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Abstract. The Julia set Jx of the complex exponential function Ex:z-* \ez for a real
parameter A(0< A < 1/e) is known to be a Cantor bouquet of rays extending from
the set Ak of endpoints of /A to oo. Since Ak contains all the repelling periodic
points of £A, it follows that Jx = Cl (AA). We show that Ak is a totally disconnected
subspace of the complex plane C, but if the point at oo is added, then AK = Ak u {oo}
is a connected subspace of the Riemann sphere C. As a corollary, AK has topological
dimension 1. Thus, oo is an explosion point in the topological sense for AK. It is
remarkable that a space with an explosion point occurs 'naturally' in this way.

1. Introduction
The Julia set Jx of each member of the family of complex exponential functions
EK :z^>ke2 for a real parameter A(0< A < 1/e) was shown by Devaney [DK] (also
see [Dl, D3, DG]) to be a Cantor bouquet of rays in the complex plane C extending
from the set AA of endpoints of Jx to oo. Since AA contains all the repelling periodic
points of £A, it follows that Jx =C1 (>4A). Devaney and Goldberg [DG] show that
Ak = AK u {oo} is precisely the set of points of Jk = 7A u {oo} that are accessible from
the domain C —/A in the Riemann sphere C = Cu{oo}. Using this fact, we show in
Theorem 3 that AK is totally disconnected, but that Ax is connected, so that oo is
an explosion point for Ax. (A point x in a space X is an explosion point iff X is
connected and X - {x} is totally disconnected.) It also follows, from the fact that
Ax is connected, but nowhere dense in C, that AK has topological dimension 1. We
find it remarkable that a space with an explosion point occurs 'naturally' in this
way, as the set of accessible points of a Julia set.

One ingredient in our proof of Theorem 3 is Theorem 2, interesting in its own
right, which asserts that the set consisting of the principal points of all the prime
ends of a bounded plane domain is connected, and thus, topologically one-
dimensional.

Notation. Let X be a space. By Cl (A), we mean the closure of the set A c X. By
Bd(A), called boundary A, we mean Cl (A)nCl (X-A). By E" we denote
Euclidean M-space and by S" the unit sphere in En+l. Topologically, C is the plane
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E2 and C = Cu{oo} is the sphere S2. For any X<=C we denote by X, the set
Xu{oo}cC.

Topological dimension. An excellent exposition of topological dimension theory for
separable metric spaces may be found in [HW], which also contains a very short
section on Hausdorff dimension. A survey of Hausdorff dimension for topologists
may be found in [Ke]. Let X be a separable metric space. We define the topological
dimension of X, denoted dim (X), inductively as follows:
(1) dim(X) = - l iff X = 0 .
(2) dim (X) < n, where n = 0, 1, 2 , . . . . iff for every point xeX, for every neighbor-

hood V of x, there exists a neighborhood U of x such that (/<= V and
d i m ( B d ( L 0 ) < n - l .

(3) dim (X) = n iff dim (X) < n and dim (X) £ n -1.
(4) dim (X) = oo iff dim (X) £ n, for all n = - 1 , 0, 1, 2, . . . .

All spaces in this paper are separable metric spaces, in particular, subsets of the
plane E2 and the sphere S2. The topological dimension of a nonempty space is
always a nonnegative integer. Unlike Hausdorff dimension or fractal dimension,
topological dimension is a topological invariant. That is, if two spaces X and Y
are homeomorphic (X is the one-to-one, continuous image of Y under a map with
a continuous inverse), then dim (X) = dim (Y).

Consider the middle third Cantor set C (the remainder of the closed interval
[0,1] after deleting the open interval (5,5), and deleting the middle third of each
resulting closed interval, ad infinitum) which has topological dimension 0 and
Hausdorff dimension In 2/ln 3. A homeomorphic image of C, say a 'middle fifth'
Cantor set, may have a different Hausdorff dimension, but will still have topological
dimension 0. As further examples, each of the interval [0,1], the unit circle S1, and
the real line Ex has topological dimension 1; while dim (£2) = dim (52) = 2.

Some properties of dim we will need subsequently include:
(A) If Ac B, then dim (A) <dim (B).
(B) If A c £ " , then dim (Bd{A))<n-\.
(C) If a space X is connected and consists of more than one point, then dim (X)> 1.

