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Non-Galilean Taylor–Culick law governs sheet
dynamics in unsteady fragmentation
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We present the results of a combined experimental and theoretical investigation of sheet
evolution, expansion and retraction, under unsteady fragmentation upon drop impact on
a surface of comparable size to that of the drop. We quantify and model the effect of
the continuous time-varying – unsteady – shedding of droplets from the sheet via its
bounding rim. We present and validate especially developed advanced image processing
algorithms that quantify, with high accuracy, the key quantities involved in such unsteady
fragmentation, from sheet, to rim, to ligaments, to droplet properties. With these high
precision measurements, we show the important effect of continuous unsteady droplet
shedding on the sheet dynamics. We combine experiments and theory to derive and
validate governing equations of the sheet that incorporate such continuous shedding –
associated with continuous loss of momentum and mass – from unsteady fragmentation.
Combining this theory with the universal unsteady rim dynamics discovered in Wang et al.
(Phys. Rev. Lett., vol. 120, 2018, 204503), we show that the governing equation of the sheet
can be reduced to a continuous-shedding, non-Galilean Taylor–Culick law, from which we
deduce new analytical expressions for the time evolution of the sheet radius. We show the
robustness of the predictions to changes of fluid properties, including surface tension and
moderate fluid viscosity and elasticity, including use of physiological mucosalivary fluid.
We also reconcile prior literature’s inconsistent experimental results on the sheet dynamics
upon drop impact.

Key words: aerosols/atomization, interfacial flows, viscoelasticity

1. Introduction and goals

Sheet dynamics, expansion and retraction, coupled with its fragmentation into secondary
droplets arises in industrial, environmental and physiologic processes, from printing,
spray cooling of surfaces, to delivery of nutrients or pesticides, decontamination,
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Rim thickness b(t)

Number of ligament N(t)
Width of ligament ω(t)
Length of ligament �(t)
Ligament velocity ul

Ejection velocity ud

Droplet diameter d

1. Expanding sheet

2. Rim

3. Ligaments

4. Droplets

(a)
3 mm

6 mm

(b)

(i) (ii)

(iii) (iv)

b

d
ud

r

rs (t)
u(r, t)
h(r, t)

�

ω

Figure 1. (a) Sequence of unsteady sheet expansion from drop impact on a target of comparable size,
dr = 6.3 mm, to that of the drop. The top image shows the expanding sheet viewed from the side at the
time of maximum radial expansion. The bottom panels show the top view; the time interval is δt = 2.5 ms.
(b) Definition of physical quantities.

or disease transmission (Rein 1993; Yarin 2006; Traverso et al. 2013; Bourouiba,
Dehandschoewercker & Bush 2014; Gilet & Bourouiba 2014; Laan et al. 2015; Comiskey
et al. 2016; Josserand & Thoroddsen 2016; Wang & Bourouiba 2018a). A large family
of such fragmentation processes are unsteady, where droplets can be generated at the
very early time depending on substrate properties (Stow & Stainer 1977; Ting & Keller
1990; Xu, Zhang & Nagel 2005; Xu, Barcos & Nagel 2006) and also continuously shed
with properties that vary with time from impacts of spray drops or intermittent jets on
surfaces or films, for example. These include crown splash upon drop impact on dry
or wet surfaces (Josserand & Thoroddsen 2016) or crescent-moon fragmentation upon
drop-on-drop interaction on surfaces (Gilet & Bourouiba 2015; Wang & Bourouiba 2018a).

All these processes involve the transition of the impacting fluid bulk to a sheet,
expanding and then retracting, which is typically surrounded by a rim, itself destabilizing
into droplets (figure 1). Recent work (Wang & Bourouiba 2018b) showed that both size and
speed distributions of the droplets ejected in unsteady fragmentation from a sheet, upon
drop impact on a surface of comparable size to the drop, are shaped by the unsteadiness of
the sheet dynamics. Moreover, this prior study showed that, contrary to prior discussions of
the problem, droplets are shed continuously during the sheet expansion and retraction, with
most shed, in fact, prior to maximum expansion of the sheet (figure 2). The fundamental
questions we address in this paper are the following:

(i) Is the volume shed via continuous droplet shedding from the rim during sheet
expansion comparable to the rim thickness surrounding the sheet?
We especially developed advanced algorithms allowing for high precision in
quantification of all parts of such fragmenting system (§ 3) and show that the answer
to this question is positive (§ 4).

