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Abstract

We construct random fields with Pólya-type autocorrelation function and dampened Pólya
cross-correlation function. The marginal distribution of the random fields may be taken
as any infinitely divisible distribution with finite variance, and the random fields are fully
characterized in terms of their joint characteristic function. This makes available a new
class of non-Gaussian random fields with flexible correlation structure for use in modeling
and estimation.
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1. Introduction

Our primary object of study in this paper is a class of random fields that are indexed in
the temporal domain over R and in the spatial domain over {1, 2, . . . d}, d ∈ N

+, that is, a
multivariate stochastic process. We denote a random field {Z(t)}, t ∈ R, with spatial dimension
defined on {1, 2, . . . , d}, d ∈ N

+, by {Z(t)} = {Z1(t), . . . , Zd(t)}. If all {Zh(t)} have
second-order moments then the covariance matrix function of {Z(t)} is given by C(t, t + s) =
cov(Z(t), Z(t + s)) = E(Z(t) − EZ(t))(Z(t + s) − EZ(t + s))′. The hth diagonal entry
of C(t, t + s) corresponds to the autocovariance (or direct covariance) between Zh(t) and
Zh(t + s), while the (g, h)th off-diagonal entry corresponds to the so-called cross-covariance
between Zg(t) and Zh(t+s), g �= h. Thus, the diagonal entries of C(t, t+s) are autocovariance
functions and the off-diagonal entries are cross-covariance functions. If both C(t, t + s) and
EZ(t) are independent of t , then {Z(t)} is said to be second-order stationary.

The class of admissible autocovariance and cross-covariance functions for Gaussian second-
order stationary random fields, as well as other closely related elliptically contoured random
fields, is well known. Here we consider elliptically contoured random fields constructed as
Gaussian random fields multiplied by nonnegative random variables; the marginal distribution
of the resulting random field is altered by the multiplication but the correlation structure is
not. In this case the covariance matrix function may be taken as any function that satisfies
C(t, t + s) = C(t + s, t)′ and

n∑
i=1

n∑
j=1

a′
iC(ti , tj )aj ≥ 0 (1)
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for all n ∈ N
+, tk ∈ R, and ak ∈ R

d for k = 1, . . . , n (see, for example, Cramér and Leadbetter
(1967) and Gikhman and Skorokhod (1969), as well as Ma (2009), (2011a), (2011b), (2011c),
(2011d), and the references therein). Du and Ma (2013), for example, constructed an elliptically
contoured random field that may take any matrix function satisfying (1) as its covariance matrix
function.

For random fields that are non-Gaussian, however, (1) is in general a necessary but not
a sufficient condition for the covariance structure, and the range of admissible covariance
structures must be investigated on a case-by-case basis. For example, for a log-Gaussian
random field, (1) is a necessary but not sufficient condition for its covariance structure.

In this paper we construct second-order stationary random fields in both continuous and
discrete time. In Section 3 we construct a random field in continuous time with Pólya-type
autocorrelation function and dampened Pólya cross-correlation function. In Section 4 we
construct a random field in discrete time, the more practically useful setting, with Young-type
autocorrelation function and dampened Young cross-correlation function. In Section 5 we
present a number of extensions (Pólya- and Young-type autocorrelation functions are defined
in Section 2). Importantly, the marginal distribution of the random fields may be taken as any
infinitely divisible distribution with finite variance, where by marginal distribution we mean the
distribution of the random variable Zh(t) for fixed t . This extends the results from Finlay and
Seneta (2007) and Finlay et al. (2011) to the multivariate setting, and makes available a new
class of non-Gaussian second-order stationary random fields with flexible correlation structure
for use in modeling and estimation.

Other authors have constructed non-Gaussian random fields. In addition to the above-
mentioned papers, Marfè (2012), (2014), for example, constructed a multivariate Lévy process
that can accommodate a flexible range of linear and nonlinear dependencies across the spatial
dimension and for which the marginal distribution may approximate any Lévy type. Our con-
struction has a number of advantages over alternatives in the literature, however. The marginal
distribution of our random fields may be taken as any infinitely divisible distribution with finite
variance, whereas, for example, the marginal distributions of the elliptically contoured random
fields discussed above are restricted to be of normal variance-mixing type and so exclude any
nonsymmetric distribution or any distribution that does not have support on (−∞, ∞), such as a
distribution on the positive half-line. Furthermore, since the elliptically contoured random fields
are constructed as Gaussian random fields multiplied by a nonnegative random variable, they
revert to being Gaussian given a realization of that random variable. Our random fields can also
be endowed with a rich and dynamic correlation structure across both the spatial and temporal
dimensions. Although endowed with a rich dependence structure along the spatial dimension,
the Lévy process constructed by Marfè has independent increments, so the increments lack a
dependence structure along the time domain (it is the stationary increments of Marfè’s process,
rather than the process itself, that is most closely related to the processes that we construct).
Finally, our method of construction, based on sums of independent and identically distributed
(i.i.d.) random variables, lends itself particularly easily to numerical simulation, while the
random fields are fully characterized in terms of their joint characteristic function, allowing for
efficient estimation.

2. Pólya- and Young-type autocorrelation functions

Pólya (1949) provided a simple sufficient condition for the admissibility of a continuous-time
autocorrelation function of a univariate Gaussian process, being essentially that a function ρ(s)

is admissible if it is real-valued, continuous, and symmetric about the origin, with ρ(0) = 1,
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ρ(s) convex for s > 0 and ρ(s) → 0 as s → ∞ (see also Lukacs (1960, Theorem 4.3.1), as
well as Chung (2001) and Christakos (1984)). In fact the condition was originally stated in
terms of characteristic functions, but a function is a real-valued characteristic function if and
only if it is also an admissible autocorrelation function (see, for example, Finlay et al. (2011)).

