METRIZABILITY OF SUBGROLiPS OF FREE TOPOLOGICAL GROUPS

Sidney A. Morris and H.B. Thompson

Abstract

It is shown that any sequential subgroup of a free topological group is either sequential of order ω_{1} or discrete. Hence any metrizable subgrpup of a free topological group is discrete.

1. Introduction

It is known that a free topological group is metrizable if and only if it is discrete. Ordman and Smith-Thomas [9] generalized this to show that any non-discrete free topological group which is sequential, is sequential of order ω_{1}. We extend this much further by showing that any sequential subgroup of a free (free abelian) topological group is either discrete or sequential of order ω_{1}. Thus any metrizable (or even Frechet) subgroup of a free (free abelian) topological group is discrete. We do this by showing that if a subgroup G of a free (free abelian) topological group has a non-trivial sequence y_{1}, y_{2}, \ldots converging to e and G contains the free (free abelian) topological group on $\left(\left\{U_{i=1}^{\infty}\left\{y_{i}\right\}\right\} \cup\{e\}\right)$ and hence also contains the Arhangel'ski${ }_{i}-F r a n k l i n$ space $S_{\omega}[1,9]$ which is sequential of order ω_{1}. This observation also answers

Received 2 May 1985,

[^0]Question 3.10 of [9] in the affirmative.

2. Preliminaries

DEFINITIONS. Let X be a topological space with distinguished point e, and $F(X)$ a topological group which contains X as a subspace and has e as its identity element. Then $F(X)$ is said to be the Graev free (free abelion) topological group on X if for any continuous map ϕ of X into any topological (abelian topological) group H such that $\phi(e)$ is the identity element of H, there exists a unique continuous homomorphism $\Phi: F(X) \rightarrow H$ with $\Phi \mid X=\phi$.

For a recent survey of free topological groups see [8].

DEFINITION. We say x_{1}, \ldots, x_{n} are the essential elements of the word $w \in F(X)$ if each $x_{i} \in X$ and $w \in g p\left\{x_{1}, \ldots, x_{n}\right\}$ but $w \notin g P\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$ for any propex subset $\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$ of $\left\{x_{1}, \ldots, x_{n}\right\}$.

The following definitions and examples are based on Franklin [3,4]. See also Engelking [2].

DEFINITIONS. A subset U of a topological space X is said to be sequentially open if each sequence converging to a point in U is eventually in U. The space X is said to be sequential if each sequentially open subset of X is open.

Remarks. A closed subspace of a sequential space is sequential. A subspace of a sequential space need not be sequential (See Example 1. 2 of [3].)

DEFINITIONS. For each subset A of a sequential space X, let $s(A)$ denote the set of all limits of sequences of points of A. The space X is said to be sequential of order 1 if $s(A)$ is the closure of A for every A.

The higher sequential orders are defined by induction. Let
$s_{0}(A)=A$, and for each ordinal $\alpha=\beta+1$, let $s_{\alpha}(A)=s\left(s_{\beta}(A)\right.$). If α is a limit ordinal, let $s_{\alpha}(A)=\bigcup\left\{s_{\beta}(A): B<\alpha\right\}$. The sequential order of X is defined to be the least ordinal α such that $s_{\alpha}(A)$ is the closure of A for every subset A of X.

Remarks. The sequential order always exists and does not exceed the first uncountable ordinal ω_{1}. Sequential spaces of order 1 are also known as Frechet spaces. Clearly any metrizable space is a Frechet space however there exist sequential spaces which are not Frechet and Frechet spaces which are not metrizable. Indeed, for each ordinal $\alpha \leq \omega_{1}$ there exists a sequential space of that order. The key example is due to Arhangel'skiü and Franklin [1].

By S_{1} we mean a space consisting of a single convergent sequence s_{1}, s_{2}, \ldots, together with its limit point s_{0} taken as the basepoint.

The space S_{2} is obtained from S_{1} by attaching to each isolated point s_{n} of s_{1} a sequence $s_{n, 1}, s_{n, 2}, \ldots$, converging to s_{n}. Thus S_{2} can be viewed as a quotient of a disjoint union of convergent sequences; we give it the quotient topology. Inductively, we obtain the space S_{n+1} from S_{n} by attaching a convergent sequence to each isolated point of S_{n} and giving the resultant set the quotient topology.

