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Abstract
3D object detection using point cloud is an essential task for autonomous driving. With the development of infras-
tructures, roadside perception can extend the view range of the autonomous vehicles through communication
technology. Computation time and power consumption are two main concerns when deploying object detection
tasks, and a light-weighted detection model applied in an embedded system is a convenient solution for both
roadside and vehicleside. In this study, a 3D Point cLoud Object deTection (PLOT) network is proposed to
reduce heavy computing and ensure real-time object detection performance in an embedded system. First, a bird’s
eye view representation of the point cloud is calculated using pillar-based encoding method. Then a cross-stage
partial network-based backbone and a feature pyramid network-based neck are implemented to generate the high-
dimensional feature map. Finally, a multioutput head using a shared convolutional layer is attached to predict classes,
bounding boxes, and the orientations of the objects at the same time. Extensive experiments using the Waymo Open
Dataset and our own dataset are conducted to demonstrate the accuracy and efficiency of the proposed method.

1. Introduction
Enhanced 3D perception is a significant ingredient in many state-of-the-art driving systems and vehicle–
road-connected systems [1, 2]. As shown in Fig. 1, precise 3D object detection is important in both
vehicleside and roadside. Object detection serves as a fundamental task for 3D perception and various
types of sensors are used in many applications such as monocular images [3, 4], stereo images [5, 6], and
point cloud from 3D LiDAR [7, 8]. Compared to image-based detection, point cloud can provide reliable
depth information, which is accurate for object localization and shape characterization. However, unlike
images, point clouds are sparse and most regions of 3D space are without measurements. In addition, the
point density is highly variable due to the factors such as nonuniform sampling of the 3D space, effective
range of sensors, occlusion, and the relative motion. Traditional robotics pipeline consists of background
subtraction, spatiotemporal clustering, and classification [9, 10]. However, the hand-crafted features
become a bottleneck of the traditional methods. Hand-crafted features are used to describe objects such
as edges, corners/interest points, blobs/regions of interest points, and ridges. With the development of
the deep learning trend, more research studies began to explore 3D object detection domain. Thus, this
paper proposes a deep learning-based method to detect objects which is an exploration in 3D object
detection domain.

The key of 3D LiDAR object detection is to represent the sparse and unordered point cloud for subse-
quent processing. In the past few years, several popular representations were proposed, including Range
View [11], Point View [12], Bird’s Eye View [13], and fusion of them [14]. Compared to other represen-
tations, the object scale and range information were preserved in the BEV representation. However, the
representation of BEV was sparse which caused the direct application of convolutional neural networks
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Figure 1. Vehicleside and roadside perception illustrations. Top left: it consists of point cloud and
image from the ego-vehicle; Top right: it consists of point cloud and image from a road-side infras-
tructure. Below: the light red circle represents the perception range of the red ego vehicle and the light
orange sector represents the perception range of the orange road-side LiDAR. With the vehicle-to-ev-
erything (V2X) technology [47], the accident information can be transferred to the ego vehicle so it can
foresee the road status and avoid the accident.

(CNNs) impractical and inefficient. Recent works such as PointNet [15], VoxelNet [7] and Sparsely
Embedded Convolutional Detection (SECOND) [8] were trying to apply the end-to-end learning in 3D
object detection domain. The drawback of these methods was the slow inference speed because of the 3D
convolutions. VoxelNet’s performance was strong but the inference speed was 4.4 Hz which was unable
to implement in real-time detection tasks. In order to reduce inference time, PointPillars [13] and multi-
view fusion (MVF) [16] used a pillar-like encoder to predict 3D boxes for the objects. Pillar-like encoder
was fast because all key operations can be formulated as 2D convolutions which were efficient to compute
on a graphics processing unit (GPU). Recently, a cross-stage partial (CSP) network was proposed, which
can reduce computation by 20% with equivalent or even superior accuracy on the ImageNet dataset [17].
In terms of feature integration, multiscale prediction methods such as feature pyramid network (FPN)
[18] have become popular due to its light-weighted characteristics. The main motivation is to build a
deep neural network for 3D object detection using point cloud and the proposed method should be able to
meet the requirements of inference speed and detection accuracy. In general, the ability of real-time per-
formance is related to the sensor frame rate, such as 10 frames per second (fps) for LiDARs and 30 fps for
cameras [19].