This Pólya condition is useful in the univariate setting as it is reasonably flexible and,
importantly, is easy to check in practice. There is a more general necessary and sufficient
condition, being that ρ(s) satisfy

n∑
i=1

n∑
j=1

ρ(ti − tj )ai āj ≥ 0

for all n ∈ N
+, tk ∈ R and ak ∈ C for k = 1, . . . , n (see, for example, Feller (1966,

Section XIX.3)), but its practical use is limited, as for a given ρ(s) it can be difficult to check.
A related theorem from Young (1913) gave an analogous result for the discrete-time setting.

For ρ(s), s ∈ N, Young’s theorem essentially states that ρ(s) is an admissible discrete-time
autocorrelation function if it is real-valued and symmetric on {0 ± 1, ±2, . . .}, with ρ(0) = 1,

ρ(s) → 0 as s → ∞, and ρ(s) ≥ 0, ρ(s + 1) − ρ(s) ≤ 0, ρ(s + 2) − 2ρ(s + 1) + ρ(s) ≥ 0
for s = 0, 1, 2, . . . (see also Zygmund (1968, Chapter V), as well as Kolmogoroff (1923)).
Similar to the Pólya condition, the result was originally stated in the context of the Fourier
series, but the Fourier series can be interpreted as a symmetric probability density function on
(−π, π) and, inverting the Fourier series, the ρ(s) for s ∈ N (the Fourier coefficients) can be
interpreted as the characteristic function of this probability density function evaluated at the
integers. Being the characteristic function of a symmetric density function, and so real-valued,
ρ(s), s ∈ N is also an admissible discrete-time autocorrelation function.

These Pólya and Young sufficient conditions turn out to define the set of autocorrelation
and cross-correlation functions possible using the method that we employ here; our method
essentially involves constructing random fields via carefully chosen sums of i.i.d. random
variables, and the Pólya (in continuous time) and Young (in discrete time) conditions ensure
that all sums that we consider are nonnegative.

3. A random field in continuous time

Assumption 1. It holds that ρ(s), s ∈ R, is a continuous function symmetric about s = 0
satisfying ρ(0) = 1, ρ(s) → 0 as s → ∞, and for s ∈ [0, ∞) satisfying ρ(s) ≥ 0, ρ′(s) ≤ 0
and ρ′′(s) ≥ 0.

Note that Assumption 1 implies that ρ′(s) → 0 as s → ∞.

Assumption 2. It holds that κ(s), s ∈ R is a continuous function satisfying 0 ≤ κ(s) ≤ 1.

Theorem 1. If ρ(s) is a function satisfying Assumption 1 and κ(s) is a function satisfying
Assumption 2, then there exists a second-order stationary random field

{V (t)} = {V1(t), . . . , Vd(t)}, t ∈ R, d ∈ N
+

such that corr(Vh(t), Vh(t + s)) = ρ(s) and corr(Vg(t), Vh(t + s)) = ∫ ∞
0

∫ ∞
0 κ(s + u +

v)ρ′′(s + u + v) dv du for s > 0, g, h = 1, . . . , d, g �= h. The marginal distribution of Vh(t)

can be taken as any infinitely divisible distribution with finite variance.

Corollary 1. If κ(s) = K , for K ∈ [0, 1] a constant, then corr(Vg(t), Vh(t + s)) reduces to
Kρ(s).
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The rest of this section, and in particular Lemmas 1 to 3, constitute the proof of Theorem 1.
Lemmas 1 to 3 generalize Lemmas 2 and 3 in Finlay et al. (2011), where the result was proved
for the univariate case (see also Finlay and Seneta (2007), where the result was proved in the
discrete-time univariate case for processes with gamma marginal distribution).

Let D1 denote a given infinitely divisible distribution with finite variance, and D1/n the
distribution of the n i.i.d. random variables whose sum has distribution D1. Fix n ∈ N

+ and set
Yn

i,j,h

d=D1/n, i = 1, . . . , n, j = 0, ±1, ±2, . . . , h = 0, 1, . . . , d with all the Yn
i,j,h mutually

independent, where ‘
d=’ denotes equality in distribution. Let [x] denote the integer part, and to

simplify notation define ρn(x) = [nρ(x/n)] and fn(x) = ρn(x) − ρn(x + 1). For κ(s) any
continuous function such that 0 ≤ κ(s) ≤ 1, define f κ

n (x + 1) = fn(x+1)+[κ(x/n)(ρn(x)−
2ρn(x + 1) + ρn(x + 2))].

Now using the convention that
∑m

i=m+1 xi = 0 for any m ≥ 0, define V n
h (t) for each

h = 1, . . . , d by

V n
h (t) =

[nt]∑
j=−∞

( ∞∑
k=[nt]−j

( f κ
n (k+1)∑

i=fn(k+1)+1

Yn
i,j,0 +

fn(k)∑
i=f κ

n (k+1)+1

Yn
i,j,h

))
(2)

=
[nt]∑

j=−∞

( ∞∑
k=[nt]−j

( ρn(k)−ρn(k+1)∑
i=ρn(k+1)−ρn(k+2)+1

Ỹ n
i,j,h

))

=
[nt]∑

j=−∞

(ρn([nt]−j)−ρn([nt]−j+1)∑
i=1

Ỹ n
i,j,h

)
. (3)

That is, the Ỹ n
i,j,h are constructed such that for each j andh, for i betweenρn(k+1)−ρn(k+2)+1

and ρn(k)−ρn(k+1), a fraction κ(k/n) of the Ỹ n
i,j,h are drawn from the Yn

i,j,0 and the remaining
fraction 1−κ(k/n) are drawn from the Yn

i,j,h. We define {V n(t)} so that V n
h (t) for each h and t

has marginal distribution D1. This follows since ρ(s) → 0 as s → ∞ by Assumption 1, so
that

∑[nt]
j=−∞ρn([nt] − j) − ρn([nt] − j + 1) = ρn(0) = n of the Ỹ n

i,j,h

d=D1/n are summed in
(3), ensuring that V n

h (t)
d= D1. Furthermore, for each h, t , and s the number of Ỹ n

i,j,h common
to V n

h (t) and V n
h (t + s) is such that corr(V n

h (t), V n
h (t + s)) → ρ(s) as n → ∞, and similarly

corr(V n
g (t), V n

h (t + s)) → ∫ ∞
0

∫ ∞
0 κ(s +u+v)ρ′′(s +u+v) dv du as n → ∞ for each g �= h,

as shown in Lemmas 1 and 2 (correlation between V n
g (t) and V n

h (t + s) is created via the Yn
i,j,0,

which from (2) are common to the V n
h (t) for each h = 1, 2, . . . , d). Note that although (2) and

(3) appear to involve infinite sums, for any fixed n all summands for k greater than some finite
number and/or j less than some finite number are 0 (for both (2) and (3) at most n summands
are nonzero since a total of n of the Yn

i,j,0 or Yn
i,j,h are summed, and ρn(x) − ρn(x + 1) ∈ N

decreases and becomes 0 as x becomes large).