Let S_{ω} be the union of the sets $S_{1} \subset S_{2} \subset S_{3} \subset \ldots$ with the weak union topology (a subset of S_{ω} is closed if and only if its intersection with each S_{n} is closed in the topology of S_{n}).

It is shown in [1] that each S_{n} is sequential of order n and S_{ω} is sequential of order ω_{\perp}.

DEFINITION. Let $F(X)$ be the Graev free (free abelian) topological group on a Tychonoff space X and Y a subset of $F(X)$. Then Y is said to be regularly situated with respect to X if for each positive integer n there exists an integer m such that $g P(Y) \cap F_{n}(X) \subseteq g P_{m}(Y)$, where $g p(Y)$ denotes the subgroup generated by $Y, F_{n}(X)$ denotes the set of all words in $F(X)$ of length $\leq n$ with respect to X, and $g P_{m}(Y)$ denotes the set of all words in $g p(Y)$ of length $\leq m$ with respect to Y.

THEOREM A. [Graev,5] Let X be a compact Hausdorff space and Y a compact subspace of $F(X)$ containing e. If $Y \backslash\{e\}$ is a free algebraic basis for $g p(Y)$ and Y is regularly situated with respect to X,
then $g P(Y)=F(Y)$.
In the study of free topological groups the class of k_{ω}-spaces plays a central role.

DEFINITIONS. A Hausdorff space X is said to be a k_{ω}-space [7] if it has a countable family of compact subspaces $X_{1} \subseteq X_{2} \subseteq \ldots$, such that $X=U_{n=1}^{\infty} X_{n}$ and a subset A of X is closed if and only if $A \cap X_{n}$ is closed for all n. We call $X=\cup X_{n}$ a k_{ω}-decomposition. Note that if a subspace A of X is compact, then $A \subseteq X_{n}$ for some n.

THEOREM B. [5,7] If X is a compact Hausdorff space then $F(X)$ is a k_{ω}-space with k_{ω}-decomposition $F(X)=U F_{n}(X)$.

We shall use the following result.
LEMMA. [6, p. 127] For any $w \in F(X) \backslash\{e\}$ there is an $Z \in F(X)$ and $c \in F(X) \backslash\{e\}$ such that $\omega=\left\{c \mathcal{Z}^{-1}\right.$ where c has reduced form $c=x_{1} \ldots x_{n}$ with $x_{i} \in X \backslash\{e\}$ for $i=1, \ldots, n$ for some $n \geq 1$, and $x_{1} \neq x_{n}^{-1}$. Further, for any $t \geq 1, w^{t}=2 c^{t} \eta^{-1}$ and c^{t} has reduced form $x_{1} \ldots x_{n} x_{1} \ldots x_{n} \ldots x_{1} \ldots x_{n}$.

Moreover, either $Z=e$ or $l c^{t} Z^{-1}$ is the reduced form of w^{t}.
3. Results

Our first result generalizes Theorem A above and also Lemma 3.6 of [9].

THEOREM 1. Let $F(X)$ be the Graev free topological group on a Tychonoff space X. Let $Y \ni\{e\}$ be a compact subspace of $F(X)$ such that $Y \backslash\{e\}$ is an algebraic free basis for the group it generates. If Y is regularly situated with respect to X, then $g p(Y)$ is the Graev free topological group on Y.

Proof. Let $F(\beta X)$ be the Graev free topological group on the Stone-Čech compactification of X and Φ the continuous injective
homomorphism of $F(X)$ into $F(\beta X)$ induced by the canonical embedding of X in $B X$.

Clearly $\Phi(Y)$ is a compact subspace of $F(\beta X)$ such that $\Phi(Y) \backslash\{e\}$
is a free algebraic basis for $g p(\Phi(Y)$) and $\Phi(Y)$ is regularly situated with respect to $B X$. Therefore by Theorem $A, g p(\Phi(Y))=$ $F(\Phi(Y))=F(Y)$.