In this paper, a light-weighted deep learning method is proposed to reduce heavy computing and
ensure real-time object detection performance in an embedded system. The pillar feature encoding
method is used for point cloud representation. A CSP-based 2D CNN backbone and an FPN-based
neck are designed to generate a feature map. A multioutput head structure is attached to predict classes,
bounding boxes, and orientations of the objects. The main contributions of this paper are as follows:

1. A light-weighted deep neural network model is designed for object detection in real time. To
reduce computation and ensure accuracy, the CSP and FPN structures are applied according to
the characteristic of the point cloud.

2. By sharing a convolutional layer, a multioutput head is simplified to predict the classes, the
bounding boxes, and the orientations of the objects simultaneously.
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3. Comprehensive experiments and ablation studies are conducted to evaluate the precision and
speed of PLOT. Results show that the PLOT is able to deploy in an embedded system.

This paper is organized as follows: Section 2 reviews the related works on deep learning-based object
detection approaches. Section 3 details the proposed method for 3D object detection. Section 4 gives
experimental results and a comparison with existing works, followed by the conclusion in Section 5.

2. Related works
Object detection methods using deep learning were well-studied in 2D visual recognition. The gen-
eral deep learning pipeline involved backbone networks and detection heads. In visual recognition, the
input image was passed through a backbone network to learn abstract features, while the detection head
predicted the bounding boxes. In 3D point cloud, different considerations were taken to improve the
performance due to the sparsity. The related works on object detection using learning-based methods
are given below.

2.1. 2D object detection
The pioneer method in 2D object detection task was regions with CNN features (RCNN) [20], a two-
stage approach for image recognition. A simple selective search was used to find regions of interest
and subsequently applied a CNN to bottom-up the region proposals to regress the parameters of bound-
ing boxes. Fast RCNN [21] was proposed to solve the problem of RCNN by sharing features for each
region proposal from the same image. All the region features were cropped and resized from the shared
feature map to improve the inference speed. The Faster RCNN [22] was proposed to further improve
speed and performance by replacing the selective search of Fast RCNN with a region proposal net-
work. Mask RCNN [23] was built on top of Faster RCNN. A mask prediction module was added to
generate a single pipeline that was able to solve tasks such as object detection, semantic segmentation,
and instance segmentation. Instead of using region of interest (ROI) pool to resize feature to a fixed
grid, a bilinear interpolation method was proposed in mask RCNN to avoid quantization error. Beyond
structural changes in the two-stage object detection models, many extensions were used to improve
detection performance, such as multiscale information using feature pyramids networks [18], deformable
convolutions [24], and iterative refinement of box prediction [25].

In addition to two-stage object detection, many object detection models were proposed to solve real-
time problems via one-stage algorithms. Single Shot Detector (SSD) [26] and You only look once
(YOLO) [27, 28] were representative examples of one-stage object detection methods. RetinaNet [29]
was proposed to improve the accuracy and efficiency using a focal loss function in a single stage frame-
work, which can amplify a sparse set of hard examples and prevent easy negatives1 from overwhelming
the detector during the training. In this paper, a one-stage framework is used to assure the inference
speed which is the main requirement for autonomous vehicles. The accuracy rate is improved based on
the network design, data augmentation, and other technical strategies.

2.2. 3D object detection
Point cloud are able to provide a natural representation of 3D shapes and scenes. As such, 3D convolu-
tional network was the paradigm of several early works [30, 31]. The architectures of these methods were
straightforward, and the inference speed was slow. In the method Vote3Deep [30], the sparse convolu-
tional layers were used for efficient large-scale processing of 3D data, and the processing time of a single

1Easy negatives means the negative samples which are easy to detect (such as background). When the amount of ‘easy negatives’
are much more than the positive samples, it can overwhelm training and lead to degenerate models.
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Table I. Method comparison table.

Method Input Stages Insights
RCNN [20] 2D images two Region proposal network
YOLO [27, 28] 2D images one Simple regression problem
PointPillars [13] 3D points one Pillars-like voxelization
SECOND [8] 3D points one Sparse 3D convolutions
PV-RCNN [14] 3D points two 3D voxel CNN
PLOT 3D points one BEV + CSP + FPN

