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ETRIZABILITY OF SUBGROUPS OF FREE

TOPOLOGICAL GROUPS

Sipney A, Morris anD H.B. THompson

It is shown that any sequential subgroup of a free topological
group is either sequential of order w, or discrete. Hence
any metrizable subg;pup of a free topological group is discrete.

1. Introduction

It is known that a free topological group is metrizable if and only
if it is discrete. Ordman and Smith-Thomas [?] generalized this to show
that any non~discrete free topological group which is sequential, is

sequential of order w We extend this much further by showing that

1
any sequential subgroup of a free (free abelian) topological group is

either discrete or sequential of order Wy Thus any metrizable (or even

Frechet) subgroup of a free (free abelian) topological group is discrete.
We do this by showing that if a subgroup G of a free (free abelian)
topological group has a non-trivial sequence Yo yz,...converging to e
and (G contains the free (free abelian) topological group on

o

({Ut 1{yi}}U{e}) and hence also contains the Arhangel'skii-Franklin space

Sm [71,9]1 which is sequential of order w This observation also answers

IR
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Question 3.10 of [9] in the affirmative.

2. Preliminaries

DEFINITIONS. Let X be a topological space with distinguished
point e, and F(X) a topolo§ical group which contains X as a
subspace and has e as its identity element. Then F(X) is said to be
the Graev free (free abelian) topological group on X if for any
continuous map ¢ of X into any topological (abelian topological) group
H such that ¢(e) is the identity element of H, there exists a unique
continuous homomorphism ¢ : F(X) »H with &[X = ¢ .

For a recent survey of free topological groups see [§].

DEFINITION. we say Tyse.as% —are the essential elements of the
word w € F(X) if each x, € X and w € gp{xl,...,zn} but

w ¢ gp{xil,...,xgk} for any proper subset {xil,...,xik} of {xl,...,xn}.

The following definitions and examples are based on Franklin [3,4].

See also Engelking [Z].

DEFINITIONS. A subset U of a topological space X is said to be
sequentially open if each sequence converging to a point in U is
eventually in U. The space X is said to be sequential if each

sequentially open subset of X is open.

Remarks. A closed subspace of a sequential space is sequential.
A subspace of a sequential space need not be sequential (See Example 1.2

of [3].)

DEFINITIONS. For each subset A of a sequential space X, let
s{A) denote the set of all limits of sequences of points of A4, The
space X is said to be sequential of order 1 if g(4) is the closure
of A for every A.

The higher sequential orders are defined by induction. Let

so(A) = A, and for each ordinal a =8 + I, let sa(A) = S(SB(A))' If
a is a limit ordinal, let sa(A) = IJ{SB(A) : B < a}. The sequential
order of X is defined to be the least ordinal o such that sa(A) is

the closure of A for every subset 4 of X.
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Remarks. The sequential order always exists and does not exceed

the first uncountable ordinal Wy Sequential spaces of order 1 are

also known as Frechet spaces. Clearly any metrizable space is a Frechet
space however there exist sequential spaces which are not Frechet and
Frechet spaces which are not metrizable. Indeed, for each ordinal

afw there exists a sequential space of that order. The key example

1
is due to Arhangel'skii and Franklin [1].

By S1 we mean a space consisting of a single convergent sequence

sl,sz,..., together with its limit point s taken as the basepoint.

0
The space S2 is obtained from 5, by attaching to each isolated
point sn of S1 a sequence sn,l’sn,z""’ converging to Sn' Thus

52 can be viewed as a quotient of a disjoint union of convergent

sequences; we give it the quotient topology. Inductively, we obtain the

space S”*l from Sn by attaching a convergent sequence to each
isolated point of Sn and giving the resultant set the quotient topology.
Let Sw be the union of the sets Sl c SZ c 53 € ..., with the
weak union topology {(a subset of Sw is closed if and only if its
intersection with each Sn is closed in the topology of Sn)'
It is shown in [71] that each Sn is sequential of order »n and Sw
is sequential of order w -
DEFINITION. Let F(X) be the Graev free (free abelian) topological
group on a Tychonoff space X and Y a subset of F(X). Then Y is

said to be regularly situated with respect to X if for each positive
integer n there exists an integer m such that gp(Y)r1Fh(X7g gpm(Y),

where gp(Y) denotes the subgroup generated by Y, Fn(X) denotes the

set of all words in F(X) of length < »n with respect to X, and gpm(Y)

denotes the set of all words in gp(Y) of length < m with respect to Y,
THEOREM A. [Graev,51 Let X be a compact Hausdorff space and Y

a compact subspace 'of' P(X) containing e. If Y\le} s a free algebraic
basis for gp(Y) and Y <s regularly situated with respect to X,
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then gp(Y) = F(X).
In the study of free topological groups the class of kw-spaces

plays a central role.

