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Abstract
Non-alcoholic fatty liver disease (NAFLD) was defined in 1980 and has the same histological characteristics as alcoholic liver disease except for
alcohol consumption. After 40 years, the understanding of this disease is still imperfect. Without specific drugs available for treatment, the num-
ber of patients with NAFLD is increasing rapidly, and NAFLD currently affects more than one-quarter of the global population. NAFLD is mostly
caused by a sedentary lifestyle and excessive energy intake of fat and sugar. To ameliorate or avoid NAFLD, people commonly replace high-fat
foods with high-carbohydrate foods (especially starchy carbohydrates) as a way to reduce caloric intake and reach satiety. However, there are
few studies that concentrate on the effect of carbohydrate intake on liver metabolism in patients with NAFLD, much fewer than the studies on fat
intake. Besides, most of these studies are not systematic, which has made identification of the mechanism difficult. In this review, we collected
and analysed data from studies on human and animal models and, surprisingly, found that carbohydrates and liver steatosis could be linked by
inflammation. This review not only describes the effects of carbohydrates on NAFLD and body lipid metabolism but also analyses and predicts
possible molecular pathways of carbohydrates in liver lipid synthesis that involve inflammation. Furthermore, the limitations
of recent research and possible targets for regulating inflammation and lipogenesis are discussed. This review describes the effects of starchy
carbohydrates, a nutrient signal, on NAFLD from the perspective of inflammation.
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Introduction

• History of carbohydrates

Carbohydrate consumption has a long history and can be divided
into three stages: (1) From the hunting era to the agricultural era,
the consumption of meat and plant fruits obtained from primitive
hunting and gathering gradually transitioned to the consumption
of self-cultivated rice, making rice a staple food. (2) The extensive
cultivation of sugar cane made sugar an easily accessible con-
sumer product. Cakes, jams andprocessed foods began to appear.
The production of sugar promoted the transition from original
products to refined foods and further consumption of carbohy-
drates. (3) After the Second World War, ultra-processed carbohy-
drates, such as glucose syrup, were produced, and the prices of
fructose syrup and raw material carbohydrates dropped signifi-
cantly(1). Since then, carbohydrates have become a ubiquitous
and indispensable part of people’s lives.

• Classification of carbohydrates and their different
characteristics

Carbohydrates are made of three elements – carbon, hydrogen
and oxygen. Carbohydrates are digested and broken down into
simpler forms, such as monosaccharides (e.g. glucose and

fructose), disaccharides (e.g. lactose) and cellulose after intake
(Fig. 1). Although these simpler forms of carbohydrates are
composed of similar elements, their functions and metabolic
processes in the body are quite different. Monosaccharides
and disaccharides include sucrose, glucose, fructose, etc.
Polysaccharides mainly include starch and cellulose. Starchy
carbohydrates can be divided into amylose, amylopectin and
resistant starch according to their structure. Among starchy car-
bohydrates, amylopectin has the strongest effect on postprandial
blood glucose, followed by amylose and resistant starch. Most of
the refined starchy carbohydrates that are often encountered in
daily life, such as in rice, white noodles and steamed buns, are
amylopectin, which is the ‘culprit’ that causes a sharp increase in
blood glucose after meals. Compared with a refined-grain diet, a
whole-grain diet does not significantly change insulin sensitivity
or the gut microbiome composition but can reduce body weight
and systemic low-grade inflammation(2).

Current knowledge

• ‘Carbotoxicity’

In 2018, the concept of ‘carbotoxicity’ was proposed, sug-
gesting that non-cellulose digestible carbohydrates are toxic to
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some extent(1). A 25-year continuous observation report of
40 181 deaths showed that the relationship between carbohy-
drate intake and all-causemortality was U-shaped. Carbohydrate
intake of 45–55 % kcal/d leads to the lowest all-cause mortality;
when the daily carbohydrate intake is less than 40 % kcal or
higher than 70 % kcal, all-cause mortality increases signifi-
cantly(3), which indicates that carbohydrates are not as harmless
as we thought previously.

• High carbohydrate intake leads to increased
hepatic lipid deposition

A large number of studies have shown that free sugars (that is,
monosaccharides and disaccharides) can promote de novo
lipogenesis (DNL) in the liver, resulting in the accumulation of
a large number of lipids and leading to NAFLD(4,5). Moreover,
studies have shown that hepatic DNL is increased after a high-
carbohydrate meal in ob/ob mice, Western-diet-fed mice, and
healthy people, indicating the potential harm of carbohydrates
to hepatic steatosis(4). Starchy carbohydrates are polysaccharides
that require more steps for digestion and decomposition than free
sugars. However, because starchy carbohydrates do not have a
strong taste stimulus like free sugar, they are often inadvertently
ingested in excess, and as the main component of daily staple
foods, the intake of starchy carbohydrates is a long-lasting behav-
iour. Therefore,we speculate that long-term intake of high starchy
carbohydrates will have a similar effect as that of free sugars(6,7).

Carbohydrates likely directly cause inflammation

In existing studies, there is no direct evidence that starchy carbo-
hydrates can cause inflammation, but through integration and

analysis of original data from previous studies, there are indica-
tions that carbohydrates can lead to inflammation.

A study found that removing stearoyl-CoA desaturase, the
rate-limiting enzyme of fatty acid synthesis in the mouse liver,
increased endoplasmic reticulum stress and inflammation in
mice under a high-carbohydrate diet. After supplementation
with the corresponding lipid metabolites, inflammation was sig-
nificantly improved(8), indicating that carbohydrate intake under
impaired lipid metabolism conditions will do the same harm to
the body, and all these effects were accompanied by corre-
sponding changes in inflammation levels.

In consideration of the above-mentioned results, we wanted
to knowwhether long-term intake of high starchy carbohydrates
leads to chronic inflammation in the body. How does low-level
inflammatory damage affect NAFLD? Could a diet high in starchy
carbohydrates be an option for improving NAFLD? How do
carbohydrates affect NAFLD? In this review,wewill answer these
questions.

To further demonstrate the relationship among carbohy-
drates, inflammation, and NAFLD, keywords ‘inflammation,
carbohydrate’, ‘carbohydrate, NAFLD’, and ‘diet, NAFLD, inflam-
mation’were used to search in the PubMed, Clinicalkey, Web of
Science and Scopus databases. We retrieved and collected clini-
cal studies that met the requirements described below.

1. Clinical population data;
2. Detailed records of dietary energy intake and carbohydrate

intake (% kcal/d);
3. Measurement of related inflammatory indicators, such as

alanine aminotransferase (ALT), aspartate aminotransferase
(AST), interleukin-1β (IL-1β), tumour necrosis factor α
(TNFα), etc.

4. Assessment of body-fat-related parameters, such as body fat
index (BMI), total triacylglycerol (TG), total cholesterol (TC),
etc. (studies following either requirement 3 or 4 met the selec-
tion criteria);

5. Articles published from 2016 to the present;
6. Dietary structure regulation as the main intervention method

was preferred.

The data from the selected studies were analysed for correlation
between carbohydrate intake and inflammation. Specific citation
data and citations are presented in Table 1.

According to the collected clinical raw data (Table 1), carbo-
hydrates have an obvious role under conditions of abnormal
lipid metabolism. We selected date of patients with NAFLD
and healthy people for correlation analysis. To rule out the
effects of other metabolic disorders, patients with NAFLD did
not have any other diseases. Carbohydrate intake was divided
into total carbohydrate intake, free sugar intake and starchy
carbohydrate intake.