Lemma 1. Under Assumption 1, for any t ∈ R and s ≥ 0,

corr(V n
h (t), V n

h (t + s)) → ρ(s) as n → ∞.

Proof. Using (3), consider any V n
h (t) and V n

h (t + s) for t ∈ R, s ≥ 0. Then, for any
j ≤ [nt], V n

h (t) contains the first ρn([nt]− j)−ρn([nt]− j + 1) of the Ỹ n
i,j,h, while V n

h (t + s)

contains the first ρn([nt +ns]− j)−ρn([nt +ns]− j +1) of the same Ỹ n
i,j,h. But, s > 0 so by

Assumption 1 ρn([nt +ns]− j)−ρn([nt +ns]− j +1) ≤ ρn([nt]− j)−ρn([nt]− j +1) for
large n, so the number of Ỹ n

i,j,h common to both V n
h (t) and V n

h (t + s) is simply ρn([nt + ns] −
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j) − ρn([nt + ns] − j + 1) (recall that ρn(x) is defined as [nρ(x/n)]). For j > [nt], V n
h (t)

contains none of the Ỹ n
i,j,h, so the total number of Ỹ n

i,j,h common to both V n
h (t) and V n

h (t + s)

is given by

[nt]∑
j=−∞

ρn([nt + ns] − j) − ρn([nt + ns] − j + 1) = ρn([nt + ns] − [nt])

=
[
nρ

( [nt + ns] − [nt]
n

)]

and corr(V n
h (t), V n

h (t + s)) = [nρ(([nt +ns]− [nt])/n)]/n → ρ(s) as n → ∞. This last step
follows from Assumption 1 (see the conclusion of Lemma 2 of Finlay et al. (2011, p. 260)).

Lemma 2. Under Assumptions 1 and 2, for any time t ∈ R, g �= h and s ≥ 0,

corr(V n
g (t), V n

h (t + s)) →
∫ ∞

0

∫ ∞

0
κ(s + u + v)ρ′′(s + u + v) dv du as n → ∞.

Proof. Using (2), consider any V n
g (t) and V n

h (t+s) for g �= h, s ≥ 0. Then, for any j ≤ [nt]
and k ≥ [nt+ns]−j , V n

g (t) and V n
h (t+s) both contain [κ(k/n)(ρn(k)−2ρn(k+1)+ρn(k+2))]

of the same Yn
i,j,0. For k < [nt + ns] − j , V n

h (t + s) contains none of the Yn
i,j,0, while for

j > [nt], V
g
h (t) contains none of the Yn

i,j,0. As such the number of Yn
i,j,0 common to both

V n
g (t) and V n

h (t + s) is
∑[nt]

j=−∞
∑∞

k=[nt+ns]−j [κ(k/n)(ρn(k)−2ρn(k +1)+ρn(k +2))], and,
ignoring rounding issues associated with taking the integer part, corr(V n

g (t), V n
h (t +s)) is given

by

1

n

nt∑
j=−∞

∞∑
k=nt+ns−j

κ

(
k

n

)
(ρn(k) − 2ρn(k + 1) + ρn(k + 2))

= 1

n2

nt∑
j=−∞

∞∑
k=nt+ns−j

κ

(
k

n

)(
ρ(k/n) − 2ρ(k/n + 1/n) + ρ(k/n + 2/n)

1/n2

)

= 1

n2

∞∑
u=0

∞∑
v=0

κ

(
s + u

n
+ v

n

)

×
(

ρ(s + u/n + v/n) − 2ρ(s + u/n + v/n + 1/n) + ρ(s + u/n + v/n + 2/n)

1/n2

)
,

(4)

where (4) follows by making the change of variable u = nt−j and v = k−u−ns. Equation (4)
converges to

corr(V n
g (t), V n

h (t + s)) =
∫ ∞

0

∫ ∞

0
κ(s + u + v)ρ′′(s + u + v) dv du as n → ∞ (5)

since n2(ρ(x) − 2ρ(x + 1/n) + ρ(x + 2/n)) → ρ′′(x) as n → ∞. By noting that

∞∑
u=0

∞∑
v=0

f (s + u + v) =
∞∑

u=0

(u + 1)f (s + u)
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for any function f , we can also show that (4) converges to an expression equivalent to (5) given
by ∫ ∞

0
uκ(s + u)ρ′′(s + u) du.

Note that if κ(s) = K for K ∈ [0, 1] is a constant, then (5) reduces to Kρ(s).

Lemma 3. Under Assumptions 1 and 2 there exists a process {V (t)}, t ∈ R with finite
dimensional distributions (and therefore marginal distribution and correlation structure) as
implied by (2) and (3) as n → ∞.