(ii) How does such continuous shedding affect the mass and momentum of the unsteady
sheet?
We find that such an effect cannot be neglected when modelling the sheet dynamics
(§§ 4–6).

(iii) How should the sheet dynamics be modelled to accurately account, in a tractable
manner, for the essential physics elucidated in the prior two questions, namely the
continuous unsteady fragmentation?
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Figure 2. (a) Snapshot of unsteady sheet fragmentation upon drop impact on a target of
comparable size, for We = 963, at time t = 0.2τcap prior to maximum extension, reached at
tm = 0.43τcap. Secondary droplets are continuously shed from the expanding sheet prior to tm.
(b) Diameter distribution of the droplets shed throughout unsteady sheet fragmentation upon drop
impact, for We = 963. The different colours represent the partition of different groups of data. The total area
of the two colours is equal to unity. The colours do not overlap. This shows that most droplets are shed before
the time of maximum sheet extension.

Combining our recent insights on the unsteady rim self-adjustment selecting a
thickness equal to the time-varying local capillary length determined by the sheet
acceleration (Wang et al. 2018), with the global sheet dynamics derived herein, we
derive and validate the governing equation for the sheet which incorporate unsteady
continuous fluid shedding. We show that these equations can be reduced to a
compact non-Galilean Taylor–Culick law (§ 5), with analytical solutions that capture
the essential physics of the sheet dynamics under continuous unsteady fragmentation
well (§ 7).

(iv) Is the prediction of the sheet dynamics under unsteady continuous fragmentation
robust to changes of fluid properties? And does our prediction allow to reconcile
prior literature’s inconsistent results on the sheet dynamics in the air, upon drop
impact?
We show that the answers to these two last questions are also positive in § 8.

To address the above four questions, we focus on the canonical unsteady fragmentation
process from drop impact on a surface of comparable size, dr, to that of the impacting
drop d0. Upon impact on such surface, the impacting bulk fluid falling at velocity u0
is transformed into a sheet radially expanding in the air (figure 1a) with velocity and
thickness profiles u(r, t) and h(r, t), respectively, and with sheet radius rs(t), where
t is the time since impact and r is the radial position of the sheet (figure 1b). We
start with a review of prior studies on such sheet dynamics and discuss the knowledge
gaps.

2. Background

2.1. Discrepancies on sheet evolution upon drop impact
Prior experimental studies aimed at rationalizing the canonical physics of drop impacts
on solid surfaces (Rein 1993; Yarin 2006; Josserand & Thoroddsen 2016). The focus was
on predicting the maximum radius of the sheet, rm, as a function of the Weber number
We = ρu2

0d0/σ and Reynolds number Re = u0d0/ν, where ρ is the density of the fluid,
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σ its surface tension and ν its kinematic viscosity. However, discrepancies between the
scaling laws proposed (Madejski 1976; Scheller & Bousfield 1995; Clanet et al. 2004; Laan
et al. 2015; Lee et al. 2016; Wildeman et al. 2016) persist. A number of factors can be at
the origin of such discrepancies. Among them are the inconsistent surface properties used
in the different studies coupled with the difficulty in accurately capturing the associated
distinct viscous stresses. To clarify this potential source of inconsistency and derive the
essential physics involved, our focus is on the inviscid limit. In this inviscid limit, first,
Yarin & Weiss (1995), Roisman, Berberovi & Tropea (2009) and Eggers et al. (2010)
studied theoretically and numerically drop impacts on solid surfaces. Second, Lastakowski
et al. (2014) and Riboux & Gordillo (2016) studied experimentally and theoretically drop
impacts on superheated surfaces. The vapour layer, from the Leidenfrost effect, effectively
reducing surface stresses (Wachters & Westerling 1966), mimicking an inviscid sheet
expansion. Third, drop impacts on targets of comparable size to the impacting drop were
used to create a sheet expanding in the air (figure 1). This last approach was used to
study stationary sheets from liquid jet impact on small targets by Savart (1833) and Taylor
(1959a). Rozhkov, Prunet-Foch & Vignes-Adler (2002) first investigated such drop impacts
and examined the dynamics of sheet expansion in the air theoretically and experimentally.
The experimental and theoretical study of Villermaux & Bossa (2011) led to the derivation
of an analytic prediction of the entire time evolution of the radius R(t) of the expanding
sheet in the air (figure 1b).

