lim sup
n

σ 2
n = lim sup

n

1
n
E((|Z2n| − E|Z2n|)2) > ε

and σ = limn σn > 0, as desired.

Acknowledgements. This project was initiated at the AIM workshop ‘Random walks
beyond hyperbolic groups’, after a lecture by Alex Sisto on his work with Antoine
Goldsborough. We would like to thank Alex Sisto, Ilya Gekhtman, Sébastien Gouëzel,

https://doi.org/10.1017/etds.2024.75 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.75


Random walks on groups and superlinear-divergent geodesics 35

Abdul Zalloum and Jason Behrstock for many helpful discussions. We are grateful
to Anders Karlsson for suggesting references and explaining the background. We also
thank the referee’s valuable comments that helped us improve the paper. R.C. was
partially supported by an NSERC CGS-M grant. I.C. is supported by Samsung Science
& Technology Foundation (SSTF-BA1702-01 and SSTF-BA1301-51) and by a KIAS
Individual Grant (SG091901) via the June E Huh Center for Mathematical Challenges at
Korea Institute for Advanced Study. V.H. was partially supported by an NSERC CGS-M
Grant. K.R. was partially supported by NSERC Discovery grant, RGPIN 06486.

A. Appendix. Right-angled Coxeter groups
Let � = (V , E) be a finite simple graph. We can define the right-angled Coxeter group by
the presentation

W� = 〈v ∈ V |v2, [v, w], (v, w) ∈ E〉.
In this appendix, we show the following.

LEMMA A.1. Let W� be a right-angled Coxeter group of thickness k ≥ 2. Then, any
Cayley graph of � contains a periodic geodesic σ which is (f , θ)-divergent for some θ > 0
and f (r) � rk .

We only need to slightly modify the proof of [Lev22, Theorem C]. They show that an
RACG of thickness at least k has divergence at least polynomial of degree k + 1. To do
this, they construct a periodic geodesic γ such that for any path κ with endpoints on γ

and avoiding an r-neighbourhood of γ term’s midpoint, any segment of κ with projection
at least some constant has to have length at least rk . By integrating, they get rk+1. For
completeness, we include the proof below.

Proof. Since the claim is quasi-isometry invariant, we work on the Davis complex �� . We
modify the proof of [Lev22, Theorem C], borrowing their notation and terminology. Take
the word w in the proof, so that σ is a bi-infinite geodesic which is the axis of w, and set
pi = wi . Since the Davis complex is a CAT(0) cube complex, the nearest point projection
π : �� → σ is well defined and 1-Lipschitz.

Let κ : [0, t] → �� be a path whose projection has diameter at least 2|w|, which is
disjoint from the |w|r-neighbourhood around some wi . As the projection of κ has length
at least 2|w|, we can find some points pj , pk such that

π(κ(0)) < pj < pk < π(κ(t))

in the orientation on σ . Here, pj , pk = wj , wk .
For the rest of the proof, we follow [Lev22]. For some j ≤ i < k, let Hi

(respectively Ki) be the hyperplane dual to the edge of σ which is adjacent to pi

(respectively pi+1) and is labelled by s0 (respectively sn). As hyperplanes separate ��

and do not intersect geodesics twice, it follows that Hi (respectively Ki) intersects κ . Let
ei (respectively fi) be the last (respectively first) edge of κ dual to Hi (respectively Ki).
Let γi (respectively ηi) be a minimal length geodesic in the carrier N(Hi) (respectively
N(Ki)) with starting point pi (respectively pi+1) and endpoint on ei (respectively fi).
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Let αi be the subpath of κ between γi ∩ κ and ηi ∩ κ . As w is a �-complete word, no
pair of hyperplanes dual to σ intersect. By our choices, αi ∩ αj is either empty or a single
vertex for all i �= j . Let Di be the disk diagram with boundary path γiαiη

−1
i βi , where βi

has label w−1. For each 0 ≤ i ≤ r − 2, we observe the following.
(1) The path γi is reduced.
(2) By Lemma 7.2, no (k − 1)-fence connects γi to η−1

i in any disk diagram with
boundary path γiαiη

−1
i βi .

(3) The path αi does not intersect the ball Bpi
(|w|(r)).

Thus, we can apply [Lev22, Theorem 6.2] to Di by setting, in that theorem,

γ = γi , α = αi , η = η−1
i , β = βi and L = k − 1R = |w|(r − i).

We conclude that for r large enough,

|αi | ≥ C′(|w|(r)k).
As αi is a subsegment of p, we are done.

B. Appendix. Superlinear-divergence and contracting properties
Superlinear divergence is reminiscent of the weakly and strongly contracting properties
of subsets of a metric space. As we shall see, superlinear divergence implies weakly
contracting property, but it is logically independent with strongly contracting property.

The notion of a weakly contracting subset was first introduced in [MM99, Definition
2.2]. We recall the definition here.