Proof. First we show that the finite dimensional distributions of {V n(t)}, t ∈ R, converge
and define a proper set of random variables as n → ∞. Fix p ∈ N

+ and let a1,1, . . . , a1,p, . . . ,

ad,1, . . . , ad,p ∈ R and −∞ < s1 < s2 < · · · < sp, all in R. To ease the notation, set
g(t, j) = ρn([nst ] − j) − ρn([nst ] − j + 1). Then starting from (3), we can show that∑d

h=1
∑p

t=1 ah,tV
n
h (st ) is given by

d∑
h=1

( p∑
k=1

( [nsk]∑
j=[nsk−1]+1

(g(p,j)∑
i=1

(( p∑
t=k

ah,t

)
Ỹ n

i,j,h

)))

+
p−1∑
k=1

(p−k∑
l=1

( [nsk]∑
j=[nsk−1]+1

( g(p−l,j)∑
i=g(p−l+1,j)+1

((p−l∑
t=k

ah,t

)
Ỹ n

i,j,h

)))))
, (6)

where we define s0 = −∞. The above expression reorders the summation of the Ỹ n
i,j,h

appearing in
d∑

h=1

p∑
t=1

ah,tV
n
h (st )

so that any Ỹ n
i,j,h appearing more than once in the sum are grouped together. But the Ỹ n

i,j,h are
not i.i.d. since by construction they are drawn from a set of (common) Yn

i,j,0 and (unique) Yn
i,j,h.

Refining (6) to a grouping of all the Yn
i,j,h yields

p∑
k=1

( [nsk ]∑
j=[nsk−1]+1

( j∑
m=−∞

( gκ (p,m−1)∑
i=g(p,m−1)+1

(( d∑
h=1

p∑
t=k

ah,t

)
Yn
i,j,0

))))

+
p−1∑
k=1

(p−k∑
l=1

( [nsk ]∑
j=[nsk−1]+1

([nsp−l+1]−[nsp−l ]∑
m=1

( gκ (p−l+1,j+m−1)∑
i=g(p−l+1,j+m−1)+1

(( d∑
h=1

p−l∑
t=k

ah,t

)
Yn
i,j,0

)))))

+
d∑

h=1

( p∑
k=1

( [nsk ]∑
j=[nsk−1]+1

( j∑
m=−∞

( g(p,m)∑
i=gκ (p,m−1)+1

(( p∑
t=k

ah,t

)
Yn
i,j,h

))))

+
p−1∑
k=1

(p−k∑
l=1

( [nsk ]∑
j=[nsk−1]+1

([nsp−l+1]−[nsp−l ]∑
m=1

( g(p−l+1,j+m)∑
i=gκ (p−l+1,j+m−1)+1

((p−l∑
t=k

ah,t

)
Yn
i,j,h

))))))
, (7)

where we define gκ(t, m − 1) = g(t, m − 1) + [κ(([nst ] − m)/n)(g(t, m) − g(t, m − 1))], so
that

∑gκ (t,m−1)

i=g(t,m−1)+1 is the sum of the Ỹ n
i,j,h between g(t, m − 1) and g(t, m) which are drawn

from the Yn
i,j,0, of which there are [κ(([nst ] − m)/n)(g(t, m) − g(t, m − 1))] in total, and∑g(t,m)

i=gκ (t,m−1)+1 is the sum of the Ỹ n
i,j,h between g(t, m− 1) and g(t, m) which are drawn from

the Yn
i,j,h, of which there are (g(t, m)−g(t, m−1))−[κ(([nst ]−m)/n)(g(t, m)−g(t, m−1))]
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in total. Each Yn
i,j,h is i.i.d. D1/n distributed, with characteristic function φD

1/n(t) say, so the
characteristic function of (V n(s1), . . . ,V

n(sp)), defined as E exp(i
∑d

h=1
∑p

t=1 ah,tV
n
h (st )), is

given by

�n
p(a1,1, . . . , ad,p)

=
( p∏

k=1

(
φD

1/n

( d∑
h=1

p∑
t=k

ah,t

))∑[nsk ]
j=[nsk−1]+1

∑j
m=−∞ gκ (p,m−1)−g(p,m−1))

×
(p−1∏

k=1

(p−k∏
l=1

(
φD

1/n

( d∑
h=1

p−l∑
t=k

ah,t

))∑[nsk ]
j=[nsk−1]+1

∑[nsp−l+1]−[nsp−l ]
m=1 λ1

))

×
( d∏

h=1

( p∏
k=1

(
φD

1/n

( p∑
t=k

ah,t

))∑[nsk ]
j=[nsk−1]+1

∑j
m=−∞ g(p,m)−gκ (p,m−1)))

×
( d∏

h=1

(p−1∏
k=1

(p−k∏
l=1

(
φD

1/n

(p−l∑
t=k

ah,t

))∑[nsk ]
j=[nsk−1]+1

∑[nsp−l+1]−[nsp−l ]
m=1 λ2

)))
, (8)

where λ1 = gκ(p − l + 1, j + m − 1) − g(p − l + 1, j + m − 1), λ2 = g(p − l + 1, j + m) −
gκ(p − l + 1, j + m − 1), and we use the convention that

∏m
i=m+1 xi = 1 for any m ≥ 0.

As D1 is infinitely divisible, φD
1/n(t) = (φD

1 (t))1/n. Now

1

n

[nsk]∑
j=[nsk−1]+1

j∑
m=−∞

gκ(p, m − 1) − g(p, m − 1)

= 1

n

[nsk]∑
j=[nsk−1]+1

j∑
m=−∞

[
κ

( [nsp] − m

n

)
(ρn([nsp] − m) − 2ρn([nsp] − m + 1)

+ ρn([nsp] − m + 2))

]

→
∫ sk

sk−1

∫ y

−∞
κ(sp − x)ρ′′(sp − x) dx dy,

while

1

n

[nsk]∑
j=[nsk−1]+1

[nsp−l+1]−[nsp−l ]∑
m=1

gκ(p − l + 1, j + m − 1) − g(p − l + 1, j + m − 1)

= 1

n

[nsk]∑
j=[nsk−1]+1

[nsp−l+1]−[nsp−l ]∑
m=1

[
κ

( [nsp−l+1] − j − m

n

)
(ρn([nsp−l+1] − j − m)

− 2ρn([nsp−l+1] − j − m + 1) + ρn([nsp−l+1] − j − m + 2))

]

→
∫ sk

sk−1

∫ sp−l+1−sp−l

0
κ(sp−l+1 − x − y)ρ′′(sp−l+1 − x − y) dy dx.
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Similarly,

1

n

[nsk]∑
j=[nsk−1]+1

j∑
m=−∞

g(p, m) − gκ(p, m − 1) →
∫ sk

sk−1

∫ y

−∞
(1 − κ(sp − x))ρ′′(sp − x) dx dy

and

1

n

[nsk]∑
j=[nsk−1]+1

[nsp−l+1]−[nsp−l ]∑
m=1

g(p − l + 1, j + m) − gκ(p − l + 1, j + m − 1)

→
∫ sk

sk−1

∫ sp−l+1−sp−l

0
(1 − κ(sp−l+1 − x − y))ρ′′(sp−l+1 − x − y) dy dx.