As Φ is a continuous injective homomorphism of $g p(Y) \subseteq F(X)$ onto $g p(\Phi(Y))=F(Y)$ the topology of $g p(Y)$ is finer than the free topology of $F(Y)$. But this implies $g p(Y)=F(Y)$, as required.

THEOREM 2. Let X be any Tychonoff space and $F(X)$ the Graev free topological group on x. Let $y_{1}, \ldots, y_{n}, \ldots$, be a non-trivial sequence in $F(X)$ converging to e. If $Y=\left(\bigcup_{n=1}^{\infty}\left\{y_{n}\right\} U\{e\}\right)$ then $g p(Y)$ has a closed subgroup topologically isomorphic to $F(Y)$.

Proof. By Theorem 1 it suffices to find a subsequence $z_{1}, \ldots z_{n} \ldots$, such that the compact space $Z=\left(\bigcup_{i=1}^{\infty}\left\{z_{i}\right\} \bigcup\{e\}\right)$ is regularly situated with respect to X and $Z \backslash\{e\}$ is a free algebraic basis for $g p(Z)$.

We choose the subsequence as follows. Let $\beta X, F(\beta X)$, and Φ be as in the proof of the previous result. As $\Phi(Y)$ is a compact subspace of $F(\beta X)$ and $F(\beta X)$ is a k_{ω}-space, $\Phi(Y) \subseteq F_{N}(\beta X)$ for some N, by Theorem B and the note that precedes it. Hence $Y \subseteq F_{N}(X)$ for this N. Therefore there is a subsequence of distinct words $z_{1}, \ldots, z_{n}, \ldots$, each of which lies in $F_{M}(X) \backslash F_{M-1}(X)$ for some fixed $M \leq N$. By the Lemma in §2 we can find reduced words z_{i} and c_{i} with $c_{i} \neq e$ such that $z_{i}^{t}=Z_{i} c_{i}^{t} z_{i}^{-1}$, for $t=1,2, \ldots$, and either this is the reduced form of z_{i}^{t} or $\tau_{i}=e$ and $z_{i}^{t}=c_{i}^{t}$ in reduced form. Since the z_{i} have lengths $\leq M$ we can choose a subsequence of $z_{1}, \ldots, z_{n}, \ldots$, for which the \mathcal{Z}_{i} have the same length. Relabelling, we again denote the subsequence by $z_{1}, \ldots, z_{n}, \ldots$ Either there are infinitely many distinct z_{i} and relabelling we assume the sequence $z_{1}, \ldots, z_{n}, \ldots$, satisfies $\mathcal{Z}_{i} \neq \mathcal{Z}_{j}$,
$Z_{i} \neq Z_{j}^{-1}$ and $\mathcal{Z}_{i} \neq e$ for all i and $j \neq i$, or we can choose a subsequence of the z_{i} such that, with relabelling, $\mathcal{l}_{i}=\mathcal{l}$, a fixed word, for all i.

If $l_{i}=l$ for all i, the c_{i} are all distinct and have fixed length and we choose a further subsequence of $z_{1}, \ldots, z_{n}, \ldots$, as follows. Let a_{1}, \ldots, a_{q} be the essential elements of \mathcal{Z}. We now choose a subsequence of the $c_{i}^{\prime \prime} s$.