Definition B.1. (Weakly contracting sets) For a subset Z ⊆ X of a metric space X,
constants K > 0 and 0 < ρ < 1, the subset Z is said to be (ρ, K)-weakly contracting if
there exists a coarsely Lipschitz projection π : X → Z such that if d(x, π(x)) ≥ R and
d(x, y) ≤ ρd(x, π(x)), then

diam(π(x) ∪ π(y)) ≤ K .

It follows immediately from Lemma 2.4 that a superlinear-divergent subset is weakly
contracting.

The difference between the two notions can be intuitively understood as follows. Let B
be a ball of radius R disjoint from a subset Z. If Z is weakly contracting, the diameter of
the coarsely Lipschitz projection of B to Z is at most logarithmic to R. This is analogous
to Lemma 2.6, but strictly weaker. As δ goes to 0, Lemma 2.6 can be understood to say
that, if Z is assumed to be superlinear divergent, the diameter of the projection of B to Z is
sub-logarithmic to R. This is the key difference between the two definitions; the arguments
of this paper do not work for weakly contracting geodesics.

We now give two constructions that illustrate the logical independence between
superlinear divergence and strongly contracting property. We first recall the definition of
strongly contracting property.

Definition B.2. (Strongly contracting sets) For a subset Z ⊆ X of a metric space X, we
define the closest point projection of x ∈ X to Z by

πZ(x) := {a ∈ Z : dX(x, a) = dX(x, Z)}.
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For K > 0, the subset Z is said to be K-strongly contracting if:
(1) πZ(z) �= ∅ for all z ∈ X; and
(2) for any geodesic η such that η ∩ NK(Z) = ∅, we have diam(πZ(η)) ≤ K .

LEMMA B.3. There exists a finitely generated group G containing an element whose axis
is strongly contracting but not superlinear divergent.

Proof. Let G be the group constructed by Gersten in [Ger94]:

G = 〈x, y, t |(txt−1 = y, xy = yx〉.
The group G naturally acts on the universal cover of its presentation complex, which is
a CAT(0) cube complex. Recall that the presentation complex of G is defined as follows:
start with a single 0-cell, attach a 1-cell for each of the three generators x, y, t , and attach
a 2-cell for each of the relations [x, y] and (txt−1y−1. Let X be the universal cover of this
complex, which Gersten shows is CAT(0) [Ger94, Proposition 3.1].

The induced combinatorial metric on X is isometric to the word metric with respect to
{x, y, t}.

Let g = (tx and γ be a path connecting (. . . , id, t, (tx, (txt, ((tx)2, . . .). Then, γ is a
g-invariant geodesic, and γ does not bound a flat half-plane (the cone angle of γ at its each
vertex is 3π/2). Hence, γ is rank-1 and we can conclude that g is strongly contracting.

Meanwhile, by [Ger94, Theorem 4.3], G has quadratic divergence. Given an appropriate
action of G on a hyperbolic space, we would be able to conclude from [GS21, Lemma 3.6]
that γ is not superlinear divergent. Since we do not assume a hyperbolic action, we instead
present a modification of Goldborough and Sisto’s argument.

Suppose that there exists an (A, B)-coarsely Lipschitz projection πγ : G → γ , a
constant θ > 0 and a superlinear function f such that γ is (f , θ)-divergent with respect
to πγ . Up to a finite additive error, we may assume that πγ takes the values {(zx)i : i ∈ Z}.

Let ε = 1/2(A + 3) and let n be a sufficiently large integer. We make the following
claim.

CLAIM B.4. If a point p ∈ G \ B(id, n) satisfies d(p, γ ) ≤ εn, then πγ (p) = (tx)i for
some |i| > 0.5n.

Proof of Claim B.4. First, from d(p, γ ) ≤ εn and the coarse Lipschitzness of πγ , we
deduce

d(p, πγ (p)) ≤ (A + 1)εn + 2B.

Hence, we have

d(id, πγ (p)) ≥ d(id, p) − d(p, πγ (n)) ≥ n − (A + 1)εn − 2B > 0.5n

and the claim follows.

Next, we let

an = (tx)(1−ε)ny−�εn�, bn = (tx)−(1−ε)ny−�εn�
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and let η be an arbitrary path in G \ B(id, n) connecting an and bn. Let m, m′ ∈ Z be such
that πγ (an) = (tx)m and πγ (bn) = ((tx)m

′
. We then have

d(((tx)n, πγ (an)) ≤ d((tx)n, an) + d(an, πγ (an)) ≤ (A + 2)εn + 2B < 0.5n.

It follows that m > n − 0.5n ≥ 0.5n. Similarly, we deduce m′ < −0.5n.
We examine the two connected components of η \ Nεn(γ ) as well as η ∩ Nεn(γ ). Each

component of η ∩ Nεn(γ ) attains values of πγ (·) in

{(tx)i : i < −0.5n} or {(tx)i : i > 0.5n},
by Claim B.4, but not in both (by the coarse Lipschitzness of πγ ). Meanwhile, the end-
points of η attain values of πγ (·) in {(tx)i : i < −0.5n} and {(tx)i : i > 0.5n}, respectively.
As a result, there exists a subsegment η′ of η, as a component of η \ Nεn(γ ), such that

πγ (η′+) ∈ {(tx)i : i > 0.5n} and πγ (η′−) ∈ {(tx)i : i < −0.5n}.
It follows that the length of η′ is at least (n/θ) · f (εn). Since η is longer than η′, we
deduce that an arbitrary path in G \ B(id, n) connecting an, bn ∈ B(id, n) is longer than
(n/θ) · f (εn). When n increases, this contradicts the quadratic divergence of G. Hence,
we deduce that γ is not superlinear divergent.

