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TWO-STEP ESTIMATION OF
QUANTILE PANEL DATA MODELS

WITH INTERACTIVE FIXED EFFECTS

LIANG CHEN

Peking University HSBC Business School

This paper considers the estimation of panel data models with interactive fixed effects
where the idiosyncratic errors are subject to conditional quantile restrictions. An
easy-to-implement two-step estimator is proposed for the coefficients of the observed
regressors. In the first step, the principal component analysis is applied to the cross-
sectional averages of the regressors to estimate the latent factors. In the second step,
the smoothed quantile regression is used to estimate the coefficients of the observed
regressors and the factor loadings jointly. The consistency and asymptotic normality
of the estimator are established under large N,T asymptotics. It is found that the
asymptotic distribution of the estimator suffers from asymptotic biases, and this
paper shows how to correct the biases using both analytical and split-panel jackknife
bias corrections. Simulation studies confirm that the proposed estimator performs
well with moderate sample sizes.

1. INTRODUCTION

This paper considers panel data models with interactive fixed effects, where
the unobserved errors have a latent factor model structure. The assumption of
interactive fixed effects has been adopted in a lot of recent studies—see Pesaran
(2006), Bai (2009), Moon and Weidner (2015), and Lu and Su (2016), among
many others. This assumption is general enough to nest the standard panel data
models with only individual fixed effects and models with additive individual
and time effects. It also allows the unobserved factors (or common shocks) to
affect the dependent variables with different intensities that are measured by
the individual-specific factor loadings. Moreover, the latent factor structure has
become an important tool to characterize cross-sectional dependence in panel data
models—see Chudik and Pesaran (2015) for an excellent review. Yet most of the
existing studies focus on linear models where the idiosyncratic errors are subject
to conditional mean restrictions, and the main object of interest is the coefficients
that represent the partial effect of the regressors on the conditional mean of the
dependent variable. This paper focuses on panel data models with interactive
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effects where the conditional mean restrictions are replaced by conditional quantile
restrictions. In such models, the coefficients of the regressors measure the partial
quantile effect, providing a more complete picture of how the regressors affect the
distributions of the dependent variables.

This paper adopts the popular common correlated effects (CCEs) framework
pioneered by Pesaran (2006). In this framework, the regressors are assumed to be
driven by the same latent factors that affect the dependent variables, allowing the
space of the common factors to be approximated by the cross-sectional averages of
the observed variables. Compared with the approach that estimates the coefficients
and fixed effects jointly, the CCE approach has two main advantages that are
particular valuable for the quantile panel models: first, the computation of the
CCE estimator is easy, because given the estimated factors, the coefficients of
the regressors and the factor loadings can be simply estimated by treating the
estimated factors as known. Second, the asymptotic properties of the estimators
are much easier to derive since the estimated factors have a relatively simple
expansion.

Like the CCE estimator, the proposed estimation method in this paper contains
two steps. However, both of the steps differ from the standard CCE method
that is widely used for linear and quantile panel data models in existing studies.
In the first step, to avoid the degenerated-regressors problem of the standard
CCE method (see Karabiyik, Reese, and Westerlund, 2017 and Remark 1), the
principal component analysis (PCA) is applied to the cross-sectional averages of
the regressors to estimate the common factors. In the second step, inspired by
Galvao and Kato (2016), the smoothed quantile regression (SQR) instead of the
standard quantile regression is used to estimate the coefficients of the regressors
and the factor loadings jointly, treating the estimated factors from the first step
as given. The main motivation of making such modifications in both steps of the
standard CCE estimator is to facilitate the asymptotic analysis of the proposed
estimator.

In the “large N, small T” framework,1 the identification and estimation of quan-
tile panel data models are very challenging even when there are only individual
effects (see Arellano and Bonhomme, 2016 and Graham et al., 2018 for examples).
When there are interactive effects in quantile panel models, there remains the open
question of whether the parameter of interest can be point identified (see Chen,
2015 for a result of set identification). Thus, this paper follows Fernández-Val
and Weidner (2016) and Chen, Fernández-Val, and Weidner (2021b) and considers
the “large N, large T” framework where the realizations of the factors and factor
loadings are treated as nonrandom fixed parameters, and the main contribution of
this paper is that I establish the asymptotic properties of the proposed estimator
in the context of quantile panel models. In particular, under some regularity
conditions, it is shown that the proposed two-step estimator for the coefficients
of the regressors is

√
NT-consistent and asymptotically normal with a leading

1Throughout this paper, N and T denote the numbers of cross-sectional and time series observations, respectively.
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bias term of order T−1 + N−1. More importantly, the analytical expression of the
leading bias is derived, providing the basis of analytical bias correction and a
heuristic justification for the use of the split-panel jackknife (SPJ) bias correction
in practice. The Bahadur representation of my two-step estimator extends the
similar representations of the estimators for linear panel data models (see Bai,
2009) and nonlinear panel data models with smooth objective functions (see Chen,
2016; Chen et al., 2021b) to quantile panel models. To the best of my knowledge,
this is the first result of this kind in the literature.

1.1. Related Literature

This paper is related to the large and growing literature on quantile regressions for
panel models. Abrevaya and Dahl (2008), Rosen (2012), Arellano and Bonhomme
(2016), Cai, Chen, and Fang (2018), and Graham et al. (2018) considered identi-
fication and estimation of quantile effects with fixed T. In the large T framework,
Canay (2011) and Chen and Huo (2021) proposed two-step estimation methods,
Koenker (2004), Galvao and Montes-Rojas (2010), and Lamarche (2010) pro-
posed penalized quantile regressions for panel models, Galvao (2011) considered
quantile regressions of dynamic panels, Kato, Galvao, and Montes-Rojas (2012),
Galvao and Kato (2016), and Galvao, Gu, and Volgushev (2020) focused on the
asymptotic distributions of quantile regressions and SQRs, Galvao, Lamarche, and
Lima (2013) studied censored quantile regressions for panel data, Yoon and Galvao
(2020) considered the robust estimation of the covariance matrix, and Chen (2019)
studied the nonparametric estimation of quantile panel models.

All the studies mentioned above only considered models with individual effects.
Quantile panel models with interactive fixed effects were first studied by Harding
and Lamarche (2014), and more recently by Belloni, Chen, and Padilla (2019),
Feng (2019), Ando and Bai (2020), Harding, Lamarche, and Pesaran (2020), Chen,
Dolado, and Gonzalo (2021a), and Ma, Linton, and Gao (2021).

As in this paper, Harding and Lamarche (2014) and Harding et al. (2020)
also adopted the CCE framework. However, unlike my two-step estimator, they
proposed to use the standard CCE estimator where the cross-sectional averages of
the regressors and the dependent variables are used as the proxies of the unobserved
factors, and in the second step, they use standard quantile regressions instead
of SQR to estimate the coefficients of the regressors. More importantly, their
asymptotic results are quite different in nature from the main conclusion of this
paper. In particular, Harding and Lamarche (2014) showed that the CCE estimator
has no asymptotic bias, whereas Harding et al. (2020) proved that the CCE
estimator of the common slope parameter is

√
NT-consistent, with a leading bias

term of approximate order T−3/4, but they did not give the analytical expression of
the bias.2

2Harding et al. (2020) also considered heterogenous slopes and showed that the CCE estimators are
√

N-consistent.

https://doi.org/10.1017/S0266466622000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000366


422 LIANG CHEN

Chen et al. (2021a) and Ando and Bai (2020) both proposed an iterative
procedure to estimate the quantile factors and factor loadings jointly. Chen
et al.’s (2021a) model has no observed regressors, and they mainly focused
on the asymptotic properties of the estimated factors and factor loadings. The
model of Ando and Bai (2020) contains observed regressors, but they assumed
the coefficients to be heterogenous across individuals. As a consequence, their
estimators of the heterogenous coefficients converge at the rate of

√
N and

are free of asymptotic biases. Moreover, Ando and Bai’s (2020) asymptotic
analysis requires all the finite moments of the idiosyncratic errors to be
bounded, whereas in the current paper, I only need the density functions of
the idiosyncratic errors to exist and to be sufficiently smooth (i.e., continuously
differentiable). Ma et al. (2021) considered a model that is similar to the quantile
factor models of Chen et al. (2021a) except that they assumed the factor
loadings to be smooth functions of observed (and time-invariant) individual
characteristics.

One potential problem of the methods proposed by Chen et al. (2021a) and Ando
and Bai (2020) is that their computational algorithm does not necessarily converge
to the global minimum because their objective function is not convex. To solve this
problem, Belloni et al. (2019) and Feng (2019) added to the objective function a
nuclear-norm penalty term that is widely used in the matrix completion literature,
resulting in a new objective function that is convex in the parameters. However, the
convergence rates of their estimators are much slower than

√
NT in general due to

the regularization bias, and the asymptotic distributions of their estimators are not
derived.

1.2. Structure of the Paper

The rest of the paper is organized as follows. Section 2 introduces the model
and the new two-step estimator. Second 3 establishes the consistency and the
asymptotic distribution of the estimator, and discusses how to correct the asymp-
totic bias, how to estimate the asymptotic covariance matrix, and how to choose
the tuning parameters in practice. In Section 4, Monte Carlo simulations are
used to evaluate the finite sample performance of the proposed estimator and
the effectiveness of the bias correction methods. Finally, Section 5 concludes.
To save space, the proofs of all the theorems are relegated to the Supplementary
Material.