DEFINITIONS. A Hausdorff space X is said to be a kw-space [7]
if it has a countable family of compact subspaces Xl < X2 < ..., Such
that X = U;;ixﬁ and a subset A of X is closed if and only if
A nX is closed for all n. We call X=uU X, a kw—decomposition.

Note that if a subspace 4 of X is compact, then 4 ¢ Xn for

some n.

THEOREM B. [5,7] If X <s a compact Hausdorff space then F(X)
is a km-space with kw—decomposition F(x) = an(X).

We shall use the following result.

LEMMA. [6, p. 1271 For any w € F(x)\{e} there is an 1 ¢ F(X)
and ¢ € F(X)\{e} such that w = lel”} where ¢ has reduced form

¢=z...z with z, € X\{e} for ¢ =1,...,n for some »n > 1, and

x, # x;Ll. Further, for any t 2z 1, wt = thl_l and ct has reduced

m PR oS SR SRS SRR
fo xl n 1 n 1 n

- t
Moreover, either 1 =e or Zetl 1 is the reduced form of w,

3. Results

Our first result generalizes Theorem A above and also Lemma 3.6

of [91.

THEOREM 1. Let F(X) be the Graev free topological group on a
Tychonoff space X. Let Y »{e} be a compact subspace of F(X) such
that Y \ {e} <s an algebraic free basis for the growp it gemerates. If
Y is regularly situated with respect to X, them gp(Y) is the Graev
free topological group on Y.

Proof. Let F(8X) be the Graev free topological group on the

Stone-Cech compactification of X and ¢ the continuous injective

https://doi.org/10.1017/50004972700002926 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700002926

Subgroups of Topological Groups 107

homomorphism of F(X) into F(RX) induced by the canonical embedding
of X in BX.

Clearly o(Y) is a compact subspace of F(BX) such that ¢(¥)\{e}
is a free algebraic basis for gp(®Y)) and @(Y) is regqularly
situated with respect to BX. Therefore by Theorem A4, gp(¢(Y)) =
F(2(Y)) = F(Y).

As ¢ is a continuous injective homomorphism of gp(Y¥) € F(X) onto
gp(e(¥)) = F(Y) the topology of gp(Y) is finer than the free topology
of F(Y). But this implies gp(Y) = F(Y), as required.

THEOREM 2. Let X be any Tychonoff space and F(X) the Graev
free topological group on X. Let Yyseoealpyaeees be a non-trivial

sequence in F(X) converging to e. If Y = ([J;=l{yn}U{e}) then gp(Y)
has a closed subgroup topologically isomorphic to F(Y).

Proof. By Theorem 1 it suffices to find a subsequence 32 .zn...,

120
such that the compact space 2 = (L]:_l{zi}L]{e}) is regularly situated

with respect to X and Z \{e} is a free algebraic basis for gp(Z).
We choose the subsequence as follows. Let BX, F(BX), and & be
as in the proof of the previous result. As &(Y) 1is a compact subspace

of F(BX) and F(BX) is a kw—space, o(Y) ¢ EN(BX) for some N, by
Theorem B and the note that precedes it. Hence Y ¢ Fh(X) for this M.
Therefore there is a subsequence of distinct words zl,...,zn,..., each

of which lies in FM(X) \Ehkl(X) for some fixed M < N. By the Lemma in

§2 we can find reduced words Zi and e, with . # e such that

zz = Ziczlgl , for t=1,2,..., and either this is the reduced form of
t t t . .
zi or Zi = e and zi = ci in reduced form. Since the Zi have lengths

< M we can choose a subsequence of 2 ..,zn,..., for which the Zi

1’
have the same length. Relabelling, we again denote the subsequence by

ByaeeesB se e Either there are infinitely many distinct Zi and

relabelling we assume the sequence BlseresB aenes satisfies Zi # Zj’
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Zi # Zj-l and Zi #e for all ©Z and J # 1, or we can choose a
subsequence of the zi such that, with relabelling, Zi =1, a fixed

word, for all <.

If Zi =1 for all <, the ¢, are all distinct and have fixed
length and we choose a further subsequence of zl,...,zn,..., as follows.
Let al,...,aq be the essential elements of 1. We now choose a
subsequence of the ci"s.

