α -Al₂O₃ Nanowire Delivery of Soluble Antigen for Cross- Priming of Cytotoxic T-cells

Rebecca Schaller,* Haiyan Li,* Micah Eastman,* Aaron Besser, Lauren Krueger,* Hong-Ming Hu** and Jun Jiao*

- * Department of Physics, Portland State University, Portland, OR 97207
- **Robert W Franz Cancer Research Center, Providence Portland Medical Center, Portland, OR 97213

Correspondence should be addressed to: jiaoj@pdx.edu

One of the most effective methods for detection and destruction of tumor cells is therapeutic cancer vaccination. The induction of tumor-specific T-cell immunity relies on efficient cross presentation of tumor associated antigens. We previously showed that α -Al₂O₃ nanoparticles (NPs), as antigen carriers, are phagocytosed favorably by dendritic cells (DCs) and efficiently enhance cross-presentation of ovalbumin (OVA) to Thy1.1⁺ OT-I CD8⁺ T cells.[1] The morphological differences between the nanowires and nanoparticles may affect the antigen delivery and the efficacy for antigen cross-presentation.

To test this hypothesis, we synthesized α-Al₂O₃ NWs via chemical vapor deposition of Al sheet (98.5% purity) and TiO₂ nanoparticles (97.5% purity) in an alumina boat. Similar to the method reported by Peng et al., [2, 3] the chemical vapor deposition reactor was heated to 1050 – 1150 °C with a ramp rate of 25°C/min under flow of 100 sccm of argon. After reactions for 60 min and cooling with argon flow, the resulting fine white-grey powder was collected and characterized by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). FIG 1a shows that high yield branched NWs were grown. Energy dispersive X-ray spectroscopy (EDX) analyses reveals that these NWs are Al₂O₃ (FIG 1b). The branched Al₂O₃ NW consisted of a thick trunk and many thin needle-like NWs, well-aligned, on the surface of the trunk (FIG 1c). HRTEM imaging of a partial Al₂O₃ NW indicates that these NW are single crystalline and the lattice spacing in two directions of 2.379Å, 3.500 Å match (110) and (012) planes of α-Al₂O₃. As-synthesized α-Al₂O₃ NWs were ultrasonicated and purified using centrifuge forming the suspension of well-dispersed α-Al₂O₃ NWs. Using the same protocol as conjugating OVA to α-Al₂O₃ NPs, we conjugated OVA to α-Al₂O₃ NWs. To compare the efficiency of cross-presenting α-Al₂O₃ NP-OVA or α-Al₂O₃ NW-OVA, we used these conjugates to pulse 0.2 million DCs. Six hours later, the pulsed DCs were washed and employed to prime 1 million CFSE-labeled Thy1.1 OT-I CD8 T cells. After a 66 hour incubation, cells were collected and treated with marked antibodies of CD8-PE and Thy1.1-APC. The percentage of proliferated Thy1.1 OT-I CD8⁺ T cells was measured using BD FACS Calibur flow cytometry. α-Al₂O₃ NW-OVA successfully cross-primed antigen-specific T cells, however the efficiency was 15 % lower in comparison to the α-Al₂O₃ NP-OVA. To clarify the shape-induced efficiency difference of crosspresentation, tracking the antigen carriers of α-Al₂O₃ NW and α-Al₂O₃ NP in sub-cellular compartments will be conducted.

- [1] H. Li et al., has been submitted to *Nature Nanotechnology* (2010).
- [2] X. S. Peng et al., J. Phys. Chem. B 106 (2002) 11163.
- [3] X. S. Fang et al., J. Phys.: Condens. Matter 16 (2004) 4157.
- [4] This research was supported by Oregon Nanoscience and Microtechnologies Institute and National Science Foundation.

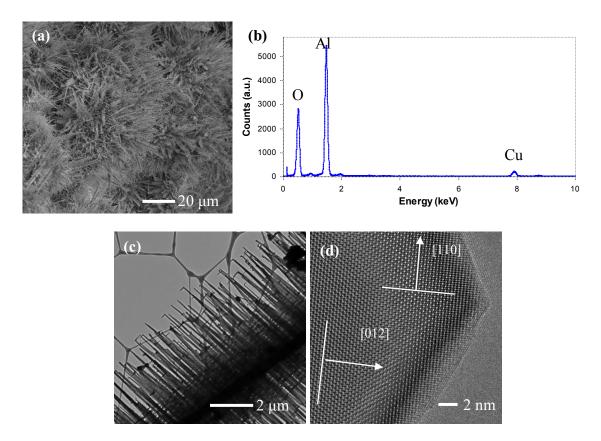


FIG. 1. (a) SEM image of Al_2O_3 NWs grown at $1100^{\circ}C$ for 60 min. (b) EDX spectrum of assynthesized Al_2O_3 NWs. (c) and (d) low- and high-resultion TEM images of as-synthesized Al_2O_3 NW.

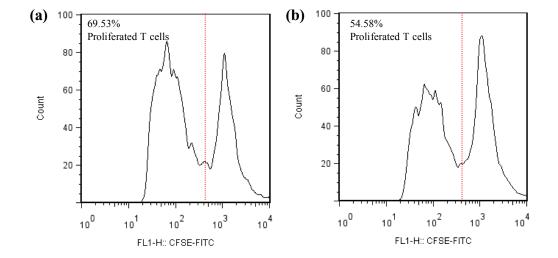


FIG. 2. The percentages of proliferated Thy1.1 $^+$ OT-I CD8 $^+$ T cells cross-primed by DCs pulsed with (a) $0.01\mu g/mL$ of α -Al₂O₃ NP-OVA and (b) $0.01\mu g/mL$ of α -Al₂O₃ NW-OVA.