1.3. Notations

Throughout the paper, QY [τ |X = x] denotes the conditional τ -quantile of Y given
X = x, ‖A‖ denotes the Frobenius norm of matrix A, and Tr(·) denotes the trace of
a square matrix. For two sequences of nondecreasing real numbers {aj} and {bj},
aj � bj means that there exists 0 < c1 < c2 < ∞ such that c1 < aj/bj < c2 for all
large j.
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2. THE MODEL AND THE ESTIMATOR

2.1. The Model

For some τ ∈ (0,1), consider the model:

Yit = β0(τ )′Xit +λi(τ )′ft +uit, for i = 1, . . . ,N;t = 1, . . . ,T, (1)

where (Yit,Xit) ∈R×R
p is the vector of observed variables for individual i at time t,

and λi(τ ) ∈R
r and ft ∈R

r are the unobserved factor loadings (or individual effects)
and common factors (or time effects), respectively. The idiosyncratic error uit is
assumed to satisfy the following conditional quantile restriction almost surely:

Quit [τ |Xit,λi(τ ),ft] = 0. (2)

Given the above restriction, we have QYit [τ |Xit,λi(τ ),ft] = β0(τ )′Xit + λi(τ )′ft.
Thus, the main object of interest of this paper is β0(τ ), i.e., the marginal quantile
effect of the regressors Xit conditional on the factors and factor loadings.

The above model encompasses the location-scale-shift model and random
coefficients model as special cases. First, consider a location-scale-shift model:
Yit = β ′

0Xit + λ′
i ft + (γ ′Xit + θ ′ft)εit. If γ ′Xit + θ ′ft > 0 and εit is indepen-

dent of (Xit,λi,ft), then β0(τ ) = β0 + γ Qεit(τ ), λi(τ ) = λi + θQεit(τ ), and
uit = (γ ′Xit + θ ′ft)(εit − Qεit(τ )). Second, consider a random coefficients
model: Yit = β0(εit)

′Xit + λi(εit)
′ft, where εit|(Xit,ft) ∼ U[0,1] and the mapping

τ 	→ β0(τ )′Xit + λi(τ )′ft is strictly increasing, then (1) and (2) hold with
uit = (β0(εit)−β0(τ ))′ Xit + (λi(εit)−λi(τ ))′ ft.

In addition, following the literature on CCE estimation of panel data models (see
Pesaran, 2006; Karabiyik et al., 2017), the regressors are assumed to be driven by
the common factors ft, i.e., the dynamics of Xit is captured by the following factor
model structure:

Xit = �i ft + eit, for i = 1, . . . ,N;t = 1, . . . ,T, (3)

where �i ∈R
p×r is a matrix of constants, and eit ∈R

p is a vector of random errors.
The main reason for adopting the CCE framework in this paper is that it allows

us to estimate β0(τ ) in a simple two-step procedure that will be defined below. The
benefits of employing the two-step estimation approach are twofold: first, under
some standard assumptions, the factors can be consistently estimated in the first
step using the regressors, which greatly simplifies the asymptotic analysis of the
estimator in the second step; second, the low computational cost of the two-step
estimator makes it appealing to empirical researchers.

In comparison, in an alternative framework where the relationship between the
regressors and the factors is left unspecified (such as Bai, 2009 and Ando and Bai,
2020), the coefficients for the regressors, the factors, and the factor loadings are
usually estimated jointly. On the one hand, such “joint estimators” are computa-
tionally intensive since they involve iterations between the factors and the factor
loadings. On the other hand, the asymptotic properties of such “joint estimators”
are much more difficult to establish in the context of quantile regressions. Ando and
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Bai (2020) consider heterogeneous panels where the estimator of each individual’s
coefficient converges at

√
N rate. In a homogeneous panel, the estimator for

the coefficients converges at the much faster
√

NT rate, making it much more
challenging to derive the asymptotic distribution of the estimator because many
higher-order terms that have been ignored in Ando and Bai’s (2020) analysis will
become relevant. Moreover, note that the asymptotic analysis of Chen et al. (2021b)
for nonlinear panel data models with interactive fixed effects, which is already
very involved, does not apply to these “joint estimators” since the parameters in
the quantile models are defined through nonsmooth moment conditions.3

2.2. The Two-Step Estimator

For the moment, assume that the number of factors r is known (Section 3.1
discusses how to consistently estimate r) and that p ≥ r. Define X̄t = N−1 ∑N

i=1 Xit,
and 	̂X̄ = T−1 ∑T

t=1 X̄tX̄′
t . Moreover, let K(z) = 1 − ∫ z

−1 k(x)dx, where k(·) is a
symmetric continuous kernel function with support [−1,1] and h is a bandwidth
parameter. Then the two-step estimator of β0(τ ) is defined as follows:

Step 1: f̂t = 
̂ ′X̄t, where 
̂ ∈ R
p×r is the matrix of eigenvectors associated with

largest r eigenvalues of 	̂X̄ .

Step 2: β̂(τ ) is defined as

[β̂(τ ),�̂(τ )]

= argmin
β∈B,λi∈A

1

NT

N∑
i=1

T∑
t=1

[
τ −K

(
Yit −β ′Xit −λ′

if̂t
h

)]
(Yit −β ′Xit −λ′

if̂t), (4)

where �̂(τ ) = [λ̂1(τ ), . . . ,λ̂N(τ )]′.
Define l(u) = (τ − K(u/h))u and L(β,�) = (NT)−1 ∑N

i=1

∑T
t=1 l(Yit −β ′Xit −

λ′
i f̂t). Step 2 of the estimation procedure can be effectively solved by the gradient

descent algorithm as follows:

Step 2.1: Choose the initial value of the parameter: (β(0),�(0)).

Step 2.2: For j = 0, set sj = 1; for j ≥ 1, define Lβ

j = −(NT)−1 ∑N
i=1

∑T
t=1 l(1)(Yit −

β( j)′Xit − λ
( j)′
i f̂t)Xit, Lλi

j = −(NT)−1 ∑T
t=1 l(1)(Yit − β( j)′Xit − λ

( j)′
i f̂t)f̂t, where

l(1)(u) = ∂l(u)/∂u. Set4

sj =
∣∣∣(β( j) −β( j−1))′(Lβ

j −Lβ

j−1)+∑N
i=1(λ

( j)
i −λ

( j−1)

i )′(Lλi
j −Lλi

j−1)

∣∣∣∥∥∥Lβ

j −Lβ

j−1

∥∥∥2 +∑N
i=1

∥∥∥Lλi
j −Lλi

j−1

∥∥∥2 .

3One can smooth the objective function in quantile regressions as I do in this paper, but some important assumptions
of Chen et al. (2021b) (such as the boundness of the derivatives of the objective function) cannot be satisfied by the
smoothed check function.
4This method of choosing the step size is known as the Barzilai–Borwein method.
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Step 2.3: Update the parameters by

β( j+1) = β( j) − sj ·Lβ

j and λ
( j+1)

i = λ
( j)
i − sj ·Lλi

j .

Step 2.4: Iterate Steps 2.2 and 2.3 until the objective function converges.

Since the objective function L(β,�) is not convex in (β,�), there is no
guarantee that the gradient descent algorithm above is able to find the global
minimum. Thus, choosing a good initial value for the parameter is essential. In
practice, I recommend using the following estimator as the initial value of the
parameter:

[β̃(τ ),�̃(τ )] = argmin
β∈B,λi∈A

1

NT

N∑
i=1

T∑
t=1

ρτ (Yit −β ′Xit −λ′
i f̂t), (5)

where ρτ = (τ −1{u ≤ 0})u is the check function. Under Assumptions 1 and 2 of
the next section, it can be shown that β̃(τ ) is a consistent estimator of β0(τ ).5

Remark 1. The way I estimate the unknown factors in Step 1 is different from
the standard CCE method that uses X̄t and Ȳt = N−1 ∑N

i=1 Yit as the proxies of ft. A
problem with the CCE approach, as pointed out by Karabiyik et al. (2017), is that
the second moment matrix of the estimated factors is asymptotically singular when
p+1 > r, known as the problem of “degenerated regressors.” This problem results
in two possible complications for nonlinear panel data models: first, the asymptotic
property of the CCE estimator is more challenging to establish and there might be
extra biases due to the degenerated regressors (see Theorem 3 of Karabiyik et al.,
2017); second, since the nonlinear models usually require nonlinear optimization
algorithms to obtain the estimator, it is difficult to find the (local) minimum with
degenerated regressors. My approach avoids this problem because it will be shown
in the next section that the second moment matrix of the estimated factors is
asymptotically full rank as long as p ≥ r.

Remark 2. A natural question that arises is why not just use the estimator given
in (5) in Step 2. The main reason is that it is difficult to work out the analytical
expression of the asymptotic bias of β̃(τ ) due to the nonsmoothness of the check
function—see Kato et al. (2012) for a detailed discussion. The use of SQR in Step
2 is inspired by Galvao and Kato (2016), who derived the asymptotic bias of the
fixed effects estimator for quantile panel data models with only individual effects.
Similar ideas have been explored by Amemiya (1982) and Horowitz (1998), but
for different objectives.

Remark 3. At τ = 0.5, models (1)–(3) can be viewed as a variant of the model of
Pesaran (2006) where the assumption that uit has conditional mean 0 is replaced
by the assumption that uit has conditional median 0. Accordingly, the proposed

5The proof of this claim is essentially the same as the proof of Theorem 1, and it is therefore omitted. In fact, the
consistency of β̃(τ ) does not require B to be compact thanks to the convexity of the check function—see Kato et al.
(2012).
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two-step estimator at τ = 0.5 can be viewed as the least absolute deviation (LAD)
counterpart of the CCE estimator. As will be shown below, the advantage of the
LAD estimator is that only restrictions on the conditional density of uit are needed
to establish its consistency and asymptotic normality, making it more robust to
outliers and heavy-tailed distributions. The robustness of the proposed estimator
against heavy-tailed distributions is examined through Monte Carlo simulations in
Section 4.2.

3. ASYMPTOTIC RESULTS

Suppose that we have a panel of observations {(Yit,Xit),i = 1, . . . ,N,t = 1, . . . ,T}
generated from (1) and (3), where the realized values of the factors and factor
loadings are F0 = [ f01, . . . ,f0T ]′ and �0(τ ) = [λ01(τ ), . . . ,λ0N(τ )]′. In this section,
following the literature on nonlinear panel data models, �0(τ ) and F0 are treated
as fixed parameters. Thus, given �0(τ ) and F0, my model can be written as

Yit = β0(τ )′Xit +λ0i(τ )′f0t +uit, Quit [τ |Xit] = 0, and Xit = �if0t + eit.