Let Hdim (X) denote the Hausdorff dimension of a space X. The fundamental
relationship between topological and Hausdorff dimension is
(D) dim ( X ) s Hdim (X).
Since, Hdim (£"") = n, and Hdim (A)< Hdim (B) whenever Ac B, we have
(E) If X c £ " , then Hdim (X)<« .

It is a theorem of McMullen [Me] that Hdim (JA) = 2. It is an open question as
to the Hausdorff dimension of AK. However, as a consequence of our main result,
l sHd im(A A )<2 .

Prime ends. We begin with some preliminaries concerning prime end theory. Useful
introductions to prime end theory can be found in [Br, CL, M, P].

A domain is a connected, simply connected open subset of the plane E2 or the
sphere S2. We use D to denote the open unit disk in E2 with center 0. The boundary
Bd (U) of a bounded domain U is always a continuum (compact and connected).
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However, the boundary of a domain in S2 might be a single point. Prime end theory,
as defined below, cannot be applied to the latter case. Therefore, we consider only
domains in E2 or S2 whose boundary is a nondegenerate continuum (consisting of
more than one point).

If (?<= E2 is the homeomorphic image of the open interval (0,1), we say that Q
is an open arc. A crosscut of a domain U is an open arc Q<^ U such that Cl (Q) is
an arc whose endpoints a and b lie in Bd (£/) and are distinct. A chain of crosscuts
of U is a collection {Qi}T=i of crosscuts of U such that
(1) Qj separates (?,_, from <?,+, in U for all /> 1,
(2) Cl ((?,) nCl (Qj) = 0 for all / *j, and
(3) Qj converges to a point p e Bd (£/)•

Two chains {(?,}^i and {S,}°ii of crosscuts of U are said to be equivalent iff
their union contains a collection of crosscuts of U with infinitely many entries from
each satisfying (1) and (2) above. A prime end E of U is an equivalence class of
chains of crosscuts. A representative of E is said to define E.

By the Riemann Mapping Theorem, there is a conformal homeomorphism
<p:U->D with the properties that crosscuts of U are carried by <p to crosscuts of
D, and that the collection of endpoints of images of crosscuts of U is dense in
Bd(D). The content of Caratheodory's [C] main theorem may be expressed by
saying that the conformal homeomorphism <p induces a one-to-one correspondence
between the prime ends of U and the points of Bd (D). Indeed, if {Q,}̂ Li is any
chain of crosscuts of U defining a fixed prime end E, then there is a unique e e Bd (D)
(independent of the representative {(?,}?! i of E) such that <p(Q,)-»e.

Define the set

P(E) = {peBd( U) |for some {Q,}J°=i defining E, Q^p},

called the set of principal points of E. It can be shown that P(E) is a continuum.
Thus, we usually call P(E) the principal continuum of E.

The principal set of U. Define the principal set of the domain U to be the collection
of all the principal points of all the prime ends of U; that is,

P(U) = \J {P(E)|£ is a prime end of U}.

In Theorem 2, we prove that P(U) is connected. However, it is not generally the
case that P(U) is closed.

Accessible points. If Re E2 is the continuous, one-to-one image of the half-line
[0, oo), we say that R is a ray. An endcut of the domain U is a ray Re U such that
Cl (R) is an arc and one endpoint of R is in Bd (U). A point p e Bd (U) is accessible
(from U) iff there is an endcut R in U whose endpoint in Bd (U) is p. It can be
shown [Br, UY] that each accessible point of Bd (U) is the principal continuum of
some prime end. Conversely, if £ is a prime end of U and P(E) = {p}, then p is
accessible. Therefore, the union of all degenerate principal continua of U coincides
with the set of accessible points of Bd (U).

Radial limits. Let ip.D^U be a conformal homeomorphism, and let R0 =
{re'e\0^r< l} = [0, eie) be a radial ray in D from the center 0 of D to the point
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eie e Bd (D). We refer to Cl (i/K^e)) - <P(Re) as the radial cluster set of if/ at e'6. It
can be shown [CL, P] that there is a prime end Ee (corresponding to e'e under the
correspondence induced by i/*"1) such that

The correspondence between radial rays of D and prime ends of U is one-to-one.
For a radial limit of if/ at e'e to exist, we mean that

The set of radial limit points of U coincides with the set of accessible points of
Bd(L/).