Regardless of the sex and age of the patients, there was no
correlation between total carbohydrate intake and inflammation
level (according to the ALT and AST expression levels) in
patients with NAFLD (Fig. 2A, 2D). However, when the effects
of starchy carbohydrates and free sugar on liver inflammation
were analysed separately, the correlation of AST level with these
two types of carbohydrates, which have different metabolic
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Fig. 1. Digestion of carbohydrates. Starchy carbohydrates are first digested
to dextrin, maltose and glucose by salivary amylase, which breaks polysacchar-
ides into short chains. The stomach is not involved in the digestion of carbohy-
drates; the digestion of carbohydrates mostly takes place in the small intestine.
In the small intestine, carbohydrates are completely degraded into simple
sugars and enter the bloodstream for the next metabolic process.
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Table 1. Information statistics of diet structure and inflammation-related indexes

Ref. n

Mean age

(years) Sex (F/M) BMI

AST

(U/L)

ALT

(U/L)

TG

(mg/dl)

TC

(mg/dl) HOMA-IR Total (kcal/d)

Inflammation-related

hormones

Inflammation-related

factors

Intervention

time

(week)

Free

sugar

intake

(%kcal)

Starch

intake

(%kcal)

Total carb.

intake

(%kcal)

(66) 1337 70·0 (8·2) 759/578 29·3 25 21 141·6 208·44 (42·46) 4·1 1996 N.A. N.A. N.A. 21·9 22·7 44·6
2545 69·7 (8·8) 1504/

1041
25·8 24 17 1·2 5·5 2·1 2052 N.A. N.A. N.A. 23·2 22·7 46·6

(67) 194 60·8 (10·5) 116/78 26·9 (3·0) 30·5 (12·0) 36·8 (23·8) 166·7 (109·3) 209·0 (38·6) 1·63 (1·51) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
(68) 12 55 (14) 6/6 31·2 (3·6) N.A. 42 (12) 201 (86) N.A. 3·0 (1·4) N.A. N.A. N.A. N.A. 33·6 (2·4) N.A. 33·6

12 55 (14) 6/6 30·8 (3·9) N.A. 45 (33) 221 (101) N.A. 3·9 (1·4) N.A. N.A. N.A. 6 48·9 (2·9) N.A. 48·9
(46) 8 10·6 7/1 N.A. N.A. N.A. N.A. N.A. N.A. 2763·5 N.A. N.A. 6 62·5 N.A. 62·5
(69) 84 45·0 (11·8) 39/45 23·0 (1·5) N.A. N.A. N.A. N.A. N.A. 2528·3 (951·0) N.A. N.A. N.A. 58·2 (8·3) N.A. 58·2

85 44·7 (12·4) 42/43 30·8 (2·6) N.A. N.A. N.A. N.A. N.A. 2982·2 (1234·3) N.A. N.A. N.A. 58·5 (9·3) N.A. 58·5
(45) 16 7·8 (0·3) 6/10 22·4 (0·5) 35 (2) 24 (2) 75 (6) 169 (6) 2·9 (0·4) 2101 (105) Leptin (ng/mL):

9·2 (1·4)
Adiponectin (g/mL):

11·9 (2·2)

N.A. N.A. 31·2 21·15 52·35

(70) 60 48·9 (1·1) 25/35 32·1 (0·85) N.A. N.A. 222·8 (6) 228·3 (3·6) 6·6 (1·9) 3944·0 (126·9) N.A. N.A. N.A. N.A. 48·7 48·7
(71) 54 42·4 (13·02) N.A. 26·1 (3·2) 46·2 (26·2) 81·1 (59·1) 212·4 (176·8) 205·7 (32·7) N.A. N.A. N.A. N.A. 8 N.A. 65 65

52 43·6 (11·75) N.A. 25·8 (6·0) 39·6 (24·5) 55·8 (36·4) 186·9 (155) 187·9 (27·3) N.A. N.A. N.A. N.A. 8 N.A. 55 55
(72) 30 42·8 (10·6) 15/15 27·5 (3·0) 34·4 (16·5) 35·5 (30·1) 158·4 (96·7) 188·4 (27·6) 2·5 (1·5) 1960 (162) N.A. N.A. 8 N.A. N.A. 52·0

30 39·7 (7·3) 15/15 27·2 (2·96) 32·0 (16·6) 28·0 (20·8) 133·0 (53·7) 173·4 (33·0) 2·1 (1·4) 1986 (234) N.A. N.A. 8 N.A. N.A. 52·0
(73) 31 45·16 (9·86) 9/22 31·29

(3·77)
N.A. N.A. N.A. N.A. 1·66 (0·32) 2159·45 (78·79) N.A. N.A. 8 N.A. 55·36 55·36

(74) 16 14·5 (2·6) 9/7 37·6 (5·5) 28·1 (17·8) 27·4 (13·1) 124·1 (40·8) 168·8 (24·9) 14·0 (10·5) 1598·6 (165·8) N.A. N.A. 8 29·2 (2·0) 40·4 (13·7) 69·6
16 14·2 (2·1) 7/9 35·7 (6·2) 52·9 (40·5) 42·7 (27·7) 125·8 (48·4) 164·3 (26·4) 6·3 (3·7) 1710·3 (234·5) Leptin (ng/mL): 33·32 N.A. 8 47·9 (4·1) 94·3 (19·4) N.A.

(75) 18 N.A. 6/12 36·8 (7·9) 35·6 (16) 56·4 (27) 189·6 (84) N.A. 3·4 (2·2) 1520 N.A. N.A. 12 N.A. 52 52
(76) 899 52·9 291/608 27·9 N.A. N.A. N.A. N.A. N.A. 1779 N.A. N.A. N.A. N.A. 46·6 46·6
(7) 11 64 4/7 N.A. N.A. N.A. 168·15

(61·95)
N.A. N.A. N.A. N.A. TNFα (pg/ml): 15·7 (4·6);

MCP1 (pg/ml): 710
(222)

IL6 (pg/ml): 9·1 (4·7); IL18
(pg/ml): 2760 (1152)

IL10(pg/ml): 3·3 (2·8); P-
JNK(A.U.): 68 (20)

TLR2MFI: 6·9 (0·9);
TLR4MFI: 4·8 (0·3)

4/7 N.A. 55 N.A.

11 64 4/7 N.A. N.A. N.A. 185·85
(106·2)

N.A. N.A. N.A. N.A. TNFα (pg/ml): 14·8 (4·6);
MCP1 (pg/ml): 686

(229)
IL6 (pg/ml): 8·8 (3·6); IL18

(pg/ml): 2818 (1527)
IL10(pg/ml): 3·3 (2·4); P-

JNK(A.U.): 58 (19)
TLR2MFI: 6·9 (0·7);
TLR4MFI: 5·0 (0·4)

4/7 N.A. 10 N.A.

(77) 41 37·0 (7·3) N.A. 35·0 (2·5) N.A. N.A. 96·4 (51·3) 169·3 (33·1) 2·8 (2·1) 1905·8 (448·3) N.A. N.A. 9 14·496 15·504 N.A.
(78) 15 44·3 (11·7) 7/8 29·7 (1·7) N.A. N.A. 89·1 (23·9) 146·3 (24·1) 0·8 (0·3) 700 Adiponectin (g/mL):

8·6 (4·1)
TNFα (pg/ml): 4800 (2);

IL6 (pg/ml): 9·1 (4·7)
4 N.A. <50 g N.A.

N.A. N.A. N.A. 27·4 (1·8) N.A. N.A. 86·2 (21·1) 169·6 (26·6) 0·8 (0·5) N.A. Adiponectin (g/mL):
11·3 (4·9)

TNFα (pg/ml): 3100 (2·1);
IL6 (pg/ml): 4000 (2·1)

8 N.A. N.A. N.A.

N.A. N.A. N.A. 25·6 (1·9) N.A. N.A. 78·5 (27·7) 183·4 (31·2) 1·0 (0·6) N.A. Adiponectin (g/mL):
9·9 (4·8)

TNFα (pg/ml): 2000 (0·4);
IL6 (pg/ml): 6300 (2·7)

24 N.A. N.A. N.A.

(79) 30 N.A. N.A. 31·5 (5·1) N.A. N.A. N.A. N.A. N.A. 1740·2 (317·5) N.A. N.A. 6 N.A. 57·8 (3·5) N.A.
30 N.A. N.A. 31·3 (4·8) N.A. N.A. N.A. N.A. N.A. 1729·9 (282·7) N.A. N.A. 6 N.A. 45·9 (3·6) N.A.