scan of point cloud requires more than 1.1 s on a 4-core 2.5 GHz CPU. PointNet [15] and PointNet++
[32] exemplified a broad class of deep learning method that operates on raw point cloud. They achieved
approximately 10 scans per second in the indoor classification dataset such as ModelNet40 and S3DIS.
The multilayer perceptron was used to lift points to high-dimensional space, and the symmetric set func-
tion was applied to aggregate the features of points. The inference speed of PointNet and PointNet++ is
faster than Vote3Deep. Graph neural networks were used in dynamic graph CNN (DGCNN) [33] on the
k-nearest neighbor graphs to learn the geometric features of point cloud. The processing time is moder-
ate compared to Vote3Deep and PointNet. The Kernel Point Convolution (KPConv) [34] was proposed
as a new design of point convolution. A set of kernel points was used to define the area where each ker-
nel weight was applied, which was also extended to deformable convolutions that learn to adapt kernel
points to local geometry. KPConv was efficient and robust to varying densities. In general, KPConv was
faster than all the methods mentioned previously.

With the development of automated driving technology, many experimental vehicles and roadside
infrastructures are using 3D LiDAR sensors as an input of environmental perception. Thus, there were
increasingly research studies on 3D object detection for autonomous vehicles and roadside infrastruc-
tures. A generic one-stage network VoxelNet [7] was proposed for 3D object detection. The point cloud
was voxelized and dense 3D convolutions were used to perform feature learning. To enhance the pro-
cessing efficiency, ORiented 3D object detection from PIXel-wise neural network predictions (PIXOR)
[35] and PointPillars [13] were proposed to organize point cloud in vertical columns which reduced the
amount of input size. MVF [16] was proposed to fuse both BEV pillars and perspective view pillars.
Frustum PointNet [36] was proposed to segment and classify the point cloud in a frustum generated
from projecting a detection on an image. The benchmark performance was superior compared to other
fusion methods.

However, the multistage design was impractical for end-to-end inferring in real time. SECOND [8]
was proposed to improve the efficiency of VoxelNet, which resulted in stronger performance and an
inference speed of 20 Hz. However, the expensive 3D convolutional layers were unable to be removed
which made it difficult for edge computing scenarios. A graph neural network [37, 38] was proposed
to enhance the detection precision by using spatiotemporal transformer attention. Another one-stage
method [39] was proposed for 3D vehicle detection which applied an anchor-free head to improve the
calculation efficiency. As the ground truth labels were significant for model training, the weakly super-
vised framework [40, 41] was studied to train a neural network model using few samples. The previous
works explored many directions for different object detection tasks. In general, two-stage frameworks
such as Fast R-CNN, Mask R-CNN can reach the highest accuracy rates, but are typically slower. As for
one-stage framework such as YOLO, SSD, they treat object detection as a simple regression problem by
taking an input image and learning the class probabilities and bounding box coordinates. Such models
reach lower accuracy rates, but are much faster than two-stage object detectors. In this paper, our pri-
ority is real-time 3D object detection, thus we value inference speed more than accuracy. Some of the
reviewed works are categorizing in Table I.
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Figure 2. Framework overview. The three stages of the network (encoding module, backbone mod-
ule, and head module) are illustrated using grey boxes and the workflow is denoted by the arrows.
The detailed description is given in Section 3. The raw point cloud is converted to a pillar-based gird
map. The encoding module is used to encode the grid map into a multichannel BEV through a CNN. A
CSP-based backbone with neck is applied to extract the high dimensional features, and a multioutput
head is attached to predict the classes, bounding boxes, and orientations of objects.

3. Proposed method
The proposed PLOT framework is shown in Fig. 2. The original input is the point cloud and the final
output are the 3D bounding boxes of the estimated entities. Three main stages are listed: (1) a point cloud
encoding structure that converts a point cloud to a pillar-based BEV image; (2) a multilayer convolutional
backbone to transform the BEV image into high-dimensional representations; (3) a detection head to
predict the classes and orientations and regress the 3D bounding boxes.

3.1. Point cloud encoding
With the unordered and scattered point cloud as input, the first step is to convert them into a pillar-based
BEV image. As shown in Fig. 2, the whole points in a point cloud are denoted as P, and each point in P
is denoted as p(x, y, z, I), which contains the position in Cartesian coordinate system and the intensity.

As shown in Fig. 3(a), the x–y plane is discretized into an evenly spaced grid with the width Mx

and the length My. The center of each grid is denoted as (xc, yc, zc), and zc is calculated based on the
maximum height parameter which is determined in the experiment section. For each point in a grid, the
offsets are defined as xo = |x − xc|, yo = |y − yc|, zo = |z − zc|. Then, all the points in detection range are
represented as follows:

p̂(x, y, z, I, xc, yc, zc, xo, yo, zo)

where p̂ has a dimension D = 10. The dimension is easy to be expanded when more information on
points, such as ambient and reflectivity is provided.