Alternatively, all the assumptions and asymptotic results in this section can be
understood as being conditional on �(τ) = �0(τ ) and F = F0 (see Remark 6).
Moreover, to simplify the notations, the dependence of λ0i(τ ) on τ is suppressed
throughout this section.

3.1. The Number of Factors

In the previous section, r is assumed to be known, which is rarely the case in most
empirical applications. Thus, this subsection considers the estimation of r.

Note that

	̂X̄ = 1

T

T∑
t=1

ētē
′
t + �̄ · 1

T

T∑
t=1

f0t ē
′
t +

1

T

T∑
t=1

ētf
′
0t�̄

′ + �̄	̂f0 �̄
′,

where 	̂f0 = T−1 ∑T
t=1 f0tf ′

0t, �̄ = N−1 ∑N
i=1 �i, and ēt = N−1 ∑N

i=1 eit. If {eit,i =
1, . . . ,N} are weakly dependent for each t, the first three terms on the right-hand
side of the above equation can be shown to be oP(1). Moreover, if both �̄ and
	̂f0 have full rank, then 	̂X̄ converges in probability to a matrix with rank r. This
observation motivates the following estimator of r.

Let ρ̂1 ≥ ρ̂2 ≥ ·· · ≥ ρ̂p be the eigenvalues of 	̂X̄ , and let PNT be a sequence of
nonnegative constants. Then the estimator of r is defined as

r̂ =
p∑

j=1

1{ρ̂j > PNT}.

In order to prove the consistency of r̂, the following conditions are imposed.
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Assumption 1. Let M > 0 be a generic bounded constant.

(i) p ≥ r.
(ii) ‖f0t‖ ≤ M for all t. There exists 	f0 ∈ R

r×r and �0 ∈ R
p×r such that ‖	̂f0 −

	f0‖ = O(T−1/2), ‖�̄ −�0‖ = O(N−1/2), and rank(	f0) = rank(�0) = r.
(iii) E[eit] = 0 for i,t, and E‖N−1/2 ∑N

i=1 eit‖2 ≤ M for all t.

The conditions that p ≥ r and rank(�0) = r are standard in the literature of CCE
estimation to ensure that the space of the common factors can be approximated by
the cross-sectional averages of the regressors. Condition (ii) implies that �0	f0�

′
0

has full rank. It is also worth noting that only weak cross-sectional correlations
of eit are required through condition (iii), and the serial correlations of eit are left
unrestricted.

Then it can be shown that:

Proposition 1. Under Assumption 1, P[r̂ = r] → 1 as N,T → ∞ if PNT → 0
and PNT ·min(

√
N,

√
T) → ∞.

Given the above result, the number of factors r can be treated as known in the
subsequent analysis regarding the asymptotic properties of β̂(τ ) (see footnote 5 of
Bai, 2003).

3.2. Consistency

Let 
0 ∈ R
p×r be the matrix of eigenvectors associated with the r distinct positive

eigenvalues of �0	f0�
′
0, and define H0 = 
 ′

0�0, f̃0t = H0f0t, and λ̃0i = (H′
0)

−1λ0i.
Note that H0 is a full rank matrix.6 In addition, define Vit = [X′

it, f̃
′
0t]

′, let fit(·|x)
denote the conditional density of uit given Xit = x, and let �i,T denote the smallest
eigenvalue of T−1 ∑T

t=1E[fit(0|Xit)VitV ′
it].

To derive the consistency of the estimator, the following conditions are imposed
in addition to Assumption 1.

Assumption 2. Let M > 0 be a generic bounded constant, and let m ≥ 1 be a
positive integer.

(i) The r positive eigenvalues of �0	f0�
′
0 are distinct.

(ii) β0(τ ) ∈ B, λ̃0i ∈ A for all i, and A,B are compact.
(iii) There exists � > 0 such that N−1 ∑N

i=1 �i,T > � for all large N and T. f
(1)
it (c|x) =

∂fit(c|x)/∂c exists and maxi,t |f(1)
it (c|x)| < M uniformly over (c,x).

(iv) For each i, the sequence {(Xit,uit),i = 1, . . . ,N} is α-mixing with coefficients
αi( j) satisfying that max1≤i≤N αi( j) ≤ M ·αj for some 0 < α < 1.

(v) There exists γ > 0 such that E‖Xit‖2m+γ < M for all i,t.
(vi) As N,T → ∞, h → 0 and N/Tm → 0.

6See the proof of Lemma 1.
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Before presenting the consistency result, I briefly comment on the conditions in
Assumption 2.

Condition (i) allows the use of perturbation theory for the eigenvectors of
�0	f0�

′
0, which is important for the result that f̂t converges to H0f0t. A similar

condition has been imposed in the study of PCA estimators for approximate factor
models (see Assumption G of Bai, 2003).

Condition (ii) requires the parameter spaces to be compact. The compactness of
B is needed because the smoothed check function is no longer convex in (β,λi)

given (Xit,ft), and the compactness ofA helps to bound the impact of the estimation
errors of f̂t on the objective function.

Condition (iii) is similar to the standard identification condition in quantile
regressions. The main difference here is that the common factors need to
be taken into account. Note that it allows �i,T , the smallest eigenvalue of
T−1 ∑T

t=1E[fit(0|Xit)VitV ′
it], to be 0 for some i as long as N−1 ∑N

i=1 �i,T is
bounded below by a positive constant. But it will fail if Xi = [Xi1, . . . ,XiT ]′ and
F0 = [ f01, . . . ,f0t]′ span the same space for all i, e.g., eit = 0 for all i,t.

Condition (iv) is also standard in the literature (see Assumption D.1 of Kato
et al., 2012). The strong mixing condition is used to derive moments bounds in
order to apply law of large numbers and central limit theorems. It is commonly
employed in nonlinear panel data models because the mixing property is nicely
preserved by nonlinear transformations. However, stationarity is not imposed here
because for the factor loadings to be quantile dependent, uit should be allowed to
depend on the factors. Therefore, conditional on f0t, it becomes necessary to allow
the distribution of uit to change across t. Moreover, conditional on f0t, the mean of
Xit is given by �if0t, and thus the distribution of Xit should also be time-dependent.

Conditions (v) and (vi) reflect a trade-off between the moments of Xit and the
required relative size of T compared to N. The existence of higher moments of
Xit allows for less restrictive conditions on the size of T. In particular, if m = 1
and E‖Xit‖2+γ < M, we need N/T → 0—a very strong condition that is hard to
satisfy in most empirical applications. However, if m = 2 and E‖Xit‖4+γ < M,
only N/T2 → 0 is needed. Moreover, if it is assumed that ‖Xit‖ ≤ M for all i,t
almost surely, condition (vi) can be relaxed to logN/

√
T → 0 (see Proposition 3.1

of Galvao and Kato, 2016).
In addition to the above conditions imposed in Assumption 2, it is worth men-

tioning that the cross-sectional dependence of (Xit,uit) is not explicitly restricted.
While the cross-sectional dependence of Xit is implicitly controlled by Assumption
1(iii), no such restriction is needed for uit. The intuition is that in the large-
T asymptotic framework, given { f0t}, β0(τ ) can be consistently estimated from
the observations of any individual i. Thus, for consistency, I only need weak
dependence of uit on the time dimension, and the weak cross-sectional dependence
of Xit is only needed to ensure that the space of { f0t} can be well approximated
by { f̂t}.

Last but not least, note that unlike Ando and Bai (2020), there is no moment
restrictions on uit, making the proposed estimation procedure robust to outliers and
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heavy-tailed distributions. Moreover, compared with the procedures that estimate
the factors and factor loadings jointly (such as Chen et al., 2021a), rank condition
on the factor loading matrix is not needed, which means that some of the factor
loadings in model (1) can be 0. In other words, there can be some factors that affect
Xit but not Yit.

The following theorem establishes the consistency of β̂(τ ) for any given τ ∈
(0,1).

Theorem 1. Under Assumptions 1 and 2, β̂(τ ) is weakly consistent, i.e.,
‖β̂(τ )−β0(τ )‖ = oP(1) for any τ ∈ (0,1).

3.3. Asymptotic Distribution

Let fit(·) be the density function of uit, and fi,ts(·, · |xit,xis) be the joint density of
(uit,uis) given (Xit,Xis) = (xit,xis). Moreover, let f

( j)
it (c) = ∂ jfit(c)/∂cj, f

( j)
it (c|xit) =

∂ jfit(c|xit)/∂cj, and f
( j,k)
i,ts (c1,c2|xit,xis) = ∂ j+kfi,ts(c1,c2|xit,xis)/∂cj

1∂ck
2. In particu-

lar, let f
(0)
it (c) = fit(c) and f

(0)
it (c|xit) = fit(c|xit).

In addition, define

�i︸︷︷︸
p×r

= 1

T

T∑
t=1

E[fit(0|Xit)Xit]f
′
0t, �i︸︷︷︸

r×r

= 1

T

T∑
t=1

fit(0)f0tf
′
0t, �i︸︷︷︸

p×r

= �i�
−1
i ,

Zit︸︷︷︸
p×1

= Xit −�i�
−1
i f0t, �︸︷︷︸

p×p

= lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E[fit(0|Xit)ZitZ
′
it].

To derive the asymptotic distribution of β̂(τ ), the following conditions are
imposed.

Assumption 3. Let M > 0 a generic bounded constant, and let q ≥ 8 be an even
integer.

(i) β0(τ ) is an interior point of B, and {λ̃01, . . . ,λ̃0N} are interior points of A.
(ii) {�i,i = 1, . . . ,N} are all invertible for large T, and � is invertible.