Let Xl = {x € X\{al,...,aq} : & 1is an essential element of 25
for some 7 > 1}.Since each 2, € Fb(X) and the Zi are éistinct, Xl

is countably infinite. Define G(Zi)’ 1 =1,2,..., inductively as

follows. Let G(zl) = {x 5 Xl : & 1is an essential element of zl.}

IA

Having defined G(zi), for 1 7 <k, let

G(zk+1) = {x € Xl\U §=1 G(Zi) :x is an essential element of zk+l} .

n = A ] Iw . = , R
Thus G(zi) G(zj) ¢ for all i # 4, Lz:lc(zz) X, and G(zi) has
at most N elements for each ©. So G(Zi) # @ for an infinite number
of 2. Deleting the 2. for which G(Zi) = ¢ and relabelling the

sequence thus obtained, we can assume that G(zi) # @ for all <. Now

given any subsequence 7 o0f 2.,...,8 5¢.., and 3. ,...,2, there
1 7n 7 7z
1 N+1
exists § € {I,...,N + 1} and zx € G(zi ) and a subsequence Tl of T
J

such that & 1is not an essential element of any term zZ of Tl' This

follows since 3z, € Fb(X) for all terms =z

of T and the G(z. )
k 1.

J
are non-empty and pairwise disjoint for J € {I,...,N + 1}. Denote the

k

sequence zl,...,zn,... by Sl and let zil be the first term of Sl

for which there exists bl € G(z, ) and a subsequence S, of 5, such
v
that bl is not an essential element of any term of 52. Let zi be
2

the first terxrm of 32 for which there exists b2 € G(Zi Jand a
2

https://doi.org/10.1017/50004972700002926 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700002926

Subgroups of Topological Groups 109

subsequence S3 of S2 such that b2 is not an essential element of

any term of S3. Continue this process inductively. Relabelling zi
J

as 2. and ci as ¢., we obtain a sequence zl,...,zn,...,
)
converging to e. Further, as bi ' {al,...,aq}, bi is an essential

element of e but bi is not an essential element of cj for J # <.

-1 1 . .
So z.=le.l and ¢. =d. f.g. where b. is not an essential element
7 7 7 T 71%¢ 7

of di or gi,and f% begins and ends with elements from the set
{bi,b;l} . Moreover this is the reduced form of ci with respect to X

provided d;l is deleted if di =e and g, is deleted if g, =e.

We now show that in both cases (Zi =1 for all 7 and
Zj # Zi # Z}l for all 7 # J) the set Z is regularly situated with
respect to X and Z\ {e} is a free algebraic basis for g¢gp(Z). We do
this by verifying the following: if w, € gp(Z) has reduced form

2. ...2. with respect to Z , where Ej =%+ 1, 15 J<mn, then the

length of wn with respect to X 1is at least n. We proceed by

induction.

If all the Zi are distinct the induction hypothesis is that, with

€

respect to X, w_ has reduced form L. u c.nlil where u , n 2 2,
7 pnt T 7
n n
€ -1
contains the words ¢, ,...,C. and u., = e. This is clear for n = 1.
1, in-1 1
so assume it is true for n = k.
€ €, €
Let w € gp(Z) have reduced form z.l...,zikz.k+l with respect
k+1 11 1
k "k+1
€ € €
to Z . Thus w =wkz.k+1=l. a.kl—.ll. KHml e
k+1 1 7 ik 1,1 i 7
k+1 1 k “k+1 "k+1l “k+l
-1 €x
1.1, =9 and u = u,¢. v. Since I. and 1 h
2 b k1 . V. . . ave the same
k “re1 kg i “re1
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-1 .
length, wk+l has reduced form Zi uk+lci Zi , with respect to X.
k+1 “k+1
€ € € €
. k k+1
(Note that if zi = zi then v = e and cik = cik+l SO no
k k+1 k k+1
“x “k+1
cancellation can occur between o¢. and c. .) This completes the
7 7
k k+1
proof for the case of distinct Zi'
Assume now that Zi =1 #e for all <. Let hi =9g; if
n n
En =1 and hi = di if €, = -1. The induction hypothesis is that
n n
. En -1
w, has representation Zunf% hi A where u , 7 2 2, contains the
n n
€ €
1 n-1 -1
words f.7 ,...s f. and u, =t where ¢t = d. if €. =1 and
11 7 1 A 1
n-1 1
t = 9; if € = -I1. The induction hypothesis further asserts that this
1
representation is reduced, with respect to X, provided the term hi
n
is deleted if hi = e and the term uy is deleted if u, = e. Let
n
. € k_k+1 .
w € gp(Z) have reduced representation 3. ...3. 3. with respect
k+1 7 1,71
1 k “k+1
k1
to Z. Thus w =w,3. . We consider the case € = 1; the case
k+1 kK7 k+1
k+1
€k -1, -1 -1
€ = -1 is similar. Thus w =lu,f."h. T 7ld. . g. L.
k+1 k+1 kfik T3 Toel Crel kel
Iet h. dfl = v in reduced form with respect to X and

Yk Vel

€. €
& %
Uep1 = “kf%k”' £ fék

G.k
c, and f,, fik of;

possibly v = e,

€
. k
by noting that f;k

k+1

and the result follows.