Then, as shown in Fig. 3(b), points in each grid are combined as a N × D block, and all the nonempty
grids are then stacked as a tensor of size (M, N, D). Note that the number of points in each grid is not the
same, N is set to be the maximum number. The points are randomly sampled when the number in a grid
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Figure 3. Illustrations of point cloud encoding step 1 and step 2. In (a), green pillar denotes a grid,
red dots represent the scattered points and blue dot is the center of a grid. In (b), each color (pink, blue,
yellow) denotes a grid, each slice in a grid denotes a point with D elements. In (c), each color represents
a grid with C elements.

exceeds N, and zeros will be padded to fill the points. A convolution layer with Batch Normalization (BN)
and Rectified Linear Unit (ReLU) is applied to encode the input into a (M, N, C) tensor. A maximum
pooling layer is applied to calculate the maximum value in N points. As shown in Fig. 3(c), the output
tensor size is (M, C) in step 3 and the features are then scattered back to the original grid location in
step 4. Finally, a multichannel BEV of size (Mx, My, C) is created for the network backbone.

3.2. Backbone and neck
In order to guarantee the real-time object detection ability, a multilayer backbone and a neck are designed
according to YOLOv4 [42]. YOLOv4 is a one-stage object detection model that improves on previous
YOLO models with several bags of tricks and modules such as CSP, Mish activation. It was designed to
run on general GPUs which was able to deploy in edge computing scenarios. The main purpose of using
CSP structure is to achieve a richer gradient combination while reducing the amount of computation.
This aim is achieved by partitioning feature map of the base layer into two parts and then merging
them through a cross-stage hierarchy. The gradient flow propagated through different network paths by
splitting the gradient flow [17]. The whole backbone structure is illustrated in Fig. 2. The input is a
tensor with size (Mx, My, C). Firstly, a convolution layer with BN and leaky ReLU is used to encode
the input tensor into higher dimension. Then four CSP modules (CSP_a, CSP_b, CSP_c, CSP_d) are
connected one by one to downsample the tensor at a stride S. Each CSP module consists of five CBL
modules and n Res modules and the Res module is inserted to achieve the effect of gradient stunting.
Finally, four tensors from CSP modules are achieved in the backbone part.

The neck part is designed based on the FPN, which mainly integrates the features coming from
different feature pyramids. FPN [18] is a top-down architecture with lateral connections developed for
building high-level semantic feature maps at all scales. In this paper, four outputs from the CSP modules
are concatenated with upsampling process. Firstly, the output of the CSP_d module in the bottom is
upsampled through a CBL module and a Up module to fit the tensor size of the CSP_c output. Then a
spatial pyramid pooling (SPP) module is applied to map multiple size input down to a fixed-size output.
In this paper, the SPP module contains three maximum pooling layers and is inserted between two CBL
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modules. Three concatenating modules are used to connect the outputs from backbone step by step and
finally a feature map is generated for the head module. The details of implementation will be discussed
in Section 4.

3.3. Detection head
The detection head is a neural network layer attached to the neck. Based on the feature map extracted by
the backbone and neck, the head is designed to perform actual task, such as detection and segmentation.
In this paper, a multioutput head is designed based on the region proposal network [21, 22] to predict
classes, bounding boxes, and orientations of the objects. First, a CNN followed by BN and ReLU is
used as a sharing convolutional layer for the three types of predictions to reduce computation. Then
three separate convolutional layers are applied to fit the configuration of each type of predictions. The
channels are designed based on the number and rotation of anchors. For the bounding box prediction,
the 3D Intersection over Union (IoU) is used to calculate the relative loss to the ground truth which is
more precise than the 2D IoU used in PointPillars [13].

3.4. Loss function
The loss function is used to map the inferring results onto the ground truth. In this paper, three different
loss functions are proposed to measure the difference between the head output and the ground truth.
Due to the unbalanced amounts of generated anchors and label positive ground truth objects, the loss
function of type classification is defined based on the focal loss [29]:

Lc = −αc(1 − pc)
γc log pc (1)

where pc is the classification probability of the anchor. The parameters αc and γc are 0.25 and 2.0
according to the original paper settings.