(80) 38 40·8 (7·4) 18/20 33·1 (3·2) 26·22 36·48 155·11 (54·5) 180·51 (39·3) 2·13 (0·5) 2261·38 (912·8) N.A. N.A. 8 N.A. N.A. 53·7
37 42·2 (8·2) 18/19 33·4 (3·3) 18·35 35·7 167·89 (60·9) 185·05 (25·8) 2·16 (0·7) 2242·43 (844·7) N.A. N.A. 8 N.A. N.A. 56·5

(81) 54 51·3 (10) 20/34 33·6 (4) 25·6 (10) 33·7 (16) 139 (64) 193 (40) 4·7 (2) 2806 (1041) N.A. N.A. N.A. N.A. N.A. 42·8
54 51·3 (10) 20/34 29·7 (4) 21·4 (8) 21·3 (8) 90 (40) 174 (37) 2·6 (2) 1941 (607) N.A. N.A. 24 N.A. N.A. 43·0

(82) 18 65·0 (1·4) 6/12 30·2 (0·7) 22·36
(1·85)

27·09 (1·93) N.A. N.A. N.A. 486·6 (0·9) Adiponectin (g/mL):
3·6 (0·7)

N.A. 6 N.A. N.A. 40·3 (0·1)

19 63·7 (1·5) 7/12 28·9 (1·0) 20·37
(1·23)

26·52 (2·01) N.A. N.A. N.A. 457·0 (1·2) Adiponectin (g/mL):
3·6 (0·3)

N.A. 6 N.A. N.A. 39·7 (0·0)
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Table 1. (Continued )

Ref. n

Mean age

(years) Sex (F/M) BMI

AST

(U/L)

ALT

(U/L)

TG

(mg/dl)

TC

(mg/dl) HOMA-IR Total (kcal/d)

Inflammation-related

hormones

Inflammation-related

factors

Intervention

time

(week)

Free

sugar

intake

(%kcal)

Starch

intake

(%kcal)

Total carb.

intake

(%kcal)

(83) 20 45·5 (8·2) 6/14 28·6 (4·9) 30·0 (7·0) 52·0 (13·5) N.A. N.A. 2·83 (1·07) N.A. N.A. N.A. 24–48 N.A. N.A. N.A.
19 44·0 (9·0) 10/9 31·9 (4·1) 52·0 (23·7) 81·0 (57·0) N.A. N.A. 5·62 (5·71) N.A. N.A. N.A. 24–48 N.A. N.A. N.A.

(84) 102 11·4 (1·45) 43/57 N.A. 55 (16·5) 65 (37·0) 103 (34·0) 166 (23·0) 2·99 (2·1) N.A. N.A. TNFα (ng/ml): 59·8 (51);
IL6 (pg/ml): 29·3 (21·0);
IL1β (pg/ml): 14·3 (7·2)

N.A. 14·08 N.A. 46·8

169 11·6 (1·6) 33/67 N.A. 42 (12·5) 58 (21·5) 90 (19·0) 156 (22·5) 2·7 (1·67) N.A. N.A. TNFα (ng/ml): 43·4 (39·5);
IL6 (pg/ml): 26·2 (20·5);
IL1β (pg/ml): 13·0 (7·5)

N.A. 10·52 N.A. 45·4

(85) 76 49·3 (10·3) 12/64 31·1 (3·9) N.A. 25·3 (13·5) 71·8 (41·4) N.A. 4·4 (2·6) N.A. Adiponectin (mg/dl):
9·9 (9·4)

Leptin (mg/dl):
Female 41·1 (23·0);

Male 11·1 (7·6)

N.A. 72 N.A. N.A. No more than
300 mg/d of

cholesterol

63 47·2 (9·0) 5/58 30·4 (3·5) N.A. 29·0 (24·7) 78·7 (44·4) N.A. 4·7 (3·4) N.A. Adiponectin (mg/dl):
10·0 (9·0)

Leptin (mg/dl):
Female 22·3 (6·1);

Male 11·8 (6·2)

N.A. N.A. N.A. N.A. No more than
300 mg/d of

cholesterol

73 47·0 (8·9) 11/62 31·0 (4·5) N.A. 25·8 (12·4) 73·5 (41·9) N.A. 4·7 (3·8) N.A. Adiponectin (mg/dl):
9·6 (8·3)

Leptin (mg/dl):
Female 33·7 (25·8);

Male 11·3 (9·0)

N.A. N.A. N.A. N.A. Less than 40 g/d

66 47·9 (9·8) 3/63 31·0 (3·3) N.A. 28·8 (12·4) 66·5 (41·9) N.A. 4·5 (3·8) N.A. Adiponectin (mg/dl):
13·2 (9·4)

Leptin (mg/dl):
Female 30·8 (1·3);

Male 13·6 (7·9)

N.A. N.A. N.A. N.A. Less than 40 g/d

(86) 169 38·3 (6·9) 60/109 27·9 (2·7) 36·0 (19·4) 39·0 (21·5) 172·9 (77·9) 189·8 (31·2) 0·6 (0·8) 1996·6 (1·58) N.A. N.A. N.A. N.A. N.A. 8·63
173 37·2 (7·0) 43/130 27·4 (3·19) 33·1 (11·4) 34·4 (13·3) 146·5 (66·0) 177·7 (30·0) 0·4 (0·6) 1806·6 (1·28) N.A. N.A. N.A. N.A. N.A. 8·81

(87) 36 44·0 (10·8) 13/23 31·3 (0·58) 31·3 (1·6) 46·5 (3·01) 199·4 (14·9) 189·7 (5·5) 3·6 (0·22) 2157·5 (437·1) N.A. N.A. N.A. N.A. N.A. 55·32
37 39·8 (11·0) 15/22 30·3 (0·64) 30·4 (1·3) 45·9 (2·4) 197·6 (13) 185·0 (5·3) 4·3 (0·25) 2160·2 (385·2) N.A. N.A. N.A. N.A. N.A. 54·94
37 38·3 (10·1) 14/23 30·5 (0·93) 32·5 (1·2) 50·2 (2·6) 211·8 (10·4) 198·3 (6·1) 3·9 (0·21) 2162·3 (426·4) N.A. N.A. N.A. N.A. N.A. 54·73

(88) 62 41·0 (12·4) N.A. 21·7 (2·0) 20·5 (15·6) 24·5 (24·2) 85·3 (77·5) N.A. 23·7 (36·2) 1859·0 (575·1) N.A. N.A. N.A. N.A. N.A. 55·9 (8·4)
23 43·8 (11·9) N.A. 23·5 (1·4) 37·0 (17·6) 67·8 (43·5) 146·7 (67·0) N.A. 38·0 (34·3) 1963·6 (417·6) N.A. N.A. N.A. N.A. N.A. 60·0 (6·6)
59 40·8 (8·2) N.A. 28·3 (2·8) 24·8 (15·1) 30·1 (27·6) 157·4 (107·5) N.A. 32·6 (44·4) 1931·0 (502·0) N.A. N.A. N.A. N.A. N.A. 58·4 (6·7)
65 38·9 (11·1) N.A. 29·7 (3·9) 54·0 (31·9) 87·4 (50·4) 196·9 (137·5) N.A. 89·7