(iii) maxi,t E‖Xit‖2m+γ < M for some γ > 0 and m > max{3q(p+r)/4,3/(1−6c)}
where c is defined below in (vii).

(iv) Define XT
i = (Xi1, . . . ,XiT) and uT

i = (ui1, . . . ,uiT). {(XT
i ,uT

i ),i = 1, . . . ,T} are
independent across i.

(v) fit(c|xit) is q times continuously differentiable with respect to c, and
fi,ts(c1,c2|xit,xis) is q times continuously differentiable with respect to (c1,c2);∣∣∣f( j)

it (c|xit)

∣∣∣ ≤ M uniformly over (c,xit) for all j = 0, . . . ,q;
∣∣∣f( j,0)

i,ts (c1,c2|xit,xis)

∣∣∣
≤ M and

∣∣∣f(0,j)i,ts (c1,c2|xit,xis)

∣∣∣ ≤ M uniformly over (c1,c2,xit,xis), for all

j = 0, . . . ,q.

https://doi.org/10.1017/S0266466622000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000366


430 LIANG CHEN

(vi)
∫ 1
−1 k(u)du = 1,

∫ 1
−1 k(u)u jdu = 0, for j = 1, . . . ,q−1, and

∫ 1
−1 k(u)uqdu = 0.

(vii) N/T → κ2 > 0 as N,T → ∞. h � T−c and 1/q < c < 1/6.

Remark 4. The conditions of Assumption 3 are very similar to the assumptions
imposed in Galvao and Kato (2016). Thus, the readers are referred to Galvao and
Kato (2016) for the details of these conditions. The main difference is that Galvao
and Kato (2016) require q ≥ 4 and 1/q < c < 1/3, whereas I need the stronger
conditions that q ≥ 8 and 1/q < c < 1/6. More specifically, due to the presence of
the interactive effects, Lemma B.2 of Galvao and Kato (2016) cannot be used to
show that the remaining term in the expansion of β̂(τ )−β0(τ ) is oP(T−1). Instead,
to bound the higher-order terms, I combine the uniform convergence rates of λ̂i and
f̂t and the fact that the third-order derivative of the objective function is uniformly
bounded (up to a positive constant) by 1/h2—this is why a much larger h and
therefore a much smaller c are needed in the current paper.

Next, define

At︸︷︷︸
p×r

= 1

N

N∑
i=1

E[fit(0|Xit)Zit]λ
′
0i, Bt,k︸︷︷︸

r×r

= 1

N

N∑
i=1

fit(0)λ0i�i,k,

Ci,k︸︷︷︸
r×r

= − 1

T

T∑
t=1

E[f(1)
it (0|Xit)Zit,k]f0tf

′
0t, Dt,k︸︷︷︸

r×r

= − 1

N

N∑
i=1

E[f(1)
it (0|Xit)Zit,k]λ0iλ

′
0i.

Some extra conditions are needed to make sure that the asymptotic biases of β̂(τ )

are well defined.

Assumption 4. Define

ω
(1)
T,i = 1

T

T∑
t=1

E
[
fit(0|Xit)Zit

]
f ′
0t�

−1
i f0t,

ω
(2)
T,i = 1

T

T∑
t=1

T∑
s=t

(
τE[fit(0|Xit)Zit]−E

[∫ 0

∞
fi,ts(0,v|Xit,Xis)dv ·Zit

])
f ′
0t�

−1
i f0s,

ω
(3)
T,i,k = τ(1− τ) · 1

T

T∑
t=1

f ′
0t�

−1
i Ci,k�

−1
i f0t,

ω
(4)
T,i,k = 1

T

T∑
t=1

T∑
s=t

{
E[1{uit ≤ 0,uis ≤ 0}]− τ 2

}
f ′
0t�

−1
i Ci,k�

−1
i f0s,

and assume that the following limits exist:

b1 = −(τ −0.5) · lim
N,T→∞

1

N

N∑
i=1

ω
(1)
T,i − lim

N,T→∞
1

N

N∑
i=1

ω
(2)
T,i,
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b2,k = 0.5 lim
N,T→∞

1

N

N∑
i=1

ω
(3)
T,i,k +0.5 lim

N,T→∞
1

N

N∑
i=1

ω
(4)
T,i,k,

d1 = − lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E[fit(0|Xit)Zitλ
′
0i(H0)

−1
 ′
0eit],

d2,k = 0.5 lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

Tr
{
E[eite

′
it] ·
0(H′

0)
−1

(
2Bt,k +Dt,k

)
(H0)

−1
 ′
0

}
.

The following theorem gives the asymptotic distribution of β̂(τ ).

Theorem 2. Suppose that Assumptions 1– 4 hold, then as N,T → ∞,
√

NT
[
β̂(τ )−β0(τ )

]
d→ N (�−1(κb+κ−1d),�−1V�−1),

where b = b1 + b2, d = d1 + d2, b2 = [b2,1, . . . b2,p]′, d2 = [d2,1, . . . d2,p]′,
V = V1 +V2,

V1 = lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E[WitW
′
it], V2 = lim

N,T→∞
1

NT

N∑
i=1

T∑
t=1

T∑
s=t

E[WitW
′
is],

and

Wit = [τ −1{uit ≤ 0}]Zit −At(H0)
−1
 ′

0eit.

Remark 5. In the proof of Theorem 2, I show that β̂(τ ) − β0(τ ) has the
following Bahadur representation:

�(β̂(τ )−β0(τ )) = 1

NT

N∑
i=1

T∑
t=1

W∗
it +

b

T
+ d

N
+oP(T−1),

where W∗
it = l(1)(uit)Zit − At(H0)

−1
 ′
0eit, and l(1)(u) = τ − K(u/h) + k(u/h)u/h.

First, note that l(1)(uit) is a smooth approximation of τ − 1{uit ≤ 0}, and their
differences disappear in the limit when calculating the variance–covariance matrix
of W∗

it . This is why Wit instead of W∗
it appears in the definition of V. Second,

when deriving the limiting distribution of the estimator, I use a strategy that is
similar to the one used by Galvao and Kato (2016). In particular, Lyapunov’s
central limit theorem is applied to N−1/2 ∑N

i=1 W̄∗
i , where W̄∗

i = T−1/2 ∑T
t=1 W∗

it
and W̄∗

1, . . . ,W̄
∗
N are independent by Assumption 3(iv). Third, the first bias term

b/T is caused by the estimation of �0 and the second bias term d/N origi-
nates from the estimation of F0. In nonlinear (probit, logit) panel data models
with interactive effects, Chen et al. (2021b) is the first to establish a similar
Bahadur representation for the fixed-effects estimator. Similar to Theorem 2, the
biases of their estimator, which are generally nonzero except for some special
cases, arise from the estimation of the fixed effects. This is in contrast to linear
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panel data models with interactive effects, where the fixed-effects estimator
of the slope parameter has a similar Bahadur representation (see Theorem 3
of Bai, 2009), but the bias term b/T is due to cross-sectional correlation and
heteroskedasticity and the bias term d/T is caused by serial correlation and
heteroskedasticity.

Remark 6. Suppose that �0(τ ) and F0 are the realizations of the random fixed
effects: �(τ) = (λ1(τ ), . . . ,λN(τ ))′ and F = ( f1, . . . ,fT)′, then the analysis and
asymptotic results in this paper can be viewed as being conditional on (�(τ),F) =
(�0(τ ),F0). Alternatively, one can condition on the sigma-algebra generated by
�(τ) and F (denoted by D), and use the conditional central limit theorem (see
Rao, 2009) to derive the asymptotic distribution of the estimator. In this case,
the α-mixing condition in Assumption 2(iv) should be replaced by a conditional
α-mixing condition with coefficients that depend on D (see Assumption A.2 of
Su and Chen, 2013 for example), and Assumption 3(iv) should be replaced by
conditional independence.

3.3.1. Some Special Cases.
(a) Observed factors
First, in some applications, the common factors are observed (e.g., inflation

rate). In this case, there is no need to estimate F0 from the first step. As a
consequence, the asymptotic distribution of β̂(τ ) will not be affected by the
estimation errors of the factors. In particular, it can be shown that d1 = d2 = 0
and that Wit = [τ −1{uit ≤ 0}]Zit. Thus,

√
NT

[
β̂(τ )−β0(τ )

]
d→ N (κ�−1b,�−1V�−1),

where

V = τ(1− τ) · lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E[ZitZ
′
it]+

lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

T∑
s=t

E
[(

τ 2 −Fit(0|Xit,Xis)−Fis(0|Xit,Xis)+Fi,ts(0,0|Xit,Xis)
)

ZitZ
′
is

]
,

and Fit(0|Xit,Xis) = E[1{uit ≤ 0}|Xit,Xis], Fi,ts(0,0|Xit,Xis) = E[1{uit ≤ 0,uis ≤
0}|Xit,Xis].

(b) Only individual effects
If we further assume that r = 1, f0t = 1 for all t, and {(Xit,uit),t = 1, . . . ,T}

is stationary for each i, then �i = E[fi(0|Xit)Xit], �i = fi(0), Zit = Xit −
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E[fi(0|Xit)Xit]/fi(0),

ω
(1)
T,i = E

[
fit(0|Xit)Zit

]
/fi(0) = 0,

ω
(2)
T,i =

∑
1≤|k|≤T−1

(
1− |k|

T

)
(

τE[fi(0|Xit)Zit]−E

[∫ 0

∞
fi,t,t+k(0,v|Xit,Xi,t+k)dv ·Zit

])
/fi(0),

ω
(3)
T,i = −τ(1− τ)

fi(0)2
E[f(1)

i (0|Xit)Zit],

ω
(4)
T,i = −

∑
1≤|k|≤T−1

(
1− |k|

T

)
{
E[1{uit ≤ 0,ui,t+k ≤ 0}]− τ 2

} ·E[f(1)
i (0|Xit)Zit]/fi(0)2.