Hence, �n
p(a1,1, . . . , ad,p) converges to a function �p(a1,1, . . . , ad,p) given by

�p(a1,1, . . . , ad,p)

=
( p∏

k=1

(
φD

1

( d∑
h=1

p∑
t=k

ah,t

))∫ sk
sk−1

∫ y
−∞ κ(sp−x)ρ′′(sp−x) dx dy)

×
(p−1∏

k=1

(p−k∏
l=1

(
φD

1

( d∑
h=1

p−l∑
t=k

ah,t

))∫ sk
sk−1

∫ sp−l+1−sp−l
0 �1 dy dx))

×
( d∏

h=1

( p∏
k=1

(
φD

1

( p∑
t=k

ah,t

))∫ sk
sk−1

∫ y
−∞(1−κ(sp−x))ρ′′(sp−x) dx dy))

×
( d∏

h=1

(p−1∏
k=1

(p−k∏
l=1

(
φD

1

(p−l∑
t=k

ah,t

))∫ sk
sk−1

∫ sp−l+1−sp−l
0 �2 dy dx)))

, (9)

where �1 = κ(sp−l+1−x−y)ρ′′(sp−l+1−x−y), �2 = (1−κ(sp−l+1−x−y))ρ′′(sp−l+1−x−
y), and which is continuous about the origin so long as φD

1 (t) is. Weak convergence of the finite
dimensional distributions of {V n(t)} to proper random variables follows from Billingsley (1968,
Theorem 7.6). (Noting that for sp ≥ sj > sk ,

∫ sk
−∞

∫ y

−∞ f (sp − x) dx dy = ∫ ∞
0

∫ ∞
sp−sj

f (sj −
sk +x +y) dx dy and

∫ sk
−∞

∫ sp−sj
0 f (sp −x −y) dx dy = ∫ ∞

0

∫ sp−sj
0 f (sj − sk +x +y) dx dy,

we can also use (9) to verify that Vh(t)
d=D1 and that the desired correlation structure holds.)

Hence, the finite dimensional distributions as n → ∞ of {V n(t)} as defined by (3) are
consistent, and so by Kolmogorov’s existence theorem there exists a random field {V (t)}, t ∈ R

with these same finite dimensional distributions (see, for example, Khoshnevisan (2002)).
Kolmogorov’s continuity theorem provides a sufficient condition for {V (t)} to have a

modification with almost surely continuous sample paths, being that there exist constants
C > 0, p > 0 and γ > d such that E|V (t) − V (t + s)|p ≤ C|s|γ (here {Ṽ (t)} is
said to be a modification of {V (t)} if P(Ṽ (t) = V (t)) = 1 for all t ; see, for example,

Khoshnevisan (2002) and Øksendal (2003)). Taking p = 2 and |x| =
√

x2
1 + · · · + x2

d

we have E|V (t) − V (t + s)|2 = E(V1(t) − V1(t + s))2 + · · · + E(Vd(t) − Vd(t + s))2 =
dE(V1(t) − V1(t + s))2 = d var(V1(t) − V1(t + s)).
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Now

V n
1 (t) − V n

1 (t + s) =
[nt]∑

j=−∞

(ρn([nt]−j)−ρn([nt]−j+1)∑
i=1

Ỹ n
i,j,1

)

−
[nt+ns]∑
j=−∞

(ρn([nt+ns]−j)−ρn([nt+ns]−j+1)∑
i=1

Ỹ n
i,j,1

)

=
[nt]∑

j=−∞

( ρn([nt]−j)−ρn([nt]−j+1)∑
i=ρn([nt+ns]−j)−ρn([nt+ns]−j+1)+1

Ỹ n
i,j,1

)

−
[nt+ns]∑

j=[nt]+1

(ρn([nt+ns]−j)−ρn([nt+ns]−j+1)∑
i=1

Ỹ n
i,j,1

)
(10)

and since the Ỹ n
i,j,1 are i.i.d., var(V n

1 (t) − V n
1 (t + s)) is given by the number of Ỹ n

i,j,1 included
in the sums that constitute (10), multiplied by var(Ỹ n

1,1,1) = σ 2/n, where we define σ 2 as the
variance of V n

1 (t)
d=D1. The number of Ỹ n

i,j,1 included in (10) is given by 2(ρn(0) − ρn([nt +
ns]−[nt])) ≤ 2n(1−ρ(s+2/n)+1/n), so that var(V n

1 (t)−V n
1 (t +s)) ≤ 2(1−ρ(s+2/n)+

1/n)σ 2 → 2(1 −ρ(s))σ 2 as n → ∞, and, therefore, E|V (t)−V (t + s)|2 ≤ 2dσ 2(1 −ρ(s)).
As such, if there exists a C > 0 and γ > d such that for any s, 1 − ρ(s) ≤ C|s|γ , or,
equivalently, if ρ(s) ≥ 1 − C|s|γ , then {V (t)} will have a continuous modification.

4. A random field in discrete time

Assumption 3. It holds that ρ(s), s ∈ N is a function symmetric about s = 0 satisfying
ρ(0) = 1, ρ(s) → 0 as s → ∞, and for s > 0 satisfying ρ(s) ≥ 0, ρ(s + 1) − ρ(s) ≤ 0,
ρ(s + 2) − 2ρ(s + 1) + ρ(s) ≥ 0. This is the discrete time analogue of Assumption 1.