(124·7)
2051·6 (541·1) N.A. N.A. N.A. N.A. N.A. 58·0 (7·3)

(89) 671 53·6 (16·9) 481/190 21·9 (2·9) 21·2 (7·0) 18·1 (10·8) 81·2 (43·6) 202·8 (36·3) N.A. 1782·4 (564·7) Adiponectin (μg/mL):
12·1 (6·3)

Leptin (ng/mL): 8·8
(5·5)

IL6 (pg/ml): 2·00 (7·27); N.A. N.A. N.A. 54·9

200 55·3 (13·3) 117/83 25·8 (3·6) 26·3 (11·7) 32·3 (20·3) 131·0 (87·5) 211·8 (33·7) N.A. 1849·3 (530·6) Adiponectin (μg/mL):
7·2 (2·8)

Leptin (ng/mL): 12·8
(8·4)

IL6 (pg/ml): 1·64 (1·80); N.A. N.A. N.A. 55·6

(90) 16 47·9 (1·1) 0/16 27·7 (0·4) N.A. 12 (2) N.A. 4·7 (0·2) 2·2 (0·3) N.A. Adiponectin (μg/mL):
8·8 (1·0)

FGF21 (pg/ml): 197·3
(24·3)

4 20 N.A. 65

16 47·9 (1·1) 0/16 27·7 (0·4) N.A. 9 (1) N.A. 4·4 (0·2) 2·2 (0·2) N.A. Adiponectin (μg/mL):
7·2 (0·9)

FGF21 (pg/ml): 248·1
(37·7)

4 N.A. N.A. 40

(91) 10 58·2 (2·8) 5/5 30·6 (2·0) 37 (5) 38 (7) N.A. N.A. N.A. 1444 N.A. N.A. 0·85 N.A. N.A. 6·37
(92) 25 50·6 (2·1) 25/0 32·6 (1·2) N.A. 33·8 (3·6) N.A. N.A. N.A. 1982·1 (92·3) N.A. N.A. N.A. 9·4 N.A. 43·3

17 48·8 (2·3) 0/17 32·3 (1·2) N.A. 41·8 (5·3) N.A. N.A. N.A. 2509·5 (135·3) N.A. N.A. N.A. 7·5 N.A. 41·8
(93) 49 34 32/17 25·6 N.A. N.A. 0·7 N.A. 1·6 2490 N.A. N.A. N.A. N.A. N.A. 42
(94) 196 42·3 (11·9) 95/101 35·7 (10·6) 33·9

(23·69)
55·71 (8·27) 176·0 (117·9) 185·7 (52·8) N.A. 2757 (961·1) N.A. N.A. N.A. N.A. N.A. 58·2 (6·3)

(95) 22 63 (5) 10/12 31 (3) 23 (11) 28 (13) N.A. N.A. 6·1 (3·6) 1967 (297) N.A. N.A. N.A. 11 (1·4) N.A. 41·5 (2·6)
21 64 (7) 8/13 32 (4) 22 (14) 23 (12) N.A. N.A. 4·9 (2·6) 1940 (334) N.A. N.A. N.A. 10·0 (1·5) N.A. 38·9 (3·8)
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Table 1. (Continued )

Ref. n

Mean age

(years) Sex (F/M) BMI

AST

(U/L)

ALT

(U/L)

TG

(mg/dl)

TC

(mg/dl) HOMA-IR Total (kcal/d)

Inflammation-related

hormones

Inflammation-related

factors

Intervention

time

(week)

Free

sugar

intake

(%kcal)

Starch

intake

(%kcal)

Total carb.

intake

(%kcal)

(96) 1128 53·0 (11·39) 536/592 25·9 (4·02) 22·7 (8·51) 27·3 (15·24) N.A. N.A. N.A. 2037·66 (561·4) N.A. N.A. N.A. 19·2
(4·91)

24·4 (4·44) 43·6 (5·69)

(97) 20 N.A. N.A. 37·1 (4·28) 22·9 (8·54) 26·12
(15·43)

133·76
(62·36)

187·2 (43·97) 2·72 (1·40) 600–800 N.A. N.A. 8 N.A. N.A. <50 g/d

19 N.A. N.A. 34·8 (4·33) 19·9 (6·12) 23·29
(13·30)

123·92
(64·42)

184·9 (27·39) 2·70 (1·58) 1400–1800 N.A. N.A. 8 N.A. N.A. 45–55

(98) 13 35·6 (9·22) 0/13 31·4 (6·08) 47 (16·71) 71·7 (34·78) 132 (49·8) 180·9 (29·1) 2·75 (1·23) −500 kcal than daily energy
requirement

N.A. N.A. 8 N.A. N.A. 60

(99) 16 14·5 (2·6) 7/9 37·6 (5·5) 28·1 (17·8) 52·9 (40·5) 124·1 (40·8) N.A. 14·0 (10·5) 1598·6 (165·8) N.A. N.A. 8 10·1 N.A. 29·2 (2·9)
16 14·2 (2·1) 9/7 35·7 (6·2) 27·4 (13·1) 42·7 (27·7) 125·8 (48·4) N.A. 6·3 (3·7) 1710·3 (234·5) N.A. N.A. 8 22·05 N.A. 47·9 (4·1)

(100) 25 53 (9·06) 14/11 30·1 (5·69) N.A. 68 (66) 144·4 (59·3) 202·2 (34·8) 2·76 (1·52) 2375·59 N.A. N.A. 12 17·6 N.A. 43·7 (5·4)
25 53 (9·06) 14/11 29·5 (5·8) N.A. 56 (45) 139·9 (0·64) 199·2 (41·2) 2·95 (4·32) 2353·82 N.A. N.A. 12 20·73 N.A. 45·7 (6·5)
26 51 (13·36) 11/15 31·8 (4·0) N.A. 77 (51) 165·6 (76·2) 184·8 (49·9) 3·91 (1·92) 2511·96 N.A. N.A. 12 17·67 N.A. 48·0 (5·4)
26 51 (13·36) 11/15 31·1 (4·0) N.A. 69 (47) 144·2 (76·2) 175·2 (49·5) 3·63 (1·93) 2611·24 N.A. N.A. 12 13·97 N.A. 36·7 (5·9)

(101) 12 N.A. N.A. 29·3 (4·8) N.A. N.A. 109·2 (35·2) 209 (44·5) N.A. 1781·96 (939·1) Leptin (ng/mL):
68·4 (46·5)

TNFα (pg/ml): 0·75 (0·4);
IL6 (pg/ml): 1·47 (1·9)

24 14·84 N.A. 46·58

32 N.A. N.A. 27·6 (3·6) N.A. N.A. 101·5 (101·5) 196·5 (38) N.A. 1710·3 (571·8) Leptin (ng/mL):
51·75 (59·8)

TNFα (pg/ml): 1·2 (1·3);
IL6 (pg/ml): 0·81 (0·6)

24 15·74 N.A. 40·62

(102) 37 51·1 (9·8) 20/28 30·2 (431) 21·6 (6·1) 22·9 (8·5) 98·6 (41·4) 177 (42·9) 2·7 (2·2) 2170 (474) Adiponectin (μg/mL):
8·0 (3·0)

Leptin (ng/mL):
20·8 (15·7)

N.A. N.A. N.A. N.A. 45·0 (7)

39 49·2 (8·9) 27/23 30·1 (3·6) 21·9 (8·5) 21·7 (9·2) 90·6 (58·5) 185 (41·3) 2·6 (1·9) 1816 (569) Adiponectin (μg/mL):
9·5 (3·7)

Leptin (ng/mL): 22·3
(17·1)

N.A. N.A. N.A. N.A. 39 (7)