The ground truth of the bounding box and anchors are defined by (x, y, z, dx, dy, dz, θ ), representing the
coordinates of the center point and the length, width, height, and orientation of the object. The residuals
of localization regression are defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�x = (xgt − xp)/dgt
x

�y = (ygt − yp)/dgt
y

�z = (zgt − zp)/dgt
z

�dx = log (dgt
x /dp

x )

�dy = log (dgt
y /dp

y )

�dz = log (dgt
z /dp

z )

�θ = sin (θ gt − θ p)

(2)

where superscript gt represents the ground truth and p is the prediction results per anchor. The loss
function of the bounding box prediction is defined based on the weighted smooth L1 loss [8]:

Lb =
∑

t∈(x,y,z,dx ,dy ,dz ,θ)

SmoothL1(�t) (3)

and the angle loss can only represent the intersection without direction, so an orientation prediction is
added in this paper. The orientation loss Lo is defined by a softmax classification function. The final
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loss function consists of three parts:

L= ωcLc + ωbLb + ωoLo (4)

where ωc = 1.0, ωb = 2.0 and ωo = 0.2 are the constant weights of losses.

4. Experiments
In this section, the implementation details are given, including dataset details, network settings, and data
augmentation (DA). Then a quantitative experiment is carried out to compare the results of the proposed
method to other state-of-the-art methods. Real-time experiments in different scenarios are designed to
test the edge computing ability of the proposed method. Ablation studies are conducted to demonstrate
the effectiveness of the whole network architecture.

4.1. Implementation details
4.1.1. Dataset
The Waymo Open Dataset [43] is used in this paper to train and test the proposed method. The dataset
contains 798 training sequences with 158,361 LiDAR scans and 202 validation sequences for the entities.
The point cloud is captured with a 64-line LiDAR scanner sensor, which returns about 180,000 points
in 0.1 s. The official 3D detection evaluation metrics consists of the standard 3D bounding box mean
average precision (mAP) and mean average precision weighted by Heading (mAPH). The mAP and
mAPH are calculated based on an IoU threshold of 0.7 for vehicles, 0.5 for pedestrians, and cyclists.
A performance breakdown for two difficulty levels is provided in the official evaluation toolkit: Level 1
(L1) for boxes more than 5 LiDAR points and Level 2 (L2) for boxes with at least 1 point.

4.1.2. Network settings
The detection range is set according to the Waymo dataset, the range of X and Y axis is [−74.88, 74.88]
m, and the range of Z axis is [−2, 4] m. The resolution of a grid is set as 0.32 m in both X and Y axis,
which is enough to distinguish small objects. The maximum number of points in one grid is set to 32
according to the point cloud distribution. In the encoding module, the kernel size of the convolutional
layer is 1 × 1 and the channel number is 64. After encoding, the output tensor size is 468 × 468 × 64.

In the backbone and neck module, the parameters (a, b, c, d) are first determined by our experience.
The main idea is to keep the network small and efficient, which requires less CSP modules. On the
other hand, the input is downsampled to extract more high-dimensional features. The first CSP module
uses 1 Res module (a = 1) and the stride is set to 1, the output tensor is 468 × 468 × 64. Then the
parameters b = 1, c = d = 3 are applied with S = 2 and the output tensors of the three CSP modules
are 234 × 234 × 128, 127 × 127 × 256 and 64 × 64 × 512. The neck part upsampled the tensors from
64 × 64 × 512 to 468 × 468 × 64. The shared weight convolutional layer has 64 channels, and three
anchor-based head layers are defined as follows:

• Vehicles: the anchors with length, width, and height are set as (4.73, 2.08, 1.77) and
(9.60, 2.30, 2.70) for small cars and large trucks. The bottom height of the anchors is 0, and
the positive and negative matching thresholds are 0.55 and 0.4.

• Pedestrians and cyclists: the anchors with length, width, and height are set as (0.91, 0.84, 1.74)
and (1.81, 0.84, 1.77). The bottom height of the anchors is 0, and the positive and negative
matching thresholds are 0.5 and 0.3.

The proposed detector is trained using stochastic gradient descent with an Adam onecycle optimizer
running on four NVIDIA GTX 2080Ti GPUs. All models are trained for 150 epochs and the initial
learning rate is 0.0001, with an exponential decay every 15 epochs with a factor 0.8.
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(a) (b)

Figure 4. Data augmentation comparison. All ground truths are placed in the road area to keep the
geometry constraints. The red boxes in (a) denotes the objects generated outside the road using previous
DA method.