Let $X_{1}=\left\{x \in X \backslash\left\{a_{1}, \ldots, a_{q}\right\}: x\right.$ is an essential element of z_{i}, for some $i \geq 1\}$. Since each $z_{i} \in F_{N}(X)$ and the z_{i} are distinct, X_{1} is countably infinite. Define $G\left(z_{i}\right), i=1,2, \ldots$, inductively as follows. Let $G\left(z_{1}\right)=\left\{x \epsilon X_{1}: x\right.$ is an essential element of z_{1}. $\}$ Having defined $G\left(z_{i}\right)$, for $1 \leq i \leq k$, let $G\left(z_{k+1}\right)=\left\{x \in X_{1} \backslash \bigcup_{i=1}^{k} G\left(z_{i}\right): x\right.$ is an essential element of $\left.z_{k+1}\right\}$. Thus $G\left(z_{i}\right) \cap G\left(z_{j}\right)=0$ for all $i \neq j, \bigcup_{i=1}^{\infty} G\left(z_{i}\right)=X_{1}$, and $G\left(z_{i}\right)$ has at most N elements for each i. So $G\left(z_{i}\right) \neq 0$ for an infinite number of z_{i} Deleting the z_{i} for which $G\left(z_{i}\right)=0$ and relabelling the sequence thus obtained, we can assume that $G\left(z_{i}\right) \neq 0$ for all i. Now given any subsequence T of $z_{1}, \ldots, z_{n}, \ldots$, and $z_{i_{1}}, \ldots, z_{i}$, there exists $j \in\{1, \ldots, N+1\}$ and $x \in G\left(z_{i_{j}}\right)$ and a subsequence T_{1} of T such that x is not an essential element of any term z_{Z} of T_{1}. This follows since $z_{k} \in F_{N}(X)$ for all terms z_{k} of T and the $G\left(z_{i}\right.$) are non-empty and pairwise disjoint for $j \in\{1, \ldots, N+1\}$. Denote the sequence $z_{1}, \ldots, z_{n}, \ldots$ by S_{1} and let $z_{i_{1}}$ be the first term of S_{1} for which there exists $b_{1} \in G\left({\underset{i}{1}}\right.$) and a subsequence S_{2} of S_{1} such that b_{1} is not an essential element of any term of S_{2}. Let $z_{i_{2}}$ be the first term of S_{2} for which there exists $b_{2} \in G\left(z_{i_{2}}\right)$ and a
subsequence S_{3} of S_{2} such that b_{2} is not an essential element of any term of S_{3}. Continue this process inductively. Relabelling $\boldsymbol{z}_{i}{ }_{j}$ as z_{j} and $c_{i_{j}}$ as c_{j}, we obtain a sequence $z_{1}, \ldots, z_{n}, \ldots$, converging to e. Further, as $b_{i} \notin\left\{a_{1}, \ldots, a_{q}\right\}, b_{i}$ is an essential element of c_{i} but b_{i} is not an essential element of c_{j} for $j \neq i$. So $z_{i}=Z c_{i} \eta^{-1}$ and $c_{i}=d_{i}^{-1} f_{i} g_{i}$ where b_{i} is not an essential element of d_{i} or g_{i}, and f_{i} begins and ends with elements from the set $\left\{b_{i}, b_{i}^{-1}\right\}$. Moreover this is the reduced form of c_{i} with respect to X provided d_{i}^{-1} is deleted if $d_{i}=e$ and g_{i} is deleted if $g_{i}=e$. We now show that in both cases $l_{i}=l$ for all i and $z_{j} \neq \tau_{i} \neq \tau_{j}^{-1}$ for all $\left.i \neq j\right)$ the set Z is regularly situated with respect to X and $Z \backslash\{e\}$ is a free algebraic basis for $g p(Z)$. We do this by verifying the following: if $w_{n} \in g p(Z)$ has reduced form $z_{i}^{\epsilon_{1}} \ldots z_{i}^{\epsilon_{n}}$ with respect to Z, where $\epsilon_{j}= \pm 1,1 \leq j \leq n$, then the length of w_{n} with respect to X is at least n. We proceed by induction.

If all the τ_{i} are distinct the induction hypothesis is that, with respect to X, w_{n} has reduced form $\mathcal{L}_{i_{1}} u_{n} c_{i_{n}}^{\epsilon} i_{i_{n}}^{-1}$ where $u_{n}, n \geq 2$, contains the words $c_{i_{1}}^{\epsilon_{1}}, \ldots, c_{i_{n-1}}^{\epsilon_{n-1}}$ and $u_{1}=e$. This is clear for $n=1$. so assume it is true for $n=k$.