THEOREM 1. Let U be a bounded plane domain, X c U a connected set such that
Cl (X) n Bd (U) # 0 , and (p : U -* D a conformal homeomorphism. Then for at least
one prime end E of U, Cl (X) n P(E) * 0 . Indeed, for all e e Cl M X ) ) n Bd (D)
vWf/i £ f/ie prime end of U corresponding to e, Cl (X) => P(E).

Proof. Since <p is a homeomorphism, it follows that Cl (^(X))nBd ( D ) # 0 . Let
eeCl (<p(X))nBd (D), and let E be the prime end of U corresponding to e. Let
pe P(E) and let {Qt}T=i be a chain of crosscuts of U denning E such that Qi~*p.
Then {<p((?,)}̂ =i is a chain of crosscuts of D and <p((?,)-»e. For i> 1, Cl (<p((?,))
separates C1(D) between e and Cl (<?((?,_!)). Since <p(X) is connected and Cl (<p(X))
contains e, <p(X)n <p(Q,) 5̂  0 for almost all i. Hence, X n Q,-^0 for almost all i.
Thus, p G Cl (X). Therefore, P(£) c Cl (X). •

THEOREM 2. Let U be a bounded plane domain. Then P( U), the principal set of U,
is connected. Consequently, dim (P(U)) - 1.

Proof. By way of contradiction, suppose that J u L = P( U) is a separation of P( I/)
between points p € J and q e L, where J and L are disjoint, relatively open sets.
There are disjoint, bounded open sets G and H in E2 such that GnP(U) = J
and HnP(U) = L [Ku, II, p. 128]. Thus, ( £ 2 - ( G u H ) ) n P ( U ) = 0 . Since
B d ( G ) c £ 2 - ( G u H ) , we have Bd (G)nP( U) = 0 .

Now Bd(G) contains a continuum X which separates p from g. That is, p
and g are in different components of E2-K. Since Bd(t/) is a continuum con-
taining p and q, K n Bd (£/) # 0 . Since L/ u {p, q} is connected, it also follows that
KnU*0.

Let Z be a component of K n [/. By the Boundary Bumping Theorem, we have
Cl (Z) n Bd (I/) 5* 0 . It follows from Theorem 1 that Cl (Z) n P(E) * 0 for some
prime end E of 17. Since Cl (Z) c *: c Bd (G) and Bd (G) n P( t/) = 0 , we have a
contradiction. Therefore, P(U) is connected. By property (C) of topological
dimension, dim (P([/))> 1. Since P( [/) c Bd (U), properties (A) and (B) imply
that dim ( P ( t / ) ) s i . •

Remark. The above exposited prime end theory, including Theorems 1 and 2, applies
to the case that U is a domain in S2 with nondegenerate boundary.

The Julia set ofz -* \e\ The Julia set J(F) of a complex analytic map F: C -* C (for

https://doi.org/10.1017/S0143385700005460 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005460


An explosion point for the set of endpoints 181

rational maps, F:C-*C) is denned by

J(F) = {zeC|{F"}~=i is not normal at z}.

For entire maps (as well as rational maps) it is a theorem of Baker [B], generalizing
classical theorems of Julia [J] and Fatou [F], that

J(F) = Cl ({z e C | z is a repelling periodic point for F}).

An introduction to Julia sets and complex analytic dynamics can be found in [Bl,
D3]. A summary of results concerning the exponential function and certain other
entire functions can be found in [Dl].

Let Jk =J{EK) be the Julia set of the entire transcendental function £A :z-+\ez

for a positive real parameter A. Answering a question of Fatou [F], Misiurewicz
[Mi] has shown that for A = 1, / , = C. Misiurewicz's proof also appears in [D3],
where Devaney points out that Misiurewicz's argument easily extends to show that
7A=C for all A>l/e.

However, for 0 < A < 1/e Devaney [Dl, D3, DG, DK] has shown that /A is nowhere
dense in C. For 0<A <l/e, it is the boundary of the basin of attraction of the
unique attracting fixed point of £A, and this basin is a domain. Since Jx changes
abruptly at the parameter value A = 1/e from being nowhere dense in C to being
all of C. Devaney has called /A an 'exploding' Julia set.

By a Cantor bouquet we mean a set homeomorphic to C x [0, oo), where C is the
Cantor set. Devaney shows that /A contains an increasing union of Cantor bouquets
Cn of rays extending from a set An of endpoints (C x {0}) to oo in C. On the endpoint
set An of each Cn, the dynamics of EK is that of the shift map on 2M +1 symbols.
The 'stems' {a}x(0, oo) of the bouquet Cn are permuted according to this shift.
Under iteration of EA, the endpoints of Cn have bounded orbits, but all points of
the stems tend to oo.