(103) 63 51 (11·2) N.A. 34·7 (5·7) 19·5 (5) 20 (9) 91 (33) 171·8 (38·2) 2·2 (1·4) 800 N.A. N.A. N.A. N.A. N.A. 14
45 51 (11·2) N.A. 31·3 (4·0) 17 (6) 16 (9) 90 (27·7) 193·7 (32·3) 1·5 (0·8) 1150 N.A. N.A. N.A. N.A. N.A. <41·7

(104) 48 49 42/6 39·1 (0·8) 25 24 N.A. N.A. 2·2 N.A. N.A. N.A. N.A. N.A. N.A. 43 (1)
46 53 32/14 40·3 (0·7) 27 30 N.A. N.A. 4·2 N.A. N.A. N.A. N.A. N.A. N.A. 39 (1)

(105) 13 35 (3) 7/6 31·8 (0·7) 18·8 (1·75) 22·5 (3·41) N.A. N.A. 1·42 (0·29) 1752 (98) N.A. N.A. N.A. N.A. N.A. 8·67
12 35 (3) 6/6 30·9 (0·7) 21·3 (1·73) 20·9 (2·06) N.A. N.A. 1·96 (0·40) 1900 (102) N.A. N.A. N.A. N.A. N.A. 54·5

(106) 29 60 (3·1) 22/7 27·1 (2·9) 27·4 23·5 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 47·9
28 60 (4·1) 22/6 26·6 (2·7) 22·9 18·2 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 37–40

BMI, body mass index; BMI, weight [kg]/height2 [m2]; TG, total triacylglycerol; TC, total cholesterol.
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characteristics, improved significantly and presented the same
trend. The correlation (slope level) of starchy carbohydrates
with AST (Fig.2C) and ALT (Fig. 2F) showed a positive trend
which is the same as that of total carbohydrates. Moreover,
the correlation of starchy carbohydrates with ALT (Fig. 2B)
was much stronger than that of free sugar with ALT (Fig. 2E),
which indicates that the relationship between starchy carbohy-
drates and inflammation seems to be closer than that between
inflammation and free sugar.

In addition, we analysed the correlation between carbohy-
drate intake and blood lipid levels (Fig. 3). Regardless of age
and sex differences, we found that there was no correlation
between total carbohydrate intake or starchy carbohydrate
intake and blood lipids, but there was a correlation between free
sugar and TG, which indicates that the intake of starchy carbo-
hydrates did not affect the lipid content directly in the body.

We hypothesise that there is an association between the lipid
content affected by starchy carbohydrates and inflammation.
In previous studies, inflammation and lipid depositionwere con-
sidered to be associated, though the causal relationship was not
discussed in depth. Therefore, we analysed the collected blood
lipid and inflammation data (Fig. 4). The results indicated that TG
was correlated with AST and ALT (Fig. 4A, 4B), further support-
ing our hypothesis. These findings show that inflammation and
lipid production are not independent processes.

Factors leading to liver inflammation

NAFLD is a representative disease of abnormal lipid metabolism
in the body and is usually accompanied by increased inflamma-
tion and lipid deposition. It is believed that an increase in the

level of inflammation promotes the progression of NAFLD
to non-alcoholic steatohepatitis (NASH). Since there is no
mechanistic evidence that carbohydrates cause inflammation
in NAFLD, we searched the relevant literature in PubMed, sum-
marised the main pathways and factors that cause inflammation
in NAFLD (Table 2) and compared them with carbohydrate-
induced metabolic changes to identify possible pathways by
which carbohydrates cause inflammation.

According to recent reports, the main pathways and factors
leading to inflammation in NAFLD are as follows:

PARP-1/PPARα/SIRT1 pathway

Peroxisome proliferator-activated receptor α (PPARα) is a sensor
of fatty acid synthesis and is considered to be a key factor in fatty
liver and lipid steatosis(9,10). Recently, a large number of studies
have shown that PPARα plays an important role in balancing
glucose homeostasis(11). Moreover, PPARα can regulate lipid
metabolism and affect the levels of downstream inflammatory
factors(12–15). The PPARα pathway regulates inflammation
mainly through the PPARα–SIRT1 pathway. Sirt1 can inhibit the
up-regulation of fatty acid oxidation caused by fatty acids,
while the reduction in fatty acid oxidation leads to an increase
in fatty acids, the raw material of lipids, thereby causing lipid
accumulation and inflammation(16). At present, PARP-1 has been
reported to affect PPARα through poly(ADP-ribosyl)ation, which
has been shown to inhibit the activity of the PPARα signalling
pathway by inhibiting the binding of PPARα to SIRT1(17)

(Fig. 5A and 5D). In addition, PARP-1 can further lead to hepatic
steatosis and metabolic disorders via the PI3K/AKT pathway.
Puerarin can effectively ameliorate NAFLD by inhibiting this
process(18).
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Fig. 2. Correlation analysis of carbohydrates and ALT and AST. Transaminase levels reflect inflammation level in the liver. The AST and ALT data were collected from
previous studies, and the correlations with total carbohydrate intake (A, D), free sugar intake (B, E) and starchy carbohydrate intake (C, F) were analysed separately.
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NF-κB

NF-κB is a very important nuclear transcription factor that is
involved in the inflammatory response, immune response, stress
response and other processes related to immune inflammation.

NF-κB in cells is usually found in p65/p50 subunits in dimeric

form. Under resting conditions, the NF-κB dimer combines with

the NF-κB inhibitor protein IκB to form a trimer in the cytoplasm.

When cells are stimulated, IκB is phosphorylated and separated
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Fig. 3. Correlation analysis of carbohydrates and blood lipid levels. Total triacylglycerol and total cholesterol data were collected from previous clinical studies, and the
correlations with total carbohydrate intake (A, D), free sugar intake (B, E) and starchy carbohydrate intake (C, F) were analysed separately. TG, total triacylglycerol;
TC, total cholesterol.
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Fig. 4. Correlation analysis of blood lipid levels and transaminase content. Datawere collected from previous clinical studies, and the correlations with total carbohydrate
intake (A, D), free sugar intake (B, E) and starchy carbohydrate intake (C, F) were analysed separately. TG, total triacylglycerol; TC, total cholesterol.
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from the NF-κB trimer, and the activated NF-κB then migrates to
the nucleus and exerts its activity(19) (Fig. 5B). The downstream
factors of NF-κB, including TNF-α, IL-1, monocyte chemoattrac-
tant protein 1 (MCP1), etc., are considered to be the main causes
of liver inflammation and systemic inflammation.

Studies have reported that, in leaner patients with fatty liver,
which is partly caused by excessive carbohydrate intake, the uric
acid content is positively correlated with liver inflammation. Uric
acid stimulates downstream MCP1 through the NF-κB signalling
pathway and promotes liver inflammation(20). A previous study
found that the metabolism of fructose by fructose kinase C
increased ATP consumption, nucleotide conversion and uric
acid production(21). Therefore, the activation of the NF-κB signal-
ling pathway by uric acid may be one of the mechanisms by
which carbohydrates cause liver inflammation (Fig. 5A).

Inflammasomes

Inflammasomes are multi-protein complexes assembled by
pattern recognition receptors in the cytoplasm and are a crucial
part of the natural immune system(22). Inflammasomes recruit
and activate Caspase-1, a pro-inflammatory protein, by recognis-
ing pathogen-related molecules and host signals, thereby pro-
moting the maturation of cytokine precursors and pyroptosis,
which induce inflammation (Fig. 5B).

Experiments have shown that the NLRP3 inflammasome can
cause increased inflammation and liver fibrosis. By adding
MCC950, a small-molecule inhibitor of NLRP3, liver fibrosis is
reversed, and the expression of Caspase-1 and IL-1β in the liver
is restored to normal levels(23). In addition, inflammasomes can
also be activated by uric acid, triggering lipid accumulation and

damage to liver cells through the insulin signalling pathway(24).
Plasma uric acid levels are correlated with the glycaemic index
of food(25), and starchy carbohydrates and free sugars are sub-
stances with a high glycaemic index; therefore, it is possible that
starchy carbohydrates and free sugars can activate inflamma-
somes through uric acid, leading to further increases in oxidative
stress and inflammation in the liver.