Let $w_{k+1} \in g p(2)$ have reduced form $z_{i_{1}}^{\epsilon_{1}} \ldots, z_{i_{k}}^{\epsilon_{k}}{ }_{i k+1}^{\epsilon_{k+1}}$ with respect to Z. Thus $w_{k+1}=w_{k}{ }_{i}^{\epsilon} i_{k+1}=\tau_{i_{1}} u_{k}{ }^{c}{ }_{i k}^{\epsilon} \eta_{i_{k}}^{-1} \eta_{i_{k+1}}{ }^{c}{ }_{i_{k+1}}^{\epsilon_{k+1}} \eta_{i_{k+1}}$. Let $i_{i_{k}}^{-1} \tau_{k+1}=v$ and $u_{k+1}=u_{k} c^{{ }^{\epsilon}}{ }_{i_{k}} v$. since $\tau_{i_{k}}$ and $\tau_{i_{k+1}}$ have the same
length, w_{k+1} has reduced form $\tau_{i} u_{k+1} c_{i_{k+1}} \tau_{i_{k+1}}^{-1}$, with respect to X. (Note that if $z_{i_{k}}{ }_{k}={ }_{\varepsilon_{i}}^{\epsilon_{k+1}}$ (hen $v=e$ and $c_{i_{k}}^{\epsilon_{k}}=c_{i_{k+1}}^{\epsilon_{k+1}}$ so no cancellation can occur between $\stackrel{c}{i}_{\epsilon_{k}}$ and $c_{i_{k+1}}^{\epsilon_{k+1}}$.) This completes the proof for the case of distinct τ_{i}.

Assume now that $\tau_{i}=l \neq e$ for all i. Let $h_{i_{n}}=g_{i_{n}}$ if
$\epsilon_{n}=1$ and $h_{i_{n}}=d_{i_{n}}$ if $\epsilon_{n}=-1$. The induction hypothesis is that w_{n} has representation $\tau u_{n} f_{i}^{\epsilon} n_{n} i_{n} \tau^{-1}$ where $u_{n}, n \geq 2$, contains the words $f_{i_{1}}^{\epsilon_{1}}, \ldots, f_{i_{n-1}}^{\epsilon_{n-1}}$ and $u_{1}=t^{-1}$ where $t=d_{i_{1}}$ if $\epsilon_{1}=1$ and $t=g_{i_{1}}$ if $\epsilon_{1}=-1$. The induction hypothesis further asserts that this representation is reduced, with respect to X, provided the term $h_{i_{n}}$ is deleted if $h_{i_{n}}=e$ and the term u_{1} is deleted if $u_{1}=e$. Let $w_{k+1} \epsilon g p(Z)$ have reduced representation $z_{i_{1}}^{\epsilon_{1}} \ldots z_{i_{k}}^{\epsilon_{k}}{ }_{z_{k+1}}^{\epsilon_{k+1}}$ with respect to 2. Thus $w_{k+1}=w_{k}^{2} \epsilon_{k+1}^{i_{k+1}}$. We consider the case $\epsilon_{k+1}=1$; the case $\epsilon_{k+1}=-1$ is similar. Thus $\omega_{k+1}=\imath u_{k} f_{i_{k}}^{\epsilon} h_{i_{k}} \tau^{-1} \eta d_{i_{k+1}^{-1}} f_{i_{k+1}} g_{i_{k+1}} \tau^{-1}$.

Let $h_{i_{k}} \bar{d}_{k+1}^{-1}=v$ in reduced form with respect to X and $u_{k+1}=u_{k} f_{i_{k}}^{\epsilon_{k}}$ v. If $\quad f_{i_{k}}^{\epsilon_{k}}=f_{i_{k+1}}$ then $c_{i_{k}}^{\epsilon_{k}}=c_{i_{k+1}}$. Then by choice of c_{i} and $f_{i}, f_{i_{k}}^{\epsilon_{k}} v f_{i_{k+1}}$ is in reduced form with respect to X, except possibly $v=e$, and the result follows. Otherwise the result follows by noting that $f_{i_{k}}^{\epsilon_{k}}$ ends in $b_{i_{k}}^{\delta_{k}}$ and $f_{i_{k+1}}$ begins with $b_{i_{k+1}}^{\delta_{k+1}}$, where
$\delta_{k}, \delta_{k+1} \in\{-1,1\}$ and $b_{i_{k}} \neq b_{i_{k+1}}$.
If $\tau_{i}=e$ for all i we repeat the previous argument deleting the $Z^{\prime} s$ and $Z^{-1} \cdot s$. This completes the proof.