4.1.3. Data augmentation
The major problem of the dataset is the low ratio of ground truths to outlier points. To solve this problem,
the SECOND [8] proposed a DA method that randomly put objects from other scans into the current
scan, which can increase the number of ground truth in one scan. However, the randomly placed objects
are unable to fit in the environment (such as a car is isolated in the middle of nowhere), which leads to
the problem that the inserted ground truth has no geometry constraints. In this paper, the ground truths
are inserted in the road which is extracted first. The difference between the previous method and the
proposed method is shown in Fig. 4.

In the proposed DA method, all the ground truth boxes are rotated randomly in [−π/20, π/20] range
of angle. Then, the boxes are translated randomly following a uniform translation distribution, the mean
and standard deviation of the distribution are 0 and 0.25. In addition, a random scaling and rotation are
applied to the whole point cloud in one scan. The scaling range is from 0.95 to 1.05, and the rotation
range is [−π/4, π/4].

4.2. Experiment results
The quantitative and qualitative analysis are conducted to demonstrate the effectiveness of the proposed
method.

4.2.1. Quantitative evaluation
The quantitative evaluation experiment is conducted based on the Waymo dataset using the official
evaluation detection metrics. PLOT is compared to three state-of-the-art detection methods: PointPillars
[13], SECOND [8], and Point Voxel RCNN (PV-RCNN) [14]. PointPillars, SECOND, and PLOT are
one-stage detection methods that are fast for real-time tasks. PV-RCNN is a two-stage detection method
requiring heavy computing in the proposal refine part.

https://doi.org/10.1017/S0263574722001837 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001837


1492 Yihuan Zhang et al.

Table II. Vehicle detection results.

L1 L2

mAP mAPH mAP mAPH
PointPillars [13] 62.15 60.53 53.34 52.71
PointPillars [13] +AUG 63.34 60.57 53.42 52.74
SECOND [8] 67.93 67.32 59.43 58.88
PV-RCNN [14] 74.13 73.43 65.04 64.42
PLOT 67.84 67.24 59.39 58.85

Table III. Pedestrian detection results.

L1 L2

mAP mAPH mAP mAPH
PointPillars [13] 49.69 28.68 42.54 24.54
PointPillars [13] +AUG 50.28 29.59 43.06 25.32
SECOND [8] 57.50 47.67 49.53 41.02
PV-RCNN [14] 62.87 49.96 53.95 42.77
PLOT 63.72 46.35 55.80 40.46

Table IV. Cyclist detection results.

L1 L2

mAP mAPH mAP mAPH
PointPillars [13] 43.66 36.05 42.08 34.75
PointPillars [13] +AUG 44.93 39.51 43.39 38.16
SECOND [8] 54.86 53.48 52.90 51.56
PV-RCNN [14] 62.77 59.28 60.32 56.99
PLOT 57.30 53.84 55.42 52.80

The results are shown in Tables II, III and IV. All three compared methods are trained and tested
with the same data as PLOT. Compared to the one-stage methods, PLOT achieves similar precision to
SECOND in vehicle and cyclist detection and higher precision in pedestrian detection. There are three
downsampling steps in PointPillars so it is difficult to detect small targets such as pedestrians and cyclists
even with data augmentation. PV-RCNN achieves the highest precision in vehicle and cyclist detec-
tion. With the highest precision in pedestrian detection, PLOT is unable to provide an accurate heading
angle for pedestrian. However, the inference time of PV-RCNN is around 150 ms running on a GTX
2080Ti GPU.

In order to deploy the detection method on real-time tasks shown in Fig. 1, the intelligent computing
hardware is a NVIDIA Jetson Xavier NX developer kit that brings super-computer performance to the
edge [44]. The device delivers up to 21 TOPS for running modern AI workloads and consumes 10 W
of power. The width and length of the device are around 10 cm and the height is 8 cm, which is suitable
for deployment in a car or a roadside box. In general, the desktop GPUs such as RTX 3090 has 20 times
AI workloads than NX but also requires 20 times more power consumption, which is not suitable for
autonomous vehicle nor roadside. With 21 TOPS computing resources, it is difficult to keep two-stage
methods running in real time. Thus, only one-stage methods are deployed into the device using TensorRT
tools [45].
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Table V. Real-time experiment results.

Vehicle Pedestrian Cyclist AIT1 (ms)
PointPillars [13] 58.75 34.22 25.34 68.76
SECOND [8] 60.12 37.15 28.41 89.45
PLOT 66.33 36.25 31.53 46.35
PLOT2 68.45 41.64 43.71 44.56
1AIT means average inference time for each model.
2The PLOT is trained using DeepRoute open dataset.