Devaney shows that /A = Cl (LC=i d ) - Each component R of Jx can be coordinat-
ized by [0, oo). The endpoint set (those points having coordinate 0) of JK is denoted
by AA, and AK =>UT=i An. As all the repelling periodic points of F,A are in AK, we
have /A =C1 {Ak). We also call JA a Cantor bouquet. However, it turns out that in
C, even though for each n, Cn = Cnu{oo} is homeomorphic to the cone over the
Cantor set, Jk = 7A u {oo} is not homeomorphic to the cone over the Cantor set.

Let U be the domain C- / A . Devaney and Goldberg [DG] show that for a
conformal homeomorphism i/>: D -* U, all radial limits exist. Moreover, they show
that the set of radial limits, and thus the set of accessible points, of U is AA.
Therefore, P(U) = Ax. As they observe, this means that the rays comprising JK are
inaccessible except for their endpoints! In particular, they show that the point oo in
JK is the radial limit of ip at a dense set of points in Bd (D), and that each point
a e Ax is the radial limit of a unique point in Bd (D).

Explosion points. A space Z is totally disconnected iff each pair of distinct points p
and q in Z can be separated; that is, there are disjoint open sets U and V in Z
such that pe U, qeV, and t / u V = Z. We say that x e X is an explosion point (or
dispersion point) for a space X iff X is connected and X - {x} is totally disconnected.
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Such weakly connected spaces have been constructed in the plane, for example, by
Knaster and Kuratowski, Sierpinski [Ku], and Lelek [L]. Bula and Oversteegen
[BO] have recently characterized smooth Cantor bouquets with a dense set of
endpoints. If the Cantor bouquets in Julia sets are smooth, an open question, then
all are homeomorphic! Lelek's example would thus be the topological prototype
for Cantor bouquet Julia sets.

THEOREM 3. The set AK of endpoints of the Julia set JK of EK: z-» Aez(0< A < l/e) is
totally disconnected, but AA = AA u {00} 15 connected. Thus, 00 is an explosion point for
AK, and dim (Ax) = 1.

Proof. Let U = C-JK. By Devaney's and Goldberg's result, P(U) = AK. Thus, by
A A

Theorem 2, Ak is connected and dim (Ax) = 1. Since removing a single point cannot
reduce the dimension of a positive-dimensional space [HW], dim (Ax) = 1.

Let p ?* q e AK. Let <p: D-» U be a conformal homeomorphism. There are points
p V q'e Bd (D) corresponding, respectively, to the prime ends Ep and Eq of U for
which p and q are the sole principal points. Since points in Bd (D) corresponding
to prime ends of U whose principal point is 00 are dense in the circle Bd (D), there
are points 00' and 00" in Bd (D), corresponding to distinct prime ends F' and F",
each of which have 00 as their sole principal point, separating p' and q' on Bd (D).
Let [0, 00') and [0,00") be radial rays in D. Thus, Q = [0,00') u [0,00") is a crosscut
from 00' to 00". See figure 1.

FIGURE 1

It follows that Cl (<A((?)) is a simple closed curve in C meeting 7A only at 00, with
A

p and q in the two different components G and H, respectively, of C—Cl (i//(Q)).
Then GnA^ and H r\Ak separate AA between p and q. Since any two points in
Ax can be separated, AA is totally disconnected. •
Application to other entire functions. We have considered the family £A :z->Aez for
a real parameter A. The above analysis applies to the family £A with a complex
parameter A. For an open set of complex A values, £A has a unique attracting fixed
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point &>A [DG, DGH, Dl]. The boundary of the basin of attraction of wk is a Cantor
bouquet [DG]. All such maps are dynamically equivalent [DG].

There are other functions whose Julia sets have properties similar to those of the
exponential function. A class of these, critically finite entire functions (those with
only finitely many critical and asymptotic values; also called entire functions of
finite type), is studied in [GK, DT]. A sufficient growth condition must be met to
ensure the appearance of Cantor bouquets. The prime end analysis of [DG], together
with our analysis above, can be applied to the Cantor bouquets that appear in the
Julia sets of maps of this class to obtain results similar to Theorem 3; for example
Sk : z -»A sin (z) and Ck : z -» A cos (z), for appropriate values of the parameter A e C.
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