Immune cells and macrophages in the liver

Both immune cells and macrophages in the liver have a vital role
in mediating the immune response and regulating inflammation
levels in the body.

Liver B cells can express high levels of IL-6 and TNFα and
show significant inflammation under lipopolysaccharide stimu-
lation(26). A previous study found that macrophages could medi-
ate transmembrane protein 173 (TMEM173 or STING) signalling
pathway and activate the innate immune response regulated by
type I interferon. After knocking out STING, the mRNA levels of
c-JUN N-terminal phosphorylation kinase, p65, TNFα, IL-1β and
IL-6were significantly reduced, therefore improving liver inflam-
mation and fibrosis(27).

Kupffer cells in the liver participate in liver immunity, maintain
the stability of the body environment and resist the invasion of for-
eign pathogens (Fig. 5C). Hepatocyte regeneration is stimulated
by sustained release of TNF-α and IL-1β. In vivo experiments have
shown that cholesterol can stimulate Kupffer cells to secrete IL-1β,
which may be why patients with fatty liver generally show
low-level inflammation(23). Due to the presence of inflammation,
additional intervention with high carbohydrates will exacerbate
the deterioration of fatty liver and make inflammation spread.

Table 2. Main pathways and regulatory factors that regulate hepatic inflammation

Pathways Specific action pathway Regulatory factors
Effect on
inflammation Ref.

PPARα PPARα–SIRT1
PARP-1–PI3K–AKT

PARP-1;
NADþ content;
Hepatic mitochondrial function

Inhibit (17)

NFκB NFκB–inflammatory factors
(TNFα, IL-1β, MCP1)
NFκB–p-JUN

Fructose; Uric acid;
Neutrophile granulocyte;
Gasdermin D; FFA; MPST

Promote (20)

Inflammasome Caspase 1 and IL-1β
Insulin signalling pathway
Oxidative stress

ATP; Uric acid;
Palmitic acid; Cholesterol crystals;
ROS

Promote (107); (23) (25)

Immune cells and macrophages in
liver

Liver B cells–IL-6, TNFα
Macrophages–STING–c-JUN
Kuffer cell–IL-1β, TNFα

Micro-organism; miRNA
Any factors that can activate immune

system

Promote (23); (26); (27)

(61)

MAPK CD36–JNK
Liver cytokine–ERK1/2

Heparin (liver cytokine); Macrophages;
CD36; High-carbohydrate diet

Promote (29)

Toll-like receptors 4 pathway TLR4–MAPK–JNK–NFκB/AP-1
TLR4–ERK–IKK

Pro-inflammatory response
Motif-containing 1 (TMBIM1)
Lysosomal defect-mediated degradation

Promote (32)

ROS ROS–NF-κB
ROS–oxidative stress of

mitochondria

Mitochondrial respiratory chain;
Cytochrome P450 system;
Auto-oxidation of haem proteins;
NADPH oxidase complex; xanthine

oxidase

Promote (36); (37)

Intestinal flora Intestinal flora metabolites
Intestinal flora–bile acids

Diet;
Bile acids;

Depends (42); (43) ; (45)

(21)

Organs effect on liver inflammation Adipose tissue
Pancreas

Lipolysis;
Macrophages

Depends (47); (46)
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MAPK pathway

MAPK signalling pathways mainly include the ERK, JNK and
P38 pathways, which are currently recognised as the main
inflammation-generating pathways (Fig. 5A–5C).

The liver is a non-lipid storage organ, and the lipid content is
the result of the dual action of lipid production and lipid
clearance. Studies have found that the lipid transporter CD36
can cause liver inflammation by activating JNK(28). When palmi-
toylation of CD36 is inhibited inHepG2 liver cells, the level of the
CD36/Fyn/Lyn complex is decreased, resulting in less entry of
fatty acids into the cells. In addition, inhibiting the JNK signalling
pathway relieves inflammation(29). High carbohydrates were
proved to increase the expression of CD36, leading to increased
transport of fatty acids into the liver and activation of JNK, which
gives a possible explanation as to why lipid deposition and
inflammation are always associated.

TLR4 signalling pathway

Toll-like receptor 4 (TLR4) belongs to a highly conserved family
of receptors, the family of model receptors. TLR4 functions by

recognising sub-patterns related to conservative pathogens
and therefore represents the first line of defence against them.
In addition, TLR4 is linked to endogenous molecules caused
by inflammatory damage(30) (Fig. 5A). Therefore, TLR4 is a
key receptor triggered by the pro-inflammatory response to
exogenous and endogenous ligands mediated by infectious
stimuli and plays a key role as an amplifier of the inflammatory
response(31). TLR4 leads to the production of inflammatory cyto-
kines by activating MAPK, JUN N-terminal kinase, p38, ERK1/2
and IκB kinase complex (IKK). The classic liver inflammation
model induced by lipopolysaccharide occurs through activation
of the TLR4 signalling pathway. In addition to the classic NF-κB
pathway, lysosomal defect-mediated protein degradation of
TLR4 is another key process of steatohepatitis(32).

Reactive oxygen species (ROS)

ROS come from awide range of sources, including themitochon-
drial respiratory chain, the cytochrome P450 system (CYP450),
the auto-oxidation of haem proteins, the NADPH oxidase com-
plex, xanthine oxidase and other cellular systems. Inflammatory

Fig. 5. Main pathways and regulatory factors leading to liver inflammation. (A) The NF-κB signalling pathway causes hepatic inflammation by activating inflammatory
factor expression and the factors that affect NF-κB. (B) Activation of the NF-κB pathway leads to the release of a large number of inflammatory cytokines. (C) miRNAs
regulate intrahepatic inflammation by affecting macrophages and the NF-κB signalling pathway. (D) The effect of oxidative stress and SIRT1 on NF-κB. (E) Effect of
intestinal flora changes and abundance as well as intestinal barrier permeability on inflammatory cytokine release.
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cells such as macrophages, neutrophils and monocytes migrate
to infected sites and attack invaders under inflammatory
conditions. As a result, pathogenic micro-organisms, intermedi-
aries or infected cells are killed and degraded. Simultaneously,
release of a large number of reactive oxygen radicals leads to
oxidative stress(33). If healthy tissues are not reconstructed in
time, chronic inflammation will make the immune system pro-
duce low concentrations of molecules such as prostaglandins
and NF-κB continuously. Excessive ROS maintain the activation
of NF-κB for a long time, resulting in the continuous release of
inflammatory mediators, thereby causing chronic inflamma-
tion(34) (Fig. 5D). The inflammation caused by starchy carbohy-
drates is a form of chronic inflammation. Moreover, the increase
in uric acid levels caused by high carbohydrate intake not only
causes insulin resistance but also increases the oxidative stress of
mitochondria(25).

Lipid intake is very important for the production of CYP, and
CYP is involved in fatty acid metabolism(35). Although lipid
intake is low on a high-carbohydrate diet, our research found
that a high-carbohydrate diet also increases the expression of
CYP, which promotes the generation of oxidative stress and
ROS, and leads to inflammation. The same study corroborated
our finding that, when CYP450 2E1 is inhibited, fatty liver disease
caused by a high-fat diet is alleviated(36). A high-fat, high-sucrose
diet increases the expression of Cyp1a2 in only 1 week, and
the mRNA expression of Cyp1a1, 2b10 and 2c29 increases
significantly after 12-week diet intervention. Resveratrol, a poly-
phenolic antioxidant, decreases lipid accumulation after admin-
istration tomicewith NAFLD but does not change the expression
of CYP, indicating that CYP regulates the generation of ROS
upstream(36).