Figure 5. Detection range of the OS1-128 LiDAR sensor. The indent of grey circles is 10 m. The red
circle denotes 20 m and the yellow circle represents 40 m from the sensor.

The real-time experiment is conducted using an Ouster OS1-128 LiDAR scanner mounted on top of
a vehicle. The point cloud data is processed in real time and recorded for analysis. The dataset contains
20 min driving (about 20,000 scans) in the city area. Three individual devices are equipped on the
vehicle to run the detection method at the same time. The results of the real-time experiment are shown
in Table V. The evaluation settings are the same as in Waymo dataset; only the mAP in L1 is listed.

The PLOT outperforms two other methods in vehicle and cyclist detection. The average precision
of pedestrian and cyclist is lower than the results in the Waymo dataset. One main reason is that the city
road has six lanes with guardrail to separate the nonmotorized vehicle lane, which makes the pedestrian
and cyclist difficult to be scanned. Another reason is that there are many electric bicycles which is not
included in the Waymo dataset. One possible way to solve this problem is to label the electric bicycles to
enlarge the training dataset. With the help of a new proposed open dataset from DeepRoute [46], more
cyclist samples are added to the training dataset. The PLOT model is retrained using 10,000 scans of
point cloud data and all the parameters remain the same. The detection results are denoted in Table V, and
the mAP of the cyclist is about 38% higher than the original PLOT model trained using Waymo dataset.
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Table VI. Detailed results.

Type Range(m) PointPillars [13] SECOND [8] PLOT PLOT1

Vehicle [0,20) 79.87 81.05 86.35 92.56
[20,40) 56.25 57.26 65.46 71.24
[40,inf2) 38.16 41.03 43.34 54.62

Pedestrian [0,20) 61.24 63.26 64.16 71.46
[20,40) 35.17 37.22 39.87 44.75
[40,inf) 15.59 16.25 17.37 19.38

Cyclist [0,20) 47.31 49.75 53.66 62.04
[20,40) 22.89 25.68 32.17 37.23
[40,inf) 9.84 10.04 14.32 18.11

1The PLOT is trained using DeepRoute open dataset.
2Inf means infinity.

The results of vehicle and pedestrian are also improved. However, there are still some false negative
results that may affect the autonomous vehicle’s decision making. The frequency of the LiDAR sensor
is 10 Hz which requires an inference time less than 100 ms. With the CSP-based backbone and FPN-
based head, the average inference time of the PLOT is around 46 ms, which is faster than the other two
methods.

According to the detection range of the OS1-128 LiDAR scanner, we divided the range into three
parts, as shown in Fig. 5. We evaluate the detection mAP in each range section to analysis the detection
ability of the proposed method, and the results are shown in Table VI. In the red circle with the range
less than 20 m, the mAPs of vehicle, pedestrian, and cyclist are over 90%, 70%, and 60%, which is able
to be used as an auxiliary warning system in the roadside scenarios and low-speed autonomous driving
scenarios. In addition, due to the sparsity of point cloud, it is difficult to extract the objects over 40 m
from the sensor, which caused the low mAPs in Table VI.

4.2.2. Qualitative evaluation
After the evaluation of average precision in two datasets, more experiments in different scenarios are
carried out. The results are shown in Fig. 6. Four scenarios are tested, including urban road, high-
way, underground parking lot, and rural areas. A camera is mounted in front of the vehicle to capture
videos while driving. There are more electric bicycles in the urban scenario which are shown in pur-
ple, as shown in Fig. 6(a). The trucks and cars are not distinguished and are marked in blue as shown in
Fig. 6(b). The pedestrian in the underground parking lot can be detected in 30 m which is capable to meet
the requirements in Auto Valet Parking system. The predictions for vehicles are accurate and common
failure modes include false negatives on difficult samples such as partially occluded objects. In some
cases, electric bicycles are misclassified as vehicles because they have large cargo in the back (delivery
bicycles). Additionally, pedestrians are easily confused with narrow vertical features such as small trees
and poles. Thus, the detection results require further processing with the help of other sensors such as
cameras and radars.

