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In two previous papers [1], [2] the confluent form

k+i(0-e,- i (0k(0=l 0)
of the 9-algorithm [3]

(e%\-E(
s"L+il>) 0<m +'}-e<m)) = 1 (2)

was established, and various properties which the confluent form of the algorithm possesses
were discussed. It was shown, among other things, that if in (1)

8i(0 = 0, e o (O=/ (O (3)

and the notation

(4)

is used, then (1) is satisfied by

and further that under certain conditions, and for a certain n,

e2n(0 = lim/(/) (6)

identically. It is the purpose of this note to derive another confluent form of the c-algorithm
and to discuss its properties.

The e-algorithm has as its main application the transformation of the slowly convergent
or divergent series

S~f>» (7)
and if in (2) the initial conditions

£<™> = 0, e<,m> = S m = £ u s ( m = l , 2 , ...), 4 0 ) = 0 (8)

t Communication MR45 of the Computation Department of the Mathematical Centre, Amsterdam.

https://doi.org/10.1017/S2040618500034535 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034535


UPON A SECOND CONFLUENT FORM OF THE e-ALGORITHM 161

are used, then, under favourable conditions, the sequence e<g}(n = 1,2,...) provides increasingly
good estimates of S. This principle will be applied to the transformation of the sum

(9)
s = 0

Under the assumption that/(O is infinitely differentiable for a £ t g, oo, limiting forms for the
expressions for e<°> as h tends to zero will be derived.

It may be shown that if the initial conditions (8) are used in (2), then [3, p. 91]

e,0, =
AS0°

ASn_

On substituting

in (8), making the changes

where

.EM =

s , ... sn
AS, ... A5n

, ASn ... AS2n.

of notation

.,
/

/

-f(a+sh)

M =

1
AS0

A5n_

0 K

1 ...
ASi ...

! ASn ...

j = 0, 1,

1
A5n

A52 n_ t

...),

(10)

(11)

(12)

(13)

= a+mh, (14)

and letting h tend to zero, there follow, after appropriate operations upon rows and columns
of the determinantal expressions (10) and (11),

where, in (4)
/'-»(O = o.

These may be shown to satisfy the difference-differential relations

(15)

(16)

(17)

with the initial conditions e_, (t) = eo(t) = 0.

The latter will be proved in detail; it is slightly the more difficult of the two cases.
Using an expansion of Schweins [4, p. 108] there follows firstly

(19)

and, upon multiplying this result by the product £2s+i(0 £2s-i(0> the result

(20)
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Further

d0 d2 d3 ...ds+1

dy d3 d^ ...ds+2

ds ds+i ... d2s-i

0
d0

dy

ds 2
ds

dt
d2

d3

d.

d0

dy
d2

ds-y
ds+y

d2

d3

d*

d

d\
d2

d3

' ds

ds+

d3

d*.
ds

ds+y

...ds

• • • < / , + 1
•••d,+2

•d2s-2

i-du

-ds
• • • d s + y

...ds+2

...d2s

where

this may be transformed into

d0 dy ... ds

dy d2 ...ds

d, rf, ...d,
s+i

4 _ x ds ...d2s_2 0
d, ds+i ...rf2s-i 0

d0 dx . . .< / , _ ! 0
dy d2 ...ds d0

d2 d3 ...ds+l dt

ds_t ds ... d2s_2 ds_:

dy d2 ...ds

d2 d3 ...dsj

0
d0

s-i ds ...d2s.2 ds

s+i ds+2...d2s ds

d2 ...ds

d3 ...ds

ds-y ds ...d2s_2 0
ds+i ds+2 ... d2s 0

which reduces, by using a theorem on compound determinants [4, p. 49] to

Thus (18) has been established and (17) follows in a similar manner.
These results may be generalised by letting

f(a+t)=e-"(t>(a+t).

The determinantal expressions (15) then become, as h tends to zero,

where

(21)

(22)

(23)

(24)

(25)

(26)
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0 c0

c 0 Ci

cs-l

C2

C2s-l
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(27)

Y.=

z z
Cl C2

Zs

(28)

and

0 1

C 2 s - 1

" i • • • c s

-2 ••• Cs+ 1

. . . c 2 s
C2s

where

and these expressions satisfy the relationships

e2s(z ; a)^ = z,—

; a)-82 s(z ; a)}{zt2s+i{z, a) + — e2s+1(z \a)\ = z.

(29)

(30)

(31)

(32)

In a subsequent paper a convergence theory for the process (17), (18), (31) and (32) will
be discussed; in order to prepare the assault, a number of results will be established.

Expression (26) may be recognised [6] as the Jth convergent of the Stieltjes /-fraction

[7]

Ha) EM)
z-Qi(a)- z-Q2(a)-

equivalent to the formal power series

z-Qr+i(a)~
(33)

F(z) = e~z'(j)(a + t)dt ~ £ <f>^(a)z~s~l. (34)
•> o s = o

The sequence of functions e2s(z ; a) may therefore be constructed in a number of ways. For
example, the discrete e-algorithm relationships (2) may be applied to the initial conditions
(8) in which

us = 4>W(a)z-s-1 (s = 0, 1, ...), (35)

when

; a). (36)
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In this context it may be remarked that

«KVi = «2.+i (*;«)• (37)
(This follows by comparing formula (3.8.4) of [6, p. 160] with (29).)

Alternatively the coefficients in (30) may be constructed by application of the q—d
algorithm [8] relationships

e(in+l) ^ g(m) £(m) _ «(m+ 1 )e(m+ 1) (

Qr(a)=qiO) + ei°_\ , Er(a) = </<<»<><<» , (39)

to the initial conditions

<7(r> = e<m> = 0. (40)

The coefficients in (30) may also be constructed by use of the confluent form [9]

£-r(o-^-i(o =e;(o, Qr+M-Qr(o = E'r(t)iE,(t),

A ( 0 = 0, (42)

of the quotient-difference algorithm.
Relationships (41) may be used to show [10] that

H

The successive numerators ^s, and denominators Bs (s = 0, 1,...) of (30) are given by

A, = XJHW{<Ka)}, Bs = YJHW{<Ka)}, (45)

and satisfy the recursions

As={z-Qs(a)}^s-i + Es-i(a)As.2, Bs ={z- Qs{a)}B,- i + ^ - i («)*,-2, (46)

where

£2(fl) = 0(a), (47)

based on

A-^l, Ao = 0, B.^O, B0 = l. (48)

Finally

B2s(z;a) = AJBs (5 = 0,1,...). (49)

The quantities q<?\ e<°> may easily be recovered from the quantities Er(a), Qr(a) by
application of equations (39). This remark, in conjunction with equations (36) and (37)
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implies that the theoretical possibility exists of varying the mode of application of both the
q — cl and e-algorithms at any desired stage, changing from the discrete forms (38) and (2)
to the differential forms (41) or (31) and (32), or back again at will.

The functions produced by the confluent form of the e-algorithm may also be derived
from those produced by application of the confluent form of the q—d algorithm, simply by
using formulae (46), (49), (32) and (37) in that order. The reverse is also made possible by
observing that As and Bs may be extracted from els{z, a) from the condition that the coefficient
of zs in Bs is unity; the recursions (46) are then solved for Qs(a) and E^^a).
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