[
ends in b.K
Yk

€k
then c¢. = c. .
7

i Then by choice of
k+1 k k+1

= £,

is in reduced form with respect to X, except

Otherwise the result follows

f.
Yl

[
begins with bik+l , where
k+1
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8 e{-1,1} and b. #b. .
%‘ k+1 T Tt 1

If Zi=e for all 7 we repeat the previous argument deleting the

I's and I l's. This completes the proof. O

The following Theorem generalizes Theorem 3.9 of [9].

THEOREM 3. Let F(X) be the Graev free topological growp on a
Tychonoff space and G a subgroup of F(X). If G <is a sequential

space then it is sequential of order w, or is discrete.

Proof. As G is sequential its sequential order is £ w

1
Either G 1is discrete or G contains a non-trivial sequence

yl,...yn..., convergent to a point y € G. Multiplying the yés by
-1 . -1

Yy and relabelling Y yi as yi we can assume the sequence

Yps+++sY,se -5 converges to e. By Theorem 2, G 2 F(Z) which is a

kw-group and hence closed. Thus by Theorem 3.7 of [9], G contains Sw

a space of sequential order w Hence G 1is sequential of order wye

10
COROLLARY 1. Let F(X) be the Graev free topological group on a
Tychonoff space X and G a metrizable or Frechet subgroup of F(X).

Then G <is discrete.
Remark. The analogue of Theorem 2 for Graev free abelian
topological groups is also true.

Proof. oOnce again there exists an integer N such that

y; € FN(X) , for all . As in the proof of Theorem 2, since each Yy;

has only a finite number of essential elements it is possible to choose a

subsequence zl,...,zn..., such that bi is an essential element of zi
but not of any zj, J # 1. It is obvious in the abelian case that if
Z = {zl,...,zn,...} v {e} , any word w in gp(Z) has reduced length

with respect to X greater than or equal to its reduced length with
respect to Z\ {e}. Hence gp(Z) is the free abelian topological group

on Z, as required. O
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As a consequence of this we see that the analogues for Graev free
abelian topological groups of Theorem 3 and Corollary 1 are also true.
(Note that the proof of the abelian analogue of Theorem 3.7 of [9] is

similar to the non-abelian case.)

Finally we note that it is easily verified that the analogues for
Markov free topological groups [8] of Theorems 2 and 3 and Corollary 1

are also valid.
References

£11 A.V. Arhangel'skil and S.P. Franklin, "Ordinal invariants for
topological spaces", Michigan Math. J. 15 (1968), 313-320.

[2] Ryszard Engelking, General topology, (Mathematical Monographs, 60
P.W.N. - Polish Scientific Publishers, Warsaw 1977).

[3] S.P. Franklin, "Spaces in which sequences suffice", Fund. Math.
57 (1965), 107-115.

4] S.P. Franklin, "Spaces in which 'sequences suffice II", Fund
Math. 61 (1967), 51-56.

[5] M.I..Graev, "Free topological groups", Izv. Akad. Nauk SSSR Ser.
Mat. 12 (1948), 279-324 (Russian), English transl. Amer.
Math. Soc. Translation no. 35,61 pp. (1951), Reprint, Amer.
Math. Soc. Transl. (1) 8 (1962), 305-364.

(6] A.G. Kurosh, Theory of Groups, Vol. 1 (Chelsea Publishing Company,
New York, 1960),

L[7] John Mack, Sidney A. Morris and Edward T. Ordman, "“Free topological
groups and the projective dimension of a locally compact
abelian group", Proc. Admer. Math. Soe. 40 (1973), 303-308.

[&] Sidney A. Morris, "Free abelian topological groups", Categorical
Topology Proc. Conference Toledo, Ohio, (1983) 375-391
(Heldermann Verlag, Berlin, 1984).

[9] Edward T. Ordman and Barbara V. Smith-Thomas, "Sequential
conditions and free topological groups", Proc. Amer. Math. Soc.
79 (1980), 319-326.

Department of Mathematics, Department of Mathematics,
La Trobe University, University of Queensland,
Bundoora, Vic. 3083 St. Lucia, Qld. 4067,
Australia. Australia.

https://doi.org/10.1017/50004972700002926 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700002926