Note that Assumption 3 implies ρ(s + 1) − ρ(s) → 0 as s → ∞.

Assumption 4. It holds that κ(s), s ∈ N is such that 0 ≤ κ(s) ≤ 1.

Theorem 2. If ρ(s) is a function satisfying Assumption 3 and κ(s) is a function satisfying
Assumption 4, then there exists a second-order stationary random field {X(t)} = {X1(t), . . . ,

Xd(t)}, t ∈ N, d ∈ N
+ such that corr(Xh(t), Xh(t +s)) = ρ(s) and corr(Xg(t), Xh(t +s)) =∑∞

j=0
∑∞

k=0 κ(s + j + k)(ρ(s + j + k) − 2ρ(s + j + k + 1) + ρ(s + j + k + 2)) for s ∈ N
+,

g, h = 1, . . . , d, g �= h. The marginal distribution of Xh(t) can be taken as any infinitely
divisible distribution with finite variance.

Corollary 2. If κ(s) = K , for K ∈ [0, 1] a constant, then corr(Xg(t), Xh(t + s)) reduces to
Kρ(s).

Proof. Redefining fn(x) as [nρ(x)] − [nρ(x + 1)] and

f κ
n (x + 1) = fn(x + 1) + [κ(x)([nρ(x)] − 2[nρ(x + 1)] + [nρ(x + 2)])],

and defining

Xn
h(t) =

t∑
j=−∞

( ∞∑
k=t−j

( f κ
n (k+1)∑

i=fn(k+1)+1

Yn
i,j,0 +

fn(k)∑
i=f κ

n (k+1)+1

Yn
i,j,h

))
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=
t∑

j=−∞

( ∞∑
k=t−j

( [nρ(k)]−[nρ(k+1)]∑
i=[nρ(k+1)]−[nρ(k+2)]+1

Ỹ n
i,j,h

))

=
t∑

j=−∞

([nρ(t−j)]−[nρ(t−j+1)]∑
i=1

Ỹ n
i,j,h

)

d= D1

we can show, via an almost identical argument to that used in Lemmas 1 and 2, that corr(Xn
h(t),

Xn
h(t + s)) → ρ(s) and corr(Xn

g(t), Xn
h(t + s)) → ∑∞

j=0
∑∞

k=0κ(s + j + k)(ρ(s + j + k) −
2ρ(s+j+k+1)+ρ(s+j+k+2)) as n → ∞. We can further show that

∑d
h=1

∑p
t=1 ah,tX

n
h(st )

is given by (7) where we replace [nsk] wherever it appears by sk , replace ρn(x) by [nρ(x)],
replace κ(x/n) by κ(x), redefine g(t, j) as g(t, j) = [nρ(st −j)]−[nρ(st −j+1)], and redefine
gκ(t, m−1) as gκ(t, m−1) = g(t, m−1)+[κ(st −m)(g(t, m)−g(t, m−1))], where as before∑gκ (t,m−1)

i=g(t,m−1)+1 is the sum of the Ỹ n
i,j,h between g(t, m − 1) and g(t, m) which are drawn from

the Yn
i,j,0, of which there are [κ(st − m)(g(t, m) − g(t, m − 1))] in total, and

∑g(t,m)

i=gκ (t,m−1)+1

is the sum of the Ỹ n
i,j,h between g(t, m − 1) and g(t, m) which are drawn from the Yn

i,j,h, of
which there are (g(t, m) − g(t, m − 1)) − [κ(st − m)(g(t, m) − g(t, m − 1))] in total. Using
these same redefinitions, the characteristic function of (Xn(s1), . . . , X

n(sp)) is given by (8).
Equation (8) then converges to an expression similar to (9) as n → ∞, where we now replace∫ sk
sk−1

∫ y

−∞κ(sp −x)ρ′′(sp −x) dx dy with
∑sk

j=sk−1+1

∑j
m=−∞κ(sp −m)(ρ(sp −m)−2ρ(sp −

m+1)+ρ(sp −m+2)), replace
∫ sk
sk−1

∫ sp−l+1−sp−l

0 κ(sp−l+1 −x−y)ρ′′(sp−l+1 −x−y) dy dx

with
∑sk

j=sk−1+1

∑sp−l+1−sp−l

m=1 κ(sp−l+1−j −m)(ρ(sp−l+1−j −m)−2ρ(sp−l+1−j −m+1)+
ρ(sp−l+1 − j − m + 2)), and similarly for the expressions involving 1 − κ . Weak convergence
of the finite dimensional distributions of {Xn(t)} follows from Billingsley (1968, Theorem 7.6;
see also the second paragraph on p. 30), which in the discrete-time case is enough to prove that
our process {Xn(t)} converges weakly to the limit of process {X(t)}.

5. Possible extensions

To keep the exposition as simple as possible we imposed a number of constraints on our
construction which can be relaxed, as detailed below.

5.1. Extending the domain

We constructed {V (t)} as a random field where the time dimension was defined on R and
the spatial dimension was defined on {1, 2, . . . d}. By considering

∑d
h=1

∑p
t=1ah,tV

n
ηh

(st ) for
d, p ∈ N

+ and ηh ∈ N or ηh ∈ R in Lemma 3, instead of
∑d

h=1
∑p

t=1 ah,tV
n
h (st ), we can

use the argument put forward in Lemma 3 to show that the finite dimensional distributions
of {V n

η1
(t), . . . , V n

ηd
(t)} are well defined for any ηh ∈ N or ηh ∈ R, and, therefore, a limit

random field with spatial dimension defined on N or R, instead of just on {1, 2, . . . , d},
exists. The characteristic function of the finite dimensional distributions of the new process,
E exp(i

∑d
h=1

∑p
t=1 ah,tV

n
ηh

(st )), is unchanged from (9).