Therefore, the asymptotic distribution of β̂(τ )−β0(τ ) is identical to the one given
by Theorem 3.2 of Galvao and Kato (2016).

(c) When there is no time series dependence
When there is no time series dependence, i.e., {(Xit,uit),t = 1, . . . ,T} is indepen-

dent across t for each i, it is easy to see that ω
(2)
T,i = 0, ω(4)

T,i,k = 0, and V2 = 0. Thus,
we have

b1 = −(τ −0.5) · lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E
[
fit(0|Xit)Zit

]
f ′
0t�

−1
i f0t,

b2,k = τ(1− τ)

2
· lim

N,T→∞
1

NT

N∑
i=1

T∑
t=1

f ′
0t�

−1
i Ci,k�

−1
i f0t,

and

V = lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E[WitW
′
it] = τ(1− τ) · lim

N,T→∞
1

NT

N∑
i=1

T∑
t=1

E[ZitZ
′
it]

+ lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

At(H0)
−1
 ′

0E[eite
′
it]
0(H′

0)
−1A′

t.

3.4. Bias Correction

3.4.1. Analytical Bias Correction. Theorem 2 provides the basis of analytical
bias correction for β̂(τ ). Suppose that �̂, b̂, and d̂ are consistent estimators of
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�,b,d, respectively, and define

β̂abc(τ ) = β̂(τ )− �̂−1

(
b̂

T
+ d̂

N

)
.

Then it follows easily from Theorem 2 that the bias corrected estimator β̂abc(τ )

will have an asymptotic normal distribution that is centered around 0, i.e.,

√
NT

[
β̂abc(τ )−β0(τ )

]
d→ N (0,�−1V�−1). (6)

To construct consistent estimators of �,b,d, let {êit} be the ordinary least
squares residuals of regressing {Xit} on {f̂t}, define l(u) = (τ − K(u/h))u,
l( j)(u) = ∂ jl(u)/∂uj, ûit = Yit − β̂(τ )′Xit − λ̂′

i f̂t, and

�̂i = 1

T

T∑
t=1

l(2)(ûit)Xitf̂
′
t , �̂i = 1

T

T∑
t=1

l(2)(ûit)f̂t f̂
′
t , �̂i = �̂i�̂

−1
i ,

Ẑit = Xit − �̂i�̂
−1
i f̂t, �̂ = 1

NT

N∑
i=1

T∑
t=1

l(2)(ûit)ẐitẐ
′
it,

B̂t,k = 1

N

N∑
i=1

l(2)(ûit)λ̂i�̂i,k, Ĉi,k = 1

T

T∑
t=1

l(3)(ûit)Ẑit,kf̂t f̂
′
t ,

D̂t,k = 1

N

N∑
i=1

l(3)(ûit)Ẑit,kλ̂iλ̂
′
i.

ω̂
(1)
T,i = 1

T

T∑
t=1

l(2)(ûit)Ẑit · f̂ ′
t �̂

−1
i f̂t, ω̂

(3)
T,i,k = τ(1− τ) · 1

T

T∑
t=1

f̂ ′
t �̂

−1
i Ĉi,k�̂

−1
i f̂t,

ω̂
(2)
T,i = 1

T

T−L∑
t=1

t+L∑
s=t+1

l(2)(ûit)Ẑitl
(1)(ûis) · f̂ ′

t �̂
−1
i f̂s

+ 1

T

T∑
t=L+1

t−1∑
s=t−L

l(2)(ûit)Ẑitl
(1)(ûis) · f̂ ′

t �̂
−1
i f̂s,

ω̂
(4)
T,i,k = 1

T

T−L∑
t=1

t+L∑
s=t+1

l(1)(ûit)l
(1)(ûis)f̂

′
t �̂

−1
i Ĉi,k�̂

−1
i f̂s

+ 1

T

T∑
t=L+1

t−1∑
s=t−L

l(1)(ûit)l
(1)(ûis)f̂

′
t �̂

−1
i Ĉi,k�̂

−1
i f̂s,

b̂1 = −(τ −0.5) · 1

N

N∑
i=1

ω̂
(1)
T,i −

1

N

N∑
i=1

ω̂
(2)
T,i, b̂2,k = 0.5

1

N

N∑
i=1

(
ω̂

(3)
T,i,k + ω̂

(4)
T,i,k

)
,
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d̂1 = − 1

NT

N∑
i=1

T∑
t=1

l(2)(ûit)Ẑitλ̂
′
i
̂

′êit,

d̂2,k = 0.5
1

NT

N∑
i=1

T∑
t=1

ê′
it
̂

(
2B̂t,k + D̂t,k

)

̂ ′êit.

Given the above definitions, the estimators for b and d are given by b̂ = b̂1 + b̂2 and
d̂ = d̂1 + d̂2, respectively, where b̂2 = [b̂2,1, . . . ,b̂2,p]′ and d̂2 = [d̂2,1, . . . ,d̂2,p]′. The
following result confirms the validity of the proposed analytical bias correction.

Theorem 3. Let c be the constant defined in Assumption 3(vii). Then, under
Assumptions 1– 4, �̂ = �+oP(1), b̂ = b+oP(1), d̂ = d +oP(1), and therefore (6)

holds if L → ∞ and L ·T
1

2m −0.5+3c → 0 as N,T → ∞.

3.4.2. Jackknife Bias Correction. Following Dhaene and Jochmans (2015),
Fernández-Val and Weidner (2016), and Chen et al. (2021b), an alternative method
to correct the leading bias of β̂(τ ) is the SPJ.

For a given τ , let β̂(1)
N,T/2(τ ) be the two-step estimator, defined as in (4), using the

subsample i = 1, . . . ,N;t = 1, . . . ,T/2, and let β̂
(2)
N,T/2(τ ) be the two-step estimator

using the subsample i = 1, . . . ,N;t = T/2 + 1, . . . ,T . Similarly, define β̂
(1)
N/2,T(τ )

as the two-step estimator using the subsample i = 1, . . . ,N/2;t = 1, . . . ,T , and
β̂

(2)
N/2,T(τ ) as the two-step estimator using the subsample i = N/2 + 1, . . . ,N and

t = 1, . . . ,T . Then the bias-corrected estimator using the SPJ is defined as

β̂spj(τ ) = 3β̂(τ )− 1

2

[
β̂

(1)
N,T/2(τ )+ β̂

(2)
N,T/2(τ )

]
− 1

2

[
β̂

(1)
N/2,T(τ )+ β̂

(2)
N/2,T(τ )

]
. (7)

The computation of this estimator is almost as easy as the original two-step
estimator β̂(τ ).

The main intuition of the SPJ estimator is that if the underlying distributions of
the data are stable across i and t, the term 0.5(β̂

(1)
N,T/2(τ )+ β̂

(2)
N,T/2(τ ))− β̂(τ ) is a

good estimate of b/T , and the term 0.5(β̂
(1)
N/2,T(τ ) + β̂

(2)
N/2,T(τ )) − β̂(τ ) is a good

estimate of d/N. In models with only individual effects, the asymptotic bias of
the fixed-effects estimator is determined by the distribution of (Xit,uit). Thus, the
formal justification of the SPJ only requires the sequence {(Xit,uit),t = 1,2, . . .}
to be stationary for each i (see Dhaene and Jochmans, 2015; Galvao and Kato,
2016). However, in models with interactive effects, the asymptotic biases are also
affected by �0 and F0. Thus, to justify the use of the SPJ, we also need some
kinds of conditions to ensure that the distributions of f1, . . . ,fT are stable across
t and that the distributions of λ1, . . . ,λN are stable across i. On the one hand,
such assumptions involve the unconditional distributions of � and F; on the other
hand, the asymptotic theory of this paper is established conditional on �0 and
F0 (realizations of � and F)—this gap makes it difficult to rigorously prove the
validity of the SPJ estimator. This important but challenging question is left for
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future research, and the finite sample performance of the SPJ estimator is evaluated
in the next section using Monte Carlo simulations.

3.5. Estimating the Variance

The previous subsection gives a consistent estimator of �. Thus, it remains to
construct a consistent estimator of V. Define

Ât = 1

N

N∑
i=1

l(2)(ûit)Ẑitλ̂
′
i, Ŵit = l(1)(ûit)Ẑit − Ât
̂

′êit, V̂1 = 1

NT

N∑
i=1

T∑
t=1

ŴitŴ
′
it,

V̂2 = 1

NT

N∑
i=1

T−L∑
t=1

t+L∑
s=t+1

ŴitŴ
′
is + 1

NT

N∑
i=1

T∑
t=1+L

t−1∑
s=t−L

ŴitŴ
′
is,

and V̂ = V̂1 + V̂2. The following result establishes the consistency of V̂.

Theorem 4. Let L satisfy the condition of Theorem 3. Then, under Assumptions
1– 4, V̂ = V+oP(1).

3.6. The Choice of Tuning Parameters in Practice

The implementation of the proposed estimation procedure in practice involves
choosing the kernel function k(·), the bandwidth parameter h, and the truncation
parameter L in the estimators of the biases and variance.

First, Assumption 3 requires k(·) to be (at least) an eighth-order kernel function.
Thus, the following kernel function of Muller (1984) is recommended7:

k(z) = 1{|z| ≤ 1} · 3,465

8,192

(
7−105z2 +462z4 −858z6 +715z8 −221z10

)
.

Second, if one chooses the eighth-order kernel function above, Assumption 3
requires that h � T−c and 1/8 < c < 1/6. Thus, when N is about the size of T
in practice, a possible choice is h = 1.5(NT)−1/14, which is the one used in all
the simulations in the next section. Note that even when there are only individual
effects, the optimal bandwidth choice in SQR still remains an open question (see
Galvao and Kato, 2016). Thus, I would like to leave this important but challenging
question for future research.