The following Theorem generalizes Theorem 3.9 of [9].

THEOREM 3. Let $F(X)$ be the Graev free topological group on a Tychonoff space and G a subgroup of $F(X)$. If G is a sequential space then it is sequential of order ω_{1} or is discrete.

Proof. As G is sequential its sequential order is $\leq \omega_{1}$.
Either G is discrete or G contains a non-trivial sequence $y_{1}, \ldots y_{n} \ldots$, convergent to a point $y \in G$. Multiplying the $y_{i}^{\prime} s$ by y^{-1} and relabelling $y^{-1} y_{i}$ as y_{i} we can assume the sequence $y_{1}, \ldots, y_{n}, \ldots$, converges to e. By Theorem $2, G \supseteq F(Z)$ which is a k_{ω}-group and hence closed. Thus by Theorem 3.7 of [9], G contains S_{ω} a space of sequential order ω_{1}. Hence G is sequential of order ω_{1}.

COROLLARY 1. Let $F(X)$ be the Graev free topological group on a Tychonoff space X and G a metrizable or Frechet subgroup of $F(X)$. Then G is discrete.

Remark. The analogue of Theorem 2 for Graev free abelian topological groups is also true.

Proof. Once again there exists an integer N such that $y_{i} \in F_{N}(X)$, for all i. As in the proof of Theorem 2, since each y_{i} has only a finite number of essential elements it is possible to choose a subsequence $z_{1}, \ldots, z_{n} \ldots$, such that b_{i} is an essential element of z_{i} but not of any $z_{j}, j \neq i$. It is obvious in the abelian case that if $Z=\left\{z_{1}, \ldots, z_{n}, \ldots\right\} \cup\{e\}$, any word w in $g p(Z)$ has reduced length with respect to X greater than or equal to its reduced length with respect to $Z \backslash\{e\}$. Hence $g p(Z)$ is the free abelian topological group on Z, as required.

As a consequence of this we see that the analogues for Graev free abelian topological groups of Theorem 3 and Corollary 1 are also true. (Note that the proof of the abelian analogue of Theorem 3.7 of [9] is similar to the non-abelian case.)

Finally we note that it is easily verified that the analogues for Markov free topological groups [8] of Theorems 2 and 3 and Corollary 1 are also valid.

References

[1] A.V. Arhangel'ski吕 and S.P. Franklin, "Ordinal invariants for topological spaces", Michigan Math. J. 15 (1968), 313-320.
[2] Ryszard Engelking, General topology, (Mathematical Monographs, 60 P.W.N. - Polish Scientific Publishers, Warsaw 1977).
[3] S.P. Franklin, "Spaces in which sequences suffice", Fund. Math. 57 (1965), 107-115.
[4] S.P. Franklin, "Spaces in which sequences suffice II", Fund Math. 61 (1967), 51-56.
[5] M.I..Graev, "Free topological groups", Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279-324 (Russian), English transl. Amer. Math. Soc. Translation no. 35,61 pp. (1951), Reprint, Amer. Math. Soc. Transl. (1) 8 (1962), 305-364.
[6] A.G. Kurosh, Theory of Groups, Vol. 1 (Chelsea Publishing Company, New York, 1960).
[7] John Mack, Sidney A. Morris and Edward T. Ordman, "Free topological groups and the projective dimension of a locally compact abelian group", Proc. Amer. Math. Soc. 40 (1973), 303-308.
[8] Sidney A. Morris, "Free abelian topological groups", Categorical Topology Proc. Conference Toledo, Ohio, (1983) 375-391 (Heldermann Verlag, Berlin, 1984).
[9] Edward T. Ordman and Barbara V. Smith-Thomas, "Sequential conditions and free topological groups", Proc. Amer. Math. Soc. 79 (1980), 319-326.

Department of Mathematics,
La Trobe University,
Bundoora, Vic. 3083
Australia.

Department of Mathematics, University of Queensland, St. Lucia, Q1d. 4067, Australia.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \#A2.00 + 0.00.