LEMMA B.5. There exists a proper geodesic metric space X that contains a
superlinear-divergent geodesic γ that is not strongly contracting.

Proof. Let X = H
2 and γ be a bi-infinite geodesic γ on X with respect to the standard

Poincaré metric ds2
0 . Let o ∈ γ be a reference point on γ and let projγ be the closest point

projection onto γ with respect to ds2
0 . For each x ∈ X, let r be the (directed) distance from

x to γ and let τ be the (directed) distance from o to projγ (x). Since (r , τ) is an orthogonal
parametrization of X, there exists a continuous coefficient F0 such that

ds2
0 = dr2 + F0(x)dτ 2

holds at each point x ∈ X. We note that F0(x) ∼ eκr(x) for some κ > 0 (due to the Gromov
hyperbolicity of (X, ds2

0)) and F0(x) ≥ 1.
We will now define a new metric ds2 as follows. For each i > 0 and j ∈ Z, let

Ii,j = {(r , τ) : r = 42i

, 2j + i ≤ τ ≤ 2j + i + 1}
and let

S :=
⋃

i>0, j∈Z
Ii,j .

Let χ : R2 → [0, 1] be a smooth function that takes value 0 on S and 1 on R
2 \ N0.1(S).

We finally define

F(x) := F0(x) · χ(r(x), τ(x)) + (1 − χ(r(x), τ(x)))

and

ds2 := dr2 + F(x)dτ 2.
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First, projγ is still the closest point projection with respect to ds2. Indeed, the shortest
path from x ∈ X to γ is the one that does not change in the value of τ . As a corollary, the
K-neighbourhoods of γ with respect to the two metrics coincide.

Let i be a positive integer and let x, y ∈ X be such that r(x) = r(x) = 424i
and τ(x) = 0,

τ(y) = 2i. We first consider a path η connecting x to y while passing through NK(γ ).
Then, the total length is at least 2 · (424i − K). Next, we take a piecewise geodesic path η′
that goes like

(r , τ) = (424i

, 0) − (424i

, 1) − (424i−1
, 1) − (424i−1

, 2) − · · ·
− (423i+1

, i) − (423i

, i) − (423i

, i + 1) − (423i+1
, i + 1) − · · · − (42i

, 2i).

Then, the total length is 2(424i − 423i
) + 2i. Note also that η′ does not intersect NK(γ ).

We conclude that the geodesic connecting x to y does not touch NK(γ ). Note also that
the projection is larger than 2i. By increasing i, we conclude that γ is not K-strongly
contracting for any K > 0.

Meanwhile, it is superlinear divergent. To see this, suppose a path η lies in X \ NR(γ )

and satisfies πγ (η) > 4. Then, πγ (η) contains [2k, 2k + 2] for some integer k, and by
restricting the path if necessary, we may assume πγ (η) = γ ([2k, 2k + 2]).

If r(η) ever takes two values among {42i
: i > 0} ∩ [R, +∞), say 42m

and 42m′
for some

m < m′, then the total variation of r(η(t)) is at least

42m+1 − 42m = 42m

(42m − 1) ≥ R2/2.

Consequently, we have l(η) ≥ 0.5R2.
If not, r(η) takes at most one value 42i

among {42j
: j > 0}. If i is even, then

F(η(t)) = F0(η(t))

for t such that τ(η(t)) ∈ [2k + 1.1, 2k + 1.9]. Since

F0(η(t)) ≥ eκr(η(t)) ≥ eκR ,

we have

l(η) ≥
∫

F(η) dτ(η) ≥ eκR × 0.8 = 0.8κR .

Similarly, we have l(η) ≥ 0.8eκR when i is odd. This concludes that γ is superlinear
divergent.

Finally, we remark that superlinear divergence is invariant under quasi-isometry, but the
notion of strongly contracting is not. For example, let X be the Cayley graph of a group
G equipped with the word metric associated to some finite generating set S and let Z be
a superlinear-divergent set in X. Then, changing the generating set changes the metric in
X by a quasi-isometry, and hence, Z is still a superlinear-divergent set. However, if γ is a
strongly contracting geodesic in X, it may not be strongly contracting with respect to the
new metric.

As an explicit example, it was shown in [SZ22, Theorem C] that each mapping class
group admits a proper cobounded action on a metric space X such that all pseudo-Anosov
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elements have strongly contracting quasi-axes in X. To contrast, it was shown in [RV21,
Theorem 1.4] that the mapping class group of the five-times punctured sphere can be
equipped with a word metric such that the axis of a certain pseudo-Anosov map in the
Cayley graph is not strongly contracting.
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