Finally, the choice of L in finite samples is a more delicate issue, and it seems
that there is no consensus in the literature regarding this choice. For example, Hahn
and Kuersteiner (2011) and Galvao and Kato (2016) recommended L = 1 as a
rule of thumb, whereas Fernández-Val and Weidner (2016) suggested to conduct
a sensitivity analysis starting from L = 0. Moreover, as pointed out by Galvao and
Kato (2016), the standard theory for the HAC estimator of covariance matrix in

7Both Horowitz (1998) and Galvao and Kato (2016) used the fourth-order kernel of Muller (1984). Higher-order
Gaussian kernels are not recommended because they have unbounded support.
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models with smooth objective functions does not apply to the quantile panel data
models. In the spirit of Fernández-Val and Weidner (2016), Section 4.3 reports
simulation results with L = 1, . . . ,4 for models with moderate serial correlations.
Based on the simulation results, I suggest the practitioners report estimation results
with different choices of L, but values of L greater than 4 are not recommended for
datasets with moderate number of time series observations (T ≤ 200).

4. FINITE SAMPLE PERFORMANCE

To evaluate the finite sample performance of the proposed estimators, the following
data generating process (DGP) is employed:

Yit = β1Xit,1 +β2Xit,2 +β3Xit,3 +αi +γift +Xit,1 · εit,

where [β1,β2,β3] = [1,1,1], αi ∼ i.i.d. N (0,1), γi ∼ i.i.d. N (0,1), ft ∼ i.i.d.
N (0,1), Xit,1 ∼ i.i.d. χ2(1)+1, and Xit,2 = θ2i +η2ift +e2,it, Xit,3 = θ3i +η3ift +e3,it,
where θ2i,θ3i,η2i,η3i ∼ i.i.d. N (1,1). Since the asymptotic results are conditional
on the fixed effects, only Xit,1,e2,it,e3,it,εit vary across repetitions. The distributions
of e2,it,e3,it,εit are specified in each subsection below. Throughout this section, the
kernel function k(·) and the bandwidth parameter h are chosen as mentioned in
Section 3.6.

In this DGP, there are two common factors: 1 and ft and the factor loading
is given by λi = [αi,γi]′. Section 4.1 examines the estimation of r, whereas
Sections 4.2 and 4.3 focus on the estimation of the coefficient of Xit,1, which varies
across different quantiles.

4.1. Estimating the Number of Factors

The performance of the estimator for the number of factor depends crucially on
the properties of ej,it. Following Bai and Ng (2002), the following DGP for ej,it is
used:

ej,it = γ ej,it−1 +νj,it + ζ ·
i+m∑

l=i−m,l =i

νj,lt,

where νj,it ∼ i.i.d. N (0,1), for j = 2,3. The parameter γ controls the serial
dependence, and the parameters ζ,m determine the cross-sectional dependence.
The following models are considered in the simulations:

Q1: i.i.d. errors: γ = ζ = 0.
Q2: serial dependence: γ = 0.8 and ζ = 0.
Q3: cross-sectional dependence: γ = 0, ζ = 0.2, and m = 5.
Q4: serial and cross-sectional dependence: γ = 0.8, ζ = 0.2, and m = 5.
Recall that the estimator for the number of factors is defined as the number of

eigenvalues of 	̂X̄ that is larger than PNT . Note that Proposition 1 requires that
PNT = (min{N,T})−c for some 0 < c < 1/2. Thus, in the simulations, I choose
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c = 1/3. The upper panel of Table 1 reports the frequencies of choosing the right
number of factors (denoted as P̂[r̂ = 2]) and the mean number of estimated factors
(denoted as mean[r̂]) from 1,000 repetitions for N,T ∈ {20,50,100,200}. It can be
seen that the proposed method chooses the right number of factors in all models
with very high precision as long as min[N,T] ≥ 50.

For comparison purposes, the lower panel of Table 1 also reports the results
using the eigen-ratio estimator of Ahn and Horenstein (2013) (denoted as r̃). In
particular, the eigen-ratio estimator is obtained from a panel consisting of X̄it =∑3

j=1 Xit,j.8 Generally speaking, r̂ performs much better than r̃, especially when
N,T is not large, or when there are considerable amounts of serial correlations in
the errors (DGPs Q2 and Q4).

4.2. Estimators with Independent Errors

In this subsection, e2,it,e3,it are generated as i.i.d. standard normal random vari-
ables, and two different specifications for the distribution of εit are considered:

M1: εit ∼ i.i.d. N (0,1).
M2: εit ∼ i.i.d. T (3), where T (3) denotes the Student’s t distribution with three

degrees of freedom.
The main object of interest is the quantile coefficients of X1,it at τ = 0.25,0.9,

and the following three estimators are considered:
β̂(τ ): the two-step estimator using SQR.
β̂abc(τ ): the bias-corrected two-step estimator using analytical bias correction.
β̂spj(τ ): the bias-corrected two-step estimator using the SPJ.

The kernel function and the bandwidth parameter are chosen as mentioned in
Section 3.6. Given the excellent performance of the estimated number of factors
in the previous subsection, the true number of factors is treated as known. The
simulation results from 500 repetitions are reported in Table 2, where columns
3–5 report the biases of the estimators, columns 6–8 report the standard deviations,
and the last three columns report the coverage rates of the confidence intervals
with 95% nominal levels. Note that the DGP in this subsection has no serial
correlations. Thus, when constructing the analytical-bias-correction estimators and
the confidence intervals, the biases are estimated by setting ω̂

(2)
T,i = ω̂

(4)
T,i = 0, and

the covariance matrices are estimated using the formula given in Section 3.5 with
V̂2 = 0.

There are four main takeaways from the simulation results. First, the biases
and the standard deviations of the estimators are larger when the distributions of
the idiosyncratic errors have heavier tails (normal vs. Student’s t distributions)
and when the quantile of interest is further away from the median (τ = 0.9 vs.
τ = 0.25). This is true for both the original two-step estimators and the bias-
corrected estimators.

8If one obtains the eigen-ratio estimator for each of the regressors, it is likely that some of the regressors contain less
than r factors, and therefore the eigen-ratio estimator will underestimate the number of factors for some regressors.
For example, for the DGP considered here, ft is not a common factor for Xit,1.

https://doi.org/10.1017/S0266466622000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000366


TWO-STEP ESTIMATION OF QUANTILE PANEL DATA MODELS 439

Table 1. The number of factors

Q1 Q2 Q3 Q4

(N,T) P̂[r̂ = 2] Mean[r̂] P̂[r̂ = 2] Mean[r̂] P̂[r̂ = 2] Mean[r̂] P̂[r̂ = 2] Mean[r̂]

(20,20) 0.997 1.997 0.992 1.992 0.996 1.996 0.946 2.028
(20,50) 1.000 2.000 1.000 2.000 1.000 2.000 0.936 2.064
(20,100) 1.000 2.000 1.000 2.000 1.000 2.000 0.887 2.113
(20,200) 1.000 2.000 1.000 2.000 1.000 2.000 0.903 2.097

(50,20) 0.002 1.002 0.021 1.021 0.064 1.064 0.331 1.331
(50,50) 1.000 2.000 0.994 1.994 1.000 2.000 0.978 1.988
(50,100) 1.000 2.000 1.000 2.000 1.000 2.000 0.996 2.004
(50,200) 1.000 2.000 1.000 2.000 1.000 2.000 0.999 2.001

(100,20) 1.000 2.000 1.000 2.000 1.000 2.000 0.987 1.987
(100,50) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000
(100,100) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000
(100,200) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(200,20) 1.000 2.000 1.000 2.000 1.000 2.000 0.999 1.999
(200,50) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000
(200,100) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000
(200,200) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

P̂[r̃ = 2] Mean[r̃] P̂[r̃ = 2] Mean[r̃] P̂[r̃ = 2] Mean[r̃] P̂[r̃ = 2] Mean[r̃]

(20,20) 0.000 1.000 0.009 1.011 0.000 1.000 0.037 1.059
(20,50) 0.000 1.000 0.000 1.000 0.000 1.000 0.001 1.001
(20,100) 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
(20,200) 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

(50,20) 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
(50,50) 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
(50,100) 0.341 1.341 0.000 1.000 0.000 1.000 0.000 1.000
(50,200) 0.998 1.998 0.000 1.000 0.002 1.002 0.000 1.000

(100,20) 1.000 2.000 0.420 1.454 1.000 2.000 0.342 1.505
(100,50) 1.000 2.000 0.000 1.000 0.988 1.988 0.003 1.003
(100,100) 1.000 2.000 0.000 1.000 0.920 1.920 0.000 1.000
(100,200) 1.000 2.000 0.000 1.000 0.995 1.995 0.000 1.000

(200,20) 1.000 2.000 0.000 1.000 1.000 2.000 0.000 1.008
(200,50) 1.000 2.000 0.000 1.000 0.999 1.999 0.000 1.000
(200,100) 1.000 2.000 0.000 1.000 1.000 2.000 0.000 1.000
(200,200) 1.000 2.000 0.000 1.000 1.000 2.000 0.000 1.000

Notes: 1,000 repetitions. DGP: ft ∼ i.i.d. N (0,1), Xit,1 ∼ i.i.d. χ2(1) + 1, and Xit,2 = θ2i + η2ift +
e2,it, Xit,3 = θ3i + η3ift + e3,it , where ej,it = γ ej,it−1 + νj,it + ζ · ∑i+m

l=i−m,l =i νj,lt, θ2i,θ3i,η2i,η3i ∼
i.i.d. N (1,1), ν2,it,ν3,it ∼ i.i.d. N (0,1). Q1: γ = ζ = 0; Q2: γ = 0.8, ζ = 0; Q3: γ = 0, ζ = 0.2,
m = 5; Q4: γ = 0.8, ζ = 0.2, m = 5. This table reports the frequencies of choosing the right number
of factors, denoted as P̂[r̂ = 2] and P̂[r̃ = 2], and the mean number of estimated factors, denoted as
mean[r̂] and mean[r̃], where r̂ is the estimator proposed in Section 3.1, and r̃ is the estimator of Ahn
and Horenstein (2013).
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Table 2. Estimation results without serial dependence