Oxidative stress is caused by high levels of ROS, leading to
apoptosis and necrosis. ROS can also cause a chain reaction
between free radicals and unsaturated fatty acids to form toxic
lipid intermediates(37). In addition, carbohydrates likely activate
ROS through CYP, which aggravates lipid metabolism disorders
due to oxidative stress.

Intestinal flora

With the development of sterile animals and sequencing
technology, intestinal flora has been found to participate in vari-
ous processes of life. The abundances, types and proportions of
intestinal flora constitute different intestinal metabolite microen-
vironments. Also, the metabolites from the flora digested by the
intestinal can be transmitted to various organs through the
intestinal barrier. The impact of the diet on the body is no longer
considered as a single source of energy or nutrients but likely an
effect on the whole body through the intestinal flora(38).

Starchy carbohydrates such as potatoes and rice are rich in
resistant starch, which has been shown to affect the abundance
and composition of the intestinal flora in the body. Among
female cynomolgus monkeys fed a high-carbohydrate high-fat
diet, or a Mediterranean diet, the group fed a Mediterranean diet
have a richer microbiome diversity, higher Firmicutes-to-
Bacteroides ratio, and higher Clostridiaceae and Lactobacillaceae
abundances(39); a similar result was also found in humans(40).
Additionally, when the normal intestinal flora of wild-type (WT)

mice was transplanted into germ-free mice, body weight and
indicators in serum were similar to those of WT mice(41).
Mother-to-child transmission is another major way affecting intes-
tinal flora. Studies have shown that children with obese mothers
have increased inflammation and an increased risk of NAFLD(42)

(Fig. 5E). Conversely, probiotic therapy, that is, the ingestion of
beneficial bacteria to build a normal and healthy intestinal micro-
bial environment, can significantly reduce plasmaALT, TNF-α and
IL-6 levels, increase the leptin content and insulin sensitivity, and
reverse and inhibit the occurrence and development of liver
inflammation(43). Supplementation with Lactobacillus rhamnosus
has been reported to rebuild the balance of the intestinal flora and
is effective against liver damage induced by alcohol in mice in a
dose-dependentmanner(44). The intestinal flora can also affect the
secretion of bile acids, thereby interfering with glucose and lipid
metabolism in the liver(45).

Adipose tissue

Throughout the body, metabolic changes naturally occur in vari-
ous organs. The liver acts as the centre ofmetabolism in the body
and is affected by multiple organs. Adipose tissue inflammation
is verified to affect the occurrence and development of liver
inflammation.

Population studies have shown that genes related to inflam-
mation in subcutaneous fat tissue and visceral fat tissue are
up-regulated, allowing macrophages in adipose tissue to secrete
more pro-inflammatory factors. Moreover, the up-regulated
genes are related to the severity of fatty liver(46). The increased
NEFAs and lipolysis activity in adipose tissue up-regulate macro-
phage activity, which is directly related to the degree of liver
steatosis(47).

Emerging pathways and factors

In recent years, many emerging factors and possible pathways
have been found to play roles in the occurrence of hepatitis.
Here, we briefly summarise these factors, but further research
is needed to better understand their effects on inflammation
and lipid steatosis.

Unfolded protein response. The liver has a rich endoplasmic
reticulum system that plays a role in keeping the steady state
of liver cells, ensuring the metabolic processes proceed nor-
mally. The endoplasmic reticulum uses the unfolded protein
response, an evolutionarily conserved approach, to maintain
protein and lipid homeostasis in the liver. It has been reported
that PERK-EIF2α and IRE1α in the unfolded protein response
can induce inflammation, oxidative stress and death of liver
cells(48).

Urea cycle. The urea cycle is a metabolic reaction that mainly
occurs in the liver, functions as removing ammonia from the
body. When exogenous ammonia enters and accumulates in
the liver, it can cause liver dysfunction. Carbamoyl phosphate
synthetase (CPS1) and ornithine carbamoyl transferase (OTC)
are present in mitochondria and are key enzymes involved in
the urea cycle. Mitochondrial damage decreases the expression
of CPS1 andOTC,which leads to hyperammonaemia. In the diet-
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induced NASH model, expression of OTC was down-regulated
both in mRNA and protein levels, causing further aggravation of
liver disease(49).

Advanced glycation end products. Advanced glycation end
products (AGEs) are products of excess sugar and protein pro-
duction. There are two sources of AGEs in the body. One source
is excessive sugar and protein that react in the body to formAGEs
spontaneously, the other source is intake of AGEs directly via
food. AGEs are markers of hyperglycaemia and play pathogenic
roles through the AGE receptor (RAGE). Studies have found that
AGE/RAGE is closely related to the development of NAFLD.
AGEs can increase liver TG levels, thereby promoting the devel-
opment of simple fatty liver, and AGE/RAGE can induce the liver
inflammatory response as well as promote the transition of
NAFLD to NASH and liver fibrosis. Patients with hepatitis have
high levels of RAGE, NF-κB/P65 and serum RAGE. In animal
experiments, excessive intake of AGEs from a high-fat and
high-sugar diet obviously caused liver lipid accumulation and
fibrosis, pathological changes in hepatocyte balloon-like
vacuoles, and increased content of 4-hydroxynonenal, a marker
of chronic oxidative stress(50).

microRNAs. microRNAs are a class of 20–24 nucleotide single-
stranded non-protein-encoding small RNA molecules. miRNAs
are abundant in the liver and participate in various processes
of liver physiology and pathology (Fig. 5C), such as differentia-
tion, growth andmetabolism processes. miR144 has been shown
to be highly expressed in obese individuals and obese mice liv-
ers, leading to an oxidative stress response by increasing NRF2
protein levels(51). However, hepatitis caused by abnormal
expression of miRNA is generally viral hepatitis, which leads
to an increase in the replication of the virus at the genetic
level(52,53), while the effect on nutrition signalling by dietary
intervention requires further investigation.

Emerging factors. A previous study found that cAMP-reactive
element-binding protein was activated under endoplasmic
reticulum stress or inflammatory stimulation, which induced
acute liver inflammation(54). Receptor-interacting protein kinase
1 inhibits mitochondrial respiratory chain activity, reduces
β-oxidation, and improves NASH in mice fed a high-fat diet(55).
Bone morphogenetic protein 6 (BMP6), a transforming member
of the growth factor β (TGF-β) superfamily, has been shown to
be up-regulated in NAFLD. Lipid accumulation in hepatocytes in
vitro leads to the increased expression of BMP6. Knocking out
BMP6 can inhibit the transition of NAFLD to hepatitis(56). Type
II interferon, also known as IFN-γ, is produced by mitogens to
stimulate T-lymphocyte activity. Interferon is a biologically
active substance with high antiviral function, and it is also a
lymphokine with a wide range of immunomodulatory effects(57).
Studies have shown that IFN-γ-knockout mice accelerate
the development of NASH induced by TGF-β and IL-13.
Zinc-α2-glycoprotein 1 was originally found in various cancers
and was shown to alleviate the progression of fatty liver disease
by inhibiting TNFα-mediated inflammation and intracellular lipid
deposition(58).

mTORC1 may be the core regulator of carbohydrate-
mediated inflammation and induce lipid deposition

Above, we discussed the correlation and possible mechanism of
inflammation and carbohydrate intake. Lipid production and
inflammation are not two separate events. Research has shown
that increased inflammation aggravates the accumulation of
lipids in the liver. In this section, wewill speculate on the specific
pathways that are involved in inflammation and lipid production
by analysing the latest literature.