5.2. Altering the marginal distribution

In our construction, each {Vh(t)}, h = 1, . . . , d, has the same marginal distribution. This is
not necessary: the marginal distribution of {Vh(t)} for each h is determined by the number of
Ỹ n

i,j,h that are summed in (2) and (3), and this can be varied. For example, by summing in (3)
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from i = 1 to 0.7(ρn([nt] − j) − ρn([nt] − j + 1)) for each j for h = 1, instead of from i = 1
to ρn([nt]− j)−ρn([nt]− j + 1), {V1(t)} will have marginal distribution D0.7, while {Vh(t)},
h �= 1 will have marginal distribution D1. Note that we still require that all {Vh(t)} belong to
the same class of infinitely divisible distribution.

5.3. Allowing ρ(s) → δ > 0 as s → ∞
In our construction we assumed that ρ(s) → 0 as s → ∞, which ensures that a total of n

of the Ỹ n
i,j,h are summed in (2) and (3). Let ρ∗(s) satisfy all the requirements of Assumption 1

except for ρ∗(s) → 0 as s → ∞, and instead let ρ∗(s) → δ > 0 as s → ∞. We can construct a
random field {V ∗(t)} which has marginal distribution D1 for any infinitely divisible distribution
D1 with finite variance, an autocorrelation function corr(V ∗

h (t), V ∗
h (t + s)) = ρ∗(s), and cross-

correlation function corr(V ∗
g (t), V ∗

h (t + s)) = ∫ ∞
0

∫ ∞
0 κ(s + u + v)ρ∗′′(s + u + v) dv du

as follows. Define ρ(s) = (ρ∗(s) − δ)/(1 − δ) so that ρ(s) satisfies all requirements of
Assumption 1, including that for ρ(s) → 0 as s → ∞, and construct {V (t)} as per Section 3
except taking Yn

i,j,h

d=D(1−δ)/n in (2) and (3) instead of Yn
i,j,h

d= D1/n, so that Vh(t)
d=D1−δ for

each h and t . We now define a set of random variables {V δ} = {V δ
1 , . . . , V δ

d } such that each
V δ

h

d=Dδ and is independent of {V (t)}, and define {V ∗(t)} = {V (t)} + {V δ}. Then

corr(V ∗
h (t), V ∗

h (t + s)) = corr(Vh(t) + V δ
h , Vh(t + s) + V δ

h )

= (1 − δ) corr(Vh(t), Vh(t + s)) + δ corr(V δ
h , V δ

h )

= (1 − δ)ρ(s) + δ

= ρ∗(s) − δ + δ

= ρ∗(s),

while
corr(V ∗

g (t), V ∗
h (t + s))

= corr(Vg(t) + V δ
g , Vh(t + s) + V δ

h )

= (1 − δ) corr(Vg(t), Vh(t + s)) + δ corr(V δ
g , V δ

h )

= (1 − δ)

∫ ∞

0

∫ ∞

0
κ(s + u + v)ρ′′(s + u + v) dv du + δ corr(V δ

g , V δ
h )

=
∫ ∞

0

∫ ∞

0
κ(s + u + v)ρ∗′′

(s + u + v) dv du + δ corr(V δ
g , V δ

h )

since ρ′′(s) = ρ∗′′(s)/(1 − δ). Constructing {V δ} such that each V δ
h is i.i.d. yields

corr(V ∗
g (t), V ∗

h (t + s)) =
∫ ∞

0

∫ ∞

0
κ(s + u + v)ρ∗′′

(s + u + v) dv du,

but {V δ} may be constructed so that corr(V δ
g , V δ

h ) takes any value between 0 and 1.

5.4. Allowing the cross-correlation function to vary

The cross-correlation between {Vg(t)} and {Vh(t)} is determined by the degree of overlap
between the Ỹ n

i,j,g and Ỹ n
i,j,h in (3). For simplicity, in our construction we choose to have all

overlaps occur via the Yn
i,j,0, and to have the same degree of overlap, and, thus, the same cross-

correlation function, between all g and h. This is not necessary. For example, create additional
random variables Yn

i,j,h

d= D1/n for h = −1, −2, . . . , where as before i = 1, . . . , n and
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j = 0, ±1, ±2, . . . , again with all the Yn
i,j,h mutually independent. Now for each j , for

h = 1, . . . , d and for c(a) any function satisfying Assumption 3, define Ỹ n
i,j,h such that for

k = 0, 1, 2 . . . and for a = 0, 1, 2 . . . , Ỹ n
i,j,h = Yn

i,j,−(h+a) for i = eκ
n(k+1, a)+1, . . . , eκ

n(k+
1, a + 1), and Ỹ n

i,j,h = Yn
i,j,h for i = f κ

n (k + 1) + 1, . . . , fn(k), where for a given j and h we
adopt the convention that as k and a increase, if Ỹ n

i,j,h for some i has already been assigned a
value then we do not reassign it a new value, and where eκ

n(x + 1, a) = ρn(x + 1) − ρn(x +
2) + [(1 − c(a))κ(x/n)(ρn(x) − 2ρn(x + 1) + ρn(x + 2))], fn(x) = ρn(x) − ρn(x + 1)

and f κ
n (x + 1) = fn(x + 1) + [κ(x/n)(ρn(x) − 2ρn(x + 1) + ρn(x + 2))]. That is, the

Ỹ n
i,j,h are constructed such that for each j and h, for i between ρn(k + 1) − ρn(k + 2) + 1 and

ρn(k)−ρn(k+1) a fraction (c(a)−c(a+1))κ(k/n) of the Ỹ n
i,j,h are drawn from the Yn

i,j,−(h+a)

for a = 0, 1, 2, . . . , and the remaining fraction 1 − κ(k/n) are drawn from the Yn
i,j,h.

In this case, again adopting the convention that
∑m

i=m+1 xi = 0 for any m ≥ 0, we have

V n
h (t) =

[nt]∑
j=−∞

( ∞∑
k=[nt]−j

( ∞∑
a=0

( eκ
n(k+1,a+1)∑

i=eκ
n(k+1,a)+1

Yn
i,j,−(h+a)

)
+

fn(k)∑
i=f κ

n (k+1)+1

Yn
i,j,h

))

=
[nt]∑

j=−∞

( ∞∑
k=[nt]−j

( ρn(k)−ρn(k+1)∑
i=ρn(k+1)−ρn(k+2)+1

Ỹ n
i,j,h

))

=
[nt]∑

j=−∞

(ρn([nt]−j)−ρn([nt]−j+1)∑
i=1

Ỹ n
i,j,h

)
.