M1 Bias Std Coverage rate (95%)

τ (N,T) β̂(τ ) β̂abc(τ ) β̂spj(τ ) β̂(τ ) β̂abc(τ ) β̂spj(τ ) β̂(τ ) β̂abc(τ ) β̂spj(τ )

0.25 (50,50) 0.024 0.004 0.005 0.086 0.484 0.111 0.908 0.596 0.852
(50,100) 0.016 0.005 −0.011 0.062 0.081 0.076 0.910 0.860 0.854
(50,200) 0.007 −0.002 −0.001 0.043 0.049 0.050 0.934 0.910 0.906
(100,50) 0.019 −0.014 0.001 0.062 0.413 0.074 0.908 0.582 0.898

(100,100) 0.009 0.005 0.000 0.043 0.063 0.051 0.924 0.814 0.890
(100,200) 0.003 0.001 −0.001 0.031 0.035 0.034 0.946 0.926 0.920
(200,50) 0.016 0.017 −0.001 0.043 0.484 0.050 0.924 0.484 0.906

(200,100) 0.007 0.005 −0.001 0.030 0.050 0.035 0.926 0.820 0.908
(200,200) 0.004 0.002 0.001 0.022 0.024 0.024 0.946 0.920 0.916

0.9 (50,50) −0.051 0.004 0.017 0.110 0.812 0.151 0.874 0.676 0.812
(50,100) −0.030 −0.022 0.001 0.076 0.097 0.100 0.874 0.808 0.798
(50,200) −0.014 −0.010 −0.001 0.054 0.061 0.067 0.914 0.874 0.834
(100,50) −0.049 −0.039 0.019 0.074 0.218 0.091 0.864 0.664 0.860

(100,100) −0.026 −0.021 0.003 0.055 0.066 0.065 0.884 0.834 0.850
(100,200) −0.010 −0.003 0.004 0.038 0.043 0.045 0.898 0.868 0.846
(200,50) −0.048 −0.046 −0.013 0.057 0.128 0.069 0.796 0.640 0.866

(200,100) −0.021 −0.017 0.004 0.037 0.045 0.044 0.864 0.814 0.862
(200,200) −0.012 −0.007 0.001 0.026 0.028 0.030 0.884 0.882 0.880

M2 Bias Std Coverage rate (95%)

τ (N,T) β̂(τ ) β̂abc(τ ) β̂spj(τ ) β̂(τ ) β̂abc(τ ) β̂spj(τ ) β̂(τ ) β̂abc(τ ) β̂spj(τ )

0.25 (50,50) 0.033 0.077 0.004 0.110 1.502 0.140 0.874 0.604 0.814
(50,100) 0.020 0.010 0.000 0.075 0.095 0.090 0.884 0.844 0.842
(50,200) 0.010 −0.000 −0.000 0.053 0.062 0.061 0.928 0.902 0.898
(100,50) 0.028 0.022 −0.002 0.077 0.341 0.092 0.896 0.606 0.882

(100,100) 0.012 0.005 −0.004 0.053 0.078 0.061 0.934 0.818 0.902
(100,200) 0.005 0.001 −0.003 0.036 0.042 0.040 0.950 0.902 0.928
(200,50) 0.027 0.023 −0.001 0.055 0.214 0.064 0.904 0.522 0.904

(200,100) 0.010 0.007 −0.004 0.037 0.056 0.042 0.924 0.788 0.902
(200,200) 0.007 0.002 −0.000 0.026 0.029 0.029 0.946 0.916 0.918

0.9 (50,50) −0.113 −0.259 −0.006 0.180 3.739 0.250 0.806 0.668 0.782
(50,100) −0.061 −0.070 −0.004 0.122 0.183 0.151 0.806 0.750 0.782
(50,200) −0.028 −0.027 0.001 0.097 0.111 0.117 0.814 0.784 0.760
(100,50) −0.115 −0.113 0.001 0.121 0.266 0.161 0.778 0.656 0.812

(100,100) −0.055 −0.050 −0.000 0.095 0.109 0.116 0.768 0.742 0.778
(100,200) −0.029 −0.021 0.001 0.066 0.076 0.078 0.808 0.786 0.782
(200,50) −0.109 −0.111 0.012 0.094 0.182 0.117 0.688 0.594 0.810

(200,100) −0.055 −0.051 0.001 0.067 0.080 0.079 0.726 0.688 0.772
(200,200) −0.027 −0.021 0.001 0.044 0.048 0.050 0.786 0.782 0.802

Notes: 500 repetitions. DGP: Yit = β1Xit,1 +β2Xit,2 +β3Xit,3 +αi +γift +Xit,1 ·εit , where [β1,β2,β3] =
[1,1,1], αi ∼ i.i.d. N (0,1), γi ∼ i.i.d. N (0,1), ft ∼ i.i.d. N (0,1), Xit,1 ∼ i.i.d. χ2(1) + 1, and
Xit,2 = θ2i + η2ift + e2,it, Xit,3 = θ3i + η3ift + e3,it, where θ2i,θ3i,η2i,η3i ∼ i.i.d. N (1,1), e2,it,e3,it ∼
i.i.d. N (0,1). M1: εit ∼ i.i.d. N (0,1); M2: εit ∼ i.i.d. T (3).
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Second, it is clear from the results that the biases of the estimators decrease
either as N increases while T is fixed, or as T increases while N is fixed. This
confirms the existence of a leading bias term whose size depends on both N and
T, as established in Theorem 2. Such results are in contrast with the findings in
quantile panel models with only individual effects, where the leading bias term is
approximately of order T−1 and thus the biases decrease only when T increases.

Third, for the analytical bias correction to have good performance, the number
of time series observations (T) needs to be at least 100. On the other hand, the
SPJ performs much better when T = 50 because there is no need to estimate those
complex objects (such as the inverse of the density functions) when constructing
the estimators of the biases.

Last but not least, it can be seen that both analytical and the SPJ bias corrections
can significantly reduce the biases of the two-step estimator, as predicted by the
theoretical results. In particular, it can be observed that the SPJ generally does
a better job at reducing the biases. However, the reduction of biases comes at
the cost of inflating the standard deviations—this is especially noticeable for the
analytical bias correction when T = 50. As a consequence, the coverage rates
of the confidence intervals based on the bias-corrected estimators are in general
lower than those based on the original two-step estimators. Therefore, different
from the usual suggestion of applying bias correction technique to the fixed-effects
estimator of nonlinear panel data models (including quantile panel data models)
to improve finite sample performance, for the models considered in this paper,
the important lesson we can learn is that bias correction can be harmful and it is
actually better to use the original estimator (without bias correction) to achieve
better finite sample performance.

4.3. Estimators with Serially Correlated Errors

In this subsection, I consider models where εit are generated as autoregressive
processes:

εit = ρ · εi,t−1 +
√

1−ρ2 ·νit, where νit ∼ i.i.d. N (0,1).

As in the previous subsection, e2,it and e3,it are i.i.d. standard normal variables.
Now, ω̂

(2)
T,i, ω̂

(4)
T,i, and V̂2 are estimated by the formulas given in Sections 3.4 and

3.5. As discussed in Section 3.6, I focus on the choice of L = 1, . . . ,4. The results
with moderate serial correlation (ρ = 0.5) are reported in Table 3 for L = 1,2 and
in Table 4 for L = 3,4.

In general, except for a few cases where the standard deviation of β̂abc is
extremely large, which usually happens when T = 50, the results are very similar to
those reported in Table 2 where the errors have no serial correlations. In particular,
changing the truncation parameter L from 1 to 4 does not significantly improve
the finite sample performance of the estimators. This is also true if L is allowed to
increase with sample sizes (more simulation results are available upon request).
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Table 3. Estimation results with serial dependence

L = 1 Bias Std Coverage rate (95%)

τ (N,T) β̂(τ ) β̂abc(τ ) β̂spj(τ ) β̂(τ ) β̂abc(τ ) β̂spj(τ ) β̂(τ ) β̂abc(τ ) β̂spj(τ )

0.25 (50,50) 0.026 −0.018 −0.007 0.087 1.060 0.112 0.910 0.564 0.856
(50,100) 0.021 0.008 0.002 0.063 0.084 0.073 0.924 0.840 0.888
(50,200) 0.012 0.005 0.004 0.047 0.056 0.052 0.922 0.880 0.898
(100,50) 0.024 0.005 −0.001 0.062 0.419 0.076 0.930 0.542 0.894
(100,100) 0.017 0.009 0.004 0.042 0.077 0.050 0.940 0.776 0.916
(100,200) 0.005 0.001 −0.001 0.031 0.039 0.036 0.948 0.914 0.916
(200,50) 0.024 0.013 −0.002 0.045 0.290 0.053 0.908 0.508 0.894
(200,100) 0.012 0.006 −0.000 0.032 0.050 0.037 0.932 0.794 0.902
(200,200) 0.006 0.003 0.000 0.023 0.027 0.025 0.934 0.880 0.914

0.9 (50,50) −0.076 −0.095 0.013 0.110 0.475 0.154 0.824 0.632 0.800
(50,100) −0.040 −0.034 −0.001 0.074 0.095 0.092 0.848 0.806 0.820
(50,200) −0.012 −0.006 0.005 0.052 0.064 0.062 0.916 0.882 0.886
(100,50) −0.063 −0.050 0.015 0.082 0.414 0.107 0.814 0.612 0.814
(100,100) −0.035 −0.030 0.000 0.058 0.083 0.071 0.822 0.774 0.808
(100,200) −0.018 −0.009 0.002 0.039 0.044 0.045 0.876 0.868 0.870
(200,50) −0.065 −0.065 0.011 0.055 0.151 0.071 0.728 0.584 0.836
(200,100) −0.032 −0.024 0.004 0.040 0.048 0.049 0.786 0.792 0.840
(200,200) −0.015 −0.008 0.002 0.028 0.031 0.031 0.854 0.852 0.856