In addition, the proposed method is applied in a roadside perception node. The Ouster OS1-128
LiDAR sensor is mounted on top of a road sign pole with the height 4.2 m. With a simple coordinate
transformation procedure, the PLOT is fitted into the roadside scenario. The result is shown in Fig. 7,
with the fixed position of the LiDAR sensor, and the ROI can be easily set by adding virtual wall. The
ROI area can eliminate most of the false positive detections such as poles and trees outside the road. One
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(a) (b)

(c) (d)

Figure 6. Performance under different scenarios. Point cloud and front image are displayed. The
vehicles are labeled in blue, pedestrian in orange, and cyclists in purple.

advantage of object detection is the less occlusion of the entities, and the point cloud is able to return
more points from an object. On the other hand, when the LiDAR sensor is blocked by a tree like the red
box area in the figure, the occlusion will be large and may lead to some false negative results.

4.3. Ablation studies
In this section, extensive ablation experiments are carried out to analyze individual components of the
proposed method. All models are trained and evaluated in the same data in the Waymo dataset. Note
that the average precision represents the mAP in L1.
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Figure 7. Road side scenario. The white edges represents a virtual wall of the ROI, blue boxes denotes
the vehicles, and orange box is a pedestrian. The red box area denotes an occlusion caused by a tree.

4.3.1. Point cloud encoding
In point cloud encoding module, the number of output channels and the activation function are related
to the final accuracy and inference speed. Table VII shows the comparing results. The inference time is
15% faster when the number of output channels is halved but the average precision is more than 10%
lower. The results of different activation function are similar which indicates that the effect of activation
function is not obvious.

4.3.2. Backbone and neck
Table VIII demonstrates the results of different backbone and neck structures. Note that all the parame-
ters are set to be the same as Section 4.1.2 and the learning epoch is set to be 150. The first structure is
used in YOLOv4 [42] and path aggregation network (PAN) represents path aggregation network which
is equipped as the neck part. The number after CSP represents the number of CSP modules and the num-
ber of residual blocks in each CSP module. For example, CSP [1,2] means there are two CSP modules,
the first CSP module contains one residual module and the second CSP module contains two residual
modules.

In the image processing domain, the input image with a large size needs to be downsampled multiple
times to extract the features of small objects. However, in point cloud detection domain, the input of
point cloud is sparse and the size of objects remains the same in different range from the sensor. As
the results show, the precision increases when the number of CSP modules decreases. In addition, the
PAN module is usually used to fuse the features from different size which is not suitable in point cloud
processing. The average precision is increased when the PAN is removed.

4.3.3. Detection head and data augmentation
For detection head comparison, the SSD-based detection head used in PointPillars [13] is applied. The
results are shown in Table IX. The average precision of the entities are 62.44, 53.21, and 47.28. In
addition, the SSD structure is more complex than the head of PLOT. As for the effects of the proposed
data augmentation method, a new PLOT model is trained with the data without data augmentation.
The average precision of the entities are 65.76, 58.62, and 51.23. It can be seen that with the data
augmentation, the precision of small objects is improved by more than 5%. The precision of vehicle
detection is slightly improved because most of the samples are already on the road.
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Table VII. Point cloud encoding comparison results.

Vehicle Pedestrian Cyclist Time (ms)
32 + Leaky 61.43 53.72 47.32 42.16
64 + Mish 60.12 58.28 55.89 52.75
PLOT 67.84 63.72 57.30 49.45

Table VIII. Backbone and neck comparison results.

Vehicle Pedestrian Cyclist
CSP [1,2,8,8,4] + FPN + PAN 50.40 26.54 33.26
CSP [1,2,8,8] + FPN + PAN 61.08 42.07 43.51
CSP [1,2,8,8] + FPN 63.70 45.32 44.56
PLOT 67.84 63.72 57.30

Table IX. Detection head and data augmentation results.

Vehicle Pedestrian Cyclist
SSD-based 62.44 53.21 47.28
PLOT-no DA 65.76 58.62 51.23
PLOT 67.84 63.72 57.30

5. Conclusion
In this paper, a 3D point cloud object detection (PLOT) network is proposed to reduce heavy compu-
tation and ensure real-time performance in an embedded system.2 A pillar feature encoding method is
proposed to convert the sparse point cloud into BEV image. A backbone using CSP-based structure is
applied to downsample the input tensor and an FPN-based neck is designed to generate a feature map.
Finally, a multihead structure is attached to predict the classes, bounding boxes, and orientations of the
objects. The average precision on Waymo dataset is over 60% which outperforms the state-of-the-art
methods using one-stage structure. The real-time capability is ensured with an average inference time
50 ms in an embedded system.
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