The construction above ensures that, for g < h, the number of Yn
i,j,−a , a = 1, 2, . . . ,

common to both the Ỹ n
i,j,g and the Ỹ n

i,j,h for i between ρn(k + 1) − ρn(k + 2) + 1 and ρn(k) −
ρn(k + 1) is given by

∞∑
a=h

min

(
(c(a − h) − c(a − h + 1))κ

(
k

n

)
(ρn(k) − 2ρn(k + 1) + ρn(k + 2)),

(c(a − g) − c(a − g + 1))κ

(
k

n

)
(ρn(k) − 2ρn(k + 1) + ρn(k + 2))

)

=
∞∑

a=h

(c(a − g) − c(a − g + 1))κ

(
k

n

)
(ρn(k) − 2ρn(k + 1) + ρn(k + 2))

= c(h − g)κ

(
k

n

)
(ρn(k) − 2ρn(k + 1) + ρn(k + 2)).

Using an argument similar to that used in Lemma 2, we can show that, for any g �= h,

corr(V n
g (t), V n

h (t + s)) → c(|h−g|)
∫ ∞

0

∫ ∞

0
κ(s +u+ v)ρ′′(s +u+ v) dv du as n → ∞.

That is, the cross-correlation function is now dampened by c(|h − g|) and so decreases as g

and h move further apart. The characteristic function of this new process is given by

�p(a1,1, . . . , ad,p)

=
( p∏

k=1

(
φD

1

( d∑
h=1

p∑
t=k

ah,t

))c(d−1)
∫ sk
sk−1

∫ y
−∞ κ(sp−x)ρ′′(sp−x) dx dy)
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×
( d∏

j=2

( p∏
k=1

(
φD

1

( d∑
h=j

p∑
t=k

ah,t

))−c′(d−j)
∫ sk
sk−1

∫ y
−∞ κ(sp−x)ρ′′(sp−x) dx dy))

×
(d−1∏

j=2

( j∏
i=2

( p∏
k=1

(
φD

1

( j∑
h=i

p∑
t=k

ah,t

))c′′(j−i)
∫ sk
sk−1

∫ y
−∞ κ(sp−x)ρ′′(sp−x) dx dy)))

×
(d−1∏

j=1

( p∏
k=1

(
φD

1

( j∑
h=1

p∑
t=k

ah,t

))−c′(j−1)
∫ sk
sk−1

∫ y
−∞ κ(sp−x)ρ′′(sp−x) dx dy))

×
(p−1∏

k=1

(p−k∏
l=1

(
φD

1

( d∑
h=1

p−l∑
t=k

ah,t

))c(d−1)
∫ sk
sk−1

∫ sp−l+1−sp−l
0 �1 dy dx))

×
( d∏

j=2

(p−1∏
k=1

(p−k∏
l=1

(
φD

1

( d∑
h=j

p−l∑
t=k

ah,t

))−c′(d−j)
∫ sk
sk−1

∫ sp−l+1−sp−l
0 �1 dy dx)))

×
(d−1∏

j=2

( j∏
i=2

(p−1∏
k=1

(p−k∏
l=1

(
φD

1

( j∑
h=i

p−l∑
t=k

ah,t

))c′′(j−i)
∫ sk
sk−1

∫ sp−l+1−sp−l
0 �1 dy dx))))

×
(d−1∏

j=1

(p−1∏
k=1

(p−k∏
l=1

(
φD

1

( j∑
h=1

p−l∑
t=k

ah,t

))−c′(j−1)
∫ sk
sk−1

∫ sp−l+1−sp−l
0 �1 dy dx)))

×
( d∏

h=1

( p∏
k=1

(
φD

1

( p∑
t=k

ah,t

))∫ sk
sk−1

∫ y
−∞(1−κ(sp−x))ρ′′(sp−x) dx dy))

×
( d∏

h=1

(p−1∏
k=1

(p−k∏
l=1

(
φD

1

(p−l∑
t=k

ah,t

))∫ sk
sk−1

∫ sp−l+1−sp−l
0 �2 dy dx)))

, (11)

where, in a slight abuse of notation, we define c′(s) = c(s + 1) − c(s), and c′′(s) = c(s + 2) −
2c(s + 1) + c(s).

To construct a random field with a varying cross-correlation where the spatial dimension is
defined on R instead of {1, 2, . . . , d}, one can alter the argument used above to consider the
spatial dimension in increments of 1/n, instead of unit increments, and then let n → ∞. This
is essentially how Section 3 and Section 4 differ, with time implicitly considered in increments
of 1/n in Section 3 as opposed to unit increments in Section 4. In this case the characteristic
function of E exp(i

∑d
h=1

∑p
t=1 ah,tV

n
ηh

(st )) is as in (11), but replacing c(d−1) with c(ηd −η1),
−c′(d − j) with c(ηd − ηj ) − c(ηd − ηj−1), c′′(j − i) with c(ηj − ηi) − c(ηj+1 − ηi) −
c(ηj − ηi−1) + c(ηj+1 − ηi−1), and −c′(j − 1) with c(ηj − η1) − c(ηj+1 − η1). Alternative
cross-correlation structures are possible, with the only limit being the degree of overlap that
can be constructed between the Ỹ n

i,j,h for varying h.

The constraints outlined above can be relaxed either individually or jointly, and although we
have couched this section in terms of the continuous-time process {V (t)}, similar points hold
in the discrete time case for {X(t)} also.
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6. Conclusion

We have constructed stationary random fields in discrete and continuous time which can have
any desired infinitely divisible marginal distribution with finite variance, any autocorrelation
function that is positive and convex, and a wide range of cross-correlation functions. This
supplements earlier results on Gaussian and related random fields, and makes available non-
Gaussian random fields with rich correlation structures which can be used directly in modeling
and estimation.
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