L = 2 Bias Std Coverage rate (95%)

τ (N,T) β̂(τ ) β̂abc(τ ) β̂spj(τ ) β̂(τ ) β̂abc(τ ) β̂spj(τ ) β̂(τ ) β̂abc(τ ) β̂spj(τ )

0.25 (50,50) 0.026 −0.046 −0.007 0.087 1.548 0.112 0.910 0.564 0.866
(50,100) 0.021 0.008 0.002 0.063 0.086 0.073 0.930 0.834 0.896
(50,200) 0.012 0.005 0.004 0.047 0.057 0.052 0.926 0.886 0.902
(100,50) 0.024 0.006 −0.001 0.062 0.411 0.076 0.938 0.520 0.898
(100,100) 0.017 0.008 0.004 0.042 0.083 0.050 0.940 0.766 0.918
(100,200) 0.005 0.001 −0.001 0.031 0.040 0.036 0.952 0.914 0.916
(200,50) 0.024 0.010 −0.002 0.045 0.312 0.053 0.914 0.508 0.898
(200,100) 0.012 0.005 −0.000 0.032 0.052 0.037 0.934 0.776 0.912
(200,200) 0.006 0.003 0.000 0.023 0.027 0.025 0.936 0.876 0.916

0.9 (50,50) −0.076 −0.091 0.013 0.110 0.472 0.154 0.828 0.624 0.798
(50,100) −0.040 −0.034 −0.001 0.074 0.097 0.092 0.850 0.800 0.822
(50,200) −0.012 −0.005 0.005 0.052 0.064 0.062 0.877 0.916 0.901
(100,50) −0.063 −0.049 0.015 0.082 0.461 0.107 0.818 0.616 0.808
(100,100) −0.035 −0.030 0.000 0.058 0.084 0.071 0.824 0.762 0.816
(100,200) −0.018 −0.009 0.002 0.039 0.044 0.045 0.878 0.864 0.870
(200,50) −0.065 −0.063 0.011 0.055 0.161 0.071 0.736 0.562 0.844
(200,100) −0.032 −0.024 0.004 0.040 0.049 0.049 0.790 0.808 0.844
(200,200) −0.015 −0.008 0.002 0.028 0.031 0.031 0.860 0.856 0.858

Notes: 500 repetitions. DGP: Yit = β1Xit,1 +β2Xit,2 +β3Xit,3 +αi +γift +Xit,1 ·εit , where [β1,β2,β3] =
[1,1,1], αi ∼ i.i.d. N (0,1), γi ∼ i.i.d. N (0,1), ft ∼ i.i.d. N (0,1), Xit,1 ∼ i.i.d. χ2(1) + 1, and
Xit,2 = θ2i + η2ift + e2,it, Xit,3 = θ3i + η3ift + e3,it, where θ2i,θ3i,η2i,η3i ∼ i.i.d. N (1,1), e2,it,e3,it ∼
i.i.d. N (0,1). εit = ρ · εi,t−1 +√

1−ρ2 ·νit , where νit ∼ i.i.d. N (0,1) and ρ = 0.5.
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Table 4. Estimation results with serial dependence

L = 3 Bias Std Coverage rate (95%)

τ (N,T) β̂(τ ) β̂abc(τ ) β̂spj(τ ) β̂(τ ) β̂abc(τ ) β̂spj(τ ) β̂(τ ) β̂abc(τ ) β̂spj(τ )

0.25 (50,50) 0.026 −0.037 −0.007 0.087 1.559 0.112 0.910 0.574 0.864
(50,100) 0.021 0.007 0.002 0.063 0.087 0.073 0.928 0.838 0.898
(50,200) 0.012 0.005 0.004 0.047 0.057 0.052 0.926 0.878 0.902
(100,50) 0.024 0.002 −0.001 0.062 0.409 0.076 0.938 0.528 0.898
(100,100) 0.017 0.008 0.004 0.042 0.086 0.050 0.940 0.766 0.922
(100,200) 0.005 0.001 −0.001 0.031 0.040 0.036 0.952 0.916 0.920
(200,50) 0.024 0.009 −0.002 0.045 0.381 0.054 0.916 0.462 0.904
(200,100) 0.012 0.008 −0.000 0.032 0.055 0.037 0.938 0.774 0.914
(200,200) 0.006 0.004 0.000 0.023 0.028 0.025 0.942 0.867 0.928

0.9 (50,50) −0.076 −0.092 0.013 0.110 0.477 0.154 0.830 0.632 0.796
(50,100) −0.040 −0.034 −0.001 0.074 0.097 0.092 0.850 0.794 0.818
(50,200) −0.012 −0.005 0.005 0.052 0.065 0.062 0.920 0.878 0.892
(100,50) −0.063 −0.052 0.015 0.082 0.421 0.107 0.816 0.614 0.806
(100,100) −0.035 −0.030 0.000 0.058 0.085 0.071 0.822 0.756 0.812
(100,200) −0.018 −0.009 0.002 0.039 0.044 0.045 0.878 0.868 0.870
(200,50) −0.065 −0.064 0.011 0.055 0.148 0.071 0.730 0.566 0.854
(200,100) −0.032 −0.025 0.004 0.040 0.051 0.049 0.792 0.774 0.850
(200,200) −0.015 −0.008 0.002 0.028 0.035 0.030 0.881 0.880 0.867

L = 4 Bias Std Coverage rate (95%)

τ (N,T) β̂(τ ) β̂abc(τ ) β̂spj(τ ) β̂(τ ) β̂abc(τ ) β̂spj(τ ) β̂(τ ) β̂abc(τ ) β̂spj(τ )

0.25 (50,50) 0.026 −0.047 −0.007 0.087 1.628 0.112 0.914 0.578 0.866
(50,100) 0.021 0.007 0.002 0.063 0.087 0.073 0.930 0.840 0.898
(50,200) 0.012 0.005 0.004 0.047 0.058 0.052 0.926 0.880 0.906
(100,50) 0.024 0.006 −0.001 0.062 0.411 0.076 0.938 0.520 0.898
(100,100) 0.017 0.009 0.004 0.042 0.086 0.050 0.942 0.772 0.920
(100,200) 0.005 0.001 −0.001 0.031 0.040 0.036 0.956 0.922 0.918
(200,50) 0.024 0.011 −0.002 0.045 0.408 0.054 0.916 0.476 0.900
(200,100) 0.012 0.008 −0.000 0.032 0.055 0.037 0.938 0.762 0.918
(200,200) 0.006 0.004 0.000 0.023 0.028 0.025 0.942 0.859 0.921

0.9 (50,50) −0.076 −0.087 0.013 0.110 0.437 0.154 0.826 0.654 0.796
(50,100) −0.040 −0.034 −0.001 0.074 0.097 0.092 0.850 0.794 0.814
(50,200) −0.012 −0.005 0.005 0.052 0.065 0.062 0.922 0.880 0.890
(100,50) −0.063 −0.051 0.015 0.082 0.390 0.107 0.820 0.620 0.806
(100,100) −0.035 −0.030 0.000 0.058 0.086 0.071 0.824 0.762 0.814
(100,200) −0.018 −0.009 0.002 0.039 0.044 0.045 0.878 0.869 0.870
(200,50) −0.065 −0.065 0.011 0.055 0.135 0.071 0.734 0.568 0.864
(200,100) −0.032 −0.025 0.004 0.040 0.051 0.049 0.792 0.778 0.854
(200,200) −0.015 −0.008 0.002 0.028 0.032 0.031 0.863 0.841 0.868

Notes: 500 repetitions. DGP: Yit = β1Xit,1 +β2Xit,2 +β3Xit,3 +αi +γift +Xit,1 ·εit , where [β1,β2,β3] =
[1,1,1], αi ∼ i.i.d. N (0,1), γi ∼ i.i.d. N (0,1), ft ∼ i.i.d. N (0,1), Xit,1 ∼ i.i.d. χ2(1) + 1, and
Xit,2 = θ2i + η2ift + e2,it, Xit,3 = θ3i + η3ift + e3,it, where θ2i,θ3i,η2i,η3i ∼ i.i.d. N (1,1), e2,it,e3,it ∼
i.i.d. N (0,1). εit = ρ · εi,t−1 +√

1−ρ2 ·νit , where νit ∼ i.i.d. N (0,1) and ρ = 0.5.
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5. CONCLUSIONS

Estimating the coefficients of the regressors and the interactive fixed effects jointly
in a quantile panel model is not only computationally difficult but also theoretically
challenging to derive the asymptotic properties of the estimators, mainly due to
the fact that the objective function is nonsmooth and nonconvex. In this paper, an
easy-to-implement two-step estimator is proposed. Because the SQRs are used in
the second step, the derivation of the asymptotic distribution and the asymptotic
biases of the estimator is feasible. The asymptotic distribution provides a formal
justification for the use of analytical bias correction and a heuristic argument for the
use of the SPJ to correct the asymptotic biases, and the simulation results confirm
that both bias correction methods can effectively reduce the biases with moderate
sample sizes. However, it should be cautioned that the bias correction methods
inevitably inflate the standard deviations of the estimators, and result in confidence
intervals with lower coverage rate than the estimators without bias correction.
Finally, even though this paper provides conditions with regard to the sizes of
the bandwidth parameter in SQR and the truncation parameter in the HAC-type
estimators of the bias and variance, there remains the important but challenging
question of how to choose these parameters optimally in a data-dependent manner.
This question is left for future research.

SUPPLEMENTARY MATERIAL

Chen, L. (2022): Supplement to “Two-Step Estimation of Quantile Panel Data
Models with Interactive Fixed Effects”, Econometric Theory Supplementary
Material. To view, please visit: https://doi.org/10.1017/S0266466622000366
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