Studies have shown that nivolumab, an anticancer drug that
functions by enhancing the immune response in the body, has a
side effect of causing severe fatty liver, which reminds that
inflammation may trigger lipid accumulation(59,60). Furthermore,
researchers have shown that, by knocking out adenosine 2A
receptor (A2AR), a protein with anti-inflammatory effects, in
macrophages, and co-cultured A2AR-knockdown macrophages
with hepatocytes, a large number of fat deposits will form in
the hepatocytes. Furthermore, lack of A2AR can significantly
increase the expression of the transcription factor SREBP1c
in hepatocytes, which may influence the progression of
lipogenesis(61).

Increasing evidence has confirmed that inflammation can
mediate lipid synthesis, while the specific regulatory pathways
have not been fully investigated. From the current literature,
although it may not the main aim of studies, we will focus on
inflammation-related data to infer the possible pathways of
inflammation on lipid synthesis.

At present, the mechanistic target of rapamycin complex 1
(mTORC1) signalling pathway is one of the most well-studied
pathways and has been proven to mediate inflammation and
hepatic lipid accumulation. In 2018, a study showed that
down-regulation of the SIRT1-DEPTOR-mTORC1 signalling
pathway was a crucial determinant of alcoholic fatty liver
disease. Abnormal activation of mTORC1 may be due to defects
in DEP domain-containing mTOR-interacting protein (DEPTOR)
and SIRT1. When DEPTOR and SIRT1 are targeted to selectively
inhibit the mTORC1-S6K1 signalling pathway, they can effec-
tively alleviate and improve alcoholic fatty liver disease(62).
In addition, studies have shown that RAPTOR (a key component
of mTORC1) regulates prostaglandins synthesised by cyclooxy-
genase-2 (COX-2), thereby promoting beige fat production,
while RAPTOR-deficient mice are resistant to diet-induced
obesity, indicating that the mTORC1 pathway functions in hepatic
inflammation.Mechanistically,mTORC1 canphosphorylate CREB-
regulated transcription coactivator 2, leading to the binding of
CREB to the COX-2 promoter. Inhibition of COX-2 attenuates
the inhibitory effect of thermogenic gene expression caused by
mTORC1, further explaining the regulatory mechanism of the
mTORC1 pathway in inflammation(63) (Fig. 6).

In addition, a large number of studies have described many
other factors and show that chronic inflammation is related to
hepatic lipid levels. Suppressor of cytokine signalling 3 affects
metabolism in the body by inhibiting signal transduction of insu-
lin and leptin, leading to increased inflammation and affecting
serum lipid levels(64). Similarly, thioredoxin-interacting protein,
a core molecule involved in oxidative stress and inflammation,
has been shown to interact with PRMT1 to affect the expression
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of lipogenesis-related proteins. The anti-inflammatory factor
IL-22 has been shown to relieve hepatic steatosis caused by a
high-fat diet. Overexpression of IL-22R1 inhibits the activation
of STAT3 by recombinant murine IL-22(65).

In summary, the classic inflammatory mTORCR1 pathway or
various inflammation-related factors may lead to the regulation
of inflammation levels that can interfere with lipid production,
further indicating that inflammation mediates lipid synthesis.

Summary and outlook

Carbohydrates are positively correlated with inflammation,
and inflammation can increase lipid deposition through multiple
pathways, which may explain why patients with NAFLD have a
worse condition after changing to a ‘vegetarian’ diet.

Currently, there are few studies on starchy carbohydrates,
and inevitably, the existence of multiple variables makes it
difficult to define the function of carbohydrates in lipid
metabolism. To better demonstrate the effect of carbohydrates
on inflammation and the effect of inflammation on lipid produc-
tion, the following topics should be studied in future research:

1. The effects of different types of carbohydrates. Carbohydrates
can be subdivided into free sugars and polysaccharides, and
each type of carbohydrate should be studied separately.

2. The effects of carbohydrates on inflammation. In previous
studies, inflammation was thought to be a phenomenon
caused by lipid production. However, our review shows that
inflammation can be directly triggered by carbohydrates.

3. To explore the effects and mechanisms of carbohydrates on
inflammation and lipid metabolism, large-scale sequencing
should be carried out on the basis of variable control. The
influence of other organs on liver inflammation, especially
adipose tissue, the pancreas and the intestines, should be
considered. The possible mechanism of the liver–brain–gut
axis should also be studied.

4. Food in the diet undergoes a complex process of digestion,
and every nutrient in the diet has different metabolic path-
ways. Therefore, it is difficult to identify the specific factor that
ultimately affects metabolic progression. At present, it is less
likely that a single factor affects metabolic progression;
rather, multiple factors or multiple nutrients work together.
Therefore, special attention should be given to the setting
of diet formulas in the design of experiments.

5. Although many key factors and proteins influence inflamma-
tion in the liver, inflammation is basically attributed to NF-κB,
MAPK/PPARα, intracellular inflammation and mitochondrial
dysfunction. Regarding the mechanism by which inflamma-
tion leads to lipogenesis, most studies point to the mTOR
pathway; however, the evidence present is not strong and

Fig. 6. High carbohydrate intake causes low-grade inflammation and furthermediates lipid production through themTORC1pathway. Carbohydrates cause intrahepatic
inflammation mainly through the NF-κB and mTORC1 pathways according to recent research. Carbohydrates are digested into monosaccharides and enter the cell
through GLUT4. Fatty acids are synthesised by DNL, which in turn activates NF-κB and transcribes various inflammatory cytokines. Additionally, carbohydrates can
affect the level of ROS and NO in cells, which further leads to a burst of inflammatory cytokines. The activation of the mTORC1 pathway by PI3K/AKT can also lead to
increased inflammatory levels and neutrophil contents, which constitute a low-grade inflammatory environment in the liver. Furthermore, mTORC1 affects the transcrip-
tion of SREBP and PPARα in the nucleus through S6K1 and SK62, thereby affecting the expression of downstream lipid metabolism-related genes, inhibiting fatty acid
oxidation and promoting lipid synthesis, which leads to further lipid deposition in the liver.
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direct to clarrify the underlying functions and mechanisms.
This will be an aspect that needs to be studied in the future,
and the proposal of new regulatory pathways or new regula-
tory factors will be particularly important.

In summary, the effect of carbohydrates on inflammation and
the relationship between inflammation and lipid production have
been neglected in previous studies. Answering these questions
clearly will be of great significance to further understand human
metabolism and treat diseases. Based on previous studies, this
review extracted data from previous literature to analyse the
correlation between carbohydrate intake and inflammation, and
discussed the perspective that the inflammatory response
increases hepatic lipid accumulation. Therefore, the hypothesis
that carbohydrates can further aggravate liver lipid accumulation
by activating the inflammatory response was proposed. Our
laboratory has already proven this hypothesis in animals.

Limitations

This review collected data from four databases: PubMed,
Clinicalkey, Web of Science and Scopus. In an attempt to cover
most of the literature published in recent years, the collected
articles were organised and analysed in detail. However, of
the nearly 7000 articles collected using keywords, only
45 articlesmet the requirements of this review,which greatly lim-
ited the analysability of this review and was also the main limi-
tation of this article. In addition, diet is a complex system with a
large number of variables. Due to the limited information in
articles, total carbohydrates were barely enough to divide into
free sugars and starchy carbohydrates for analysis. There were
not enough data to perform a more statistical analysis of detailed
carbohydrate components. However, despite the small sample
size, an obvious correlation was identified, indicating that there
is indeed a link between carbohydrates and inflammation.
In addition, some researchers have carried out other forms of
interventions without changing the intake of carbohydrates.
These interventions also have effects on inflammation through-
out the body. Therefore, it is necessary to exclude these data
from analysis. Carbohydrates are not the only major influencing
factor, which somewhat interferes with our analysis. It is hoped
that a more detailed classification and grading of dietary intake
will be performed in future population experiments to allow
more powerful and detailed analyses.
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