Without viscous effects, Rozhkov et al. (2002), Villermaux & Bossa (2011) and
Lastakowski et al. (2014) developed their respective theoretical models based on control
volume analysis using mass and momentum balance at the rim. In each study, the
numerical or theoretical predictions are in good agreement with the study’s own
experimental results. Thus, it would first appear that, in the inviscid regime, the physics
of sheet expansion from inviscid drop impact is well understood. However, figure 3
compares the experimental data of the sheet radius evolution over the dimensionless
time T = t/τcap, which reveals large discrepancies between the above studies. Here

τcap = √
ρΩ0/πσ =

√
ρd3

0/6σ is the capillary time scale characteristic of the sheet

expansion with Ω0 = πρd3
0/6 the volume of the impacting drop. In particular, note the

non-monotonic increase of maximum radius rm with We. For the same values of the
Weber number reported, the non-dimensionalized values of maximum sheet radius vary
by up to a factor of 2 and non-dimensionalized times of maximal extension can vary by
more than a factor of 1.5. Discrepancies of such magnitude are important as they lead to
inconsistent predictions of coating ranges and poor control of rm, of the order of 0.5

√
Wed0

to 1.5
√

Wed0, or secondary droplet production relevant for a wide range of important spray,
electronics, printing or decontamination applications. The discrepancies between these
studies reflect that ingredients are still missing from the current physical picture of sheet
expansion and unsteady fragmentation upon drop impact. We discuss three ingredients
next.

2.2. Sheet thickness
The radius, rs, of the sheet is governed by both the velocity and thickness profiles of
the expanding sheet. The velocity profile was derived as u(r, t) = u/t (Yarin & Weiss
1995; Roisman et al. 2009; Eggers et al. 2010; Villermaux & Bossa 2011) and verified
experimentally (Lagubeau et al. 2012; Lastakowski et al. 2014; Wang & Bourouiba 2017).
However, the thickness profile of the expanding sheet proposed for drop impacts on
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Roz Rozhkov et al.
(2002)

3.4 2.8 450 Water Target diameter dr = 3.9 mm
η = dr/d0 = 1.4 and 1.03.5 4.0 681

VB Villermaux &
Bossa (2011) N/A 6.0

489
Ethanol Target diameter dr = 6 mm

η = dr / d0 = 1.01378
2873

Las Lastakowski
et al. (2014) N/A N/A 564 Ethanol Superheated surface of

temperature T = 450oC1136

Ver Vernay et al.
(2015)

2.8 3.7 410 Water Target diameter dr = 6 mm
η = dr/ d0 = 1.6 and 2.04.0 3.0 620
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Wang &

Bourouiba
(this study)

2.8
4.4
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Water Target diameter dr = 6.3 mm

η = dr/d0 = 1.453.4 679
4.0 963

Figure 3. Comparison of the time evolution of the dimensionless sheet radius Rs = rs/d0 upon drop impact on
surfaces from prior studies. The sheet radius, rs, is non-dimensionalized by the diameter of the impacting drop
d0. The Weber number is We = ρu2

0d0/σ , with u0 the impacting velocity of the drop, σ the surface tension
and ρ the drop fluid density. Time is non-dimensionalized with the capillary time scale, τcap = √

ρΩ0/πσ =√
ρd3

0/6σ , characteristic of the sheet expansion, with Ω0 = πd3
0/6 the volume of the impacting drop. The

inset shows the non-dimensional time at which the maximum sheet radius is reached, Tm = tm/τcap, as a
function of We in different studies. Experimental conditions for each study are given in the table, including
the target-to-drop size ratio η = dr/d0 (Wang & Bourouiba 2017), with dr the size of the small surface, i.e. the
target.

solid surfaces and on small targets differ. For a drop impact on a small target, Rozhkov,
Prunet-Foch & Vignes-Adler (2002, 2004) proposed a sheet thickness profile h(r, t) ∼ t/r3

assuming that the impacting drop has a decreasing volume flux qs ∼ 1/r during expansion,
while Villermaux & Bossa (2011) proposed a sheet thickness profile analogous to that
of the sheet from a steady liquid jet impacting a surface, but with time variation such
that h(r, t) ∼ f (t)/r, leading to h(r, t) ∼ 1/rt. Wang & Bourouiba (2017) proposed and
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validated a unified self-similar thickness profile reconciling these two profiles

H(R, T) = 1
T2 F

(
R
T

)
, (2.1a)

with

F(X) = 1
a1X + a2X2 + a3X3 , (2.1b)

where a1 = 24, a2 = −38 and a3 = −34 are constants independent of We derived from
the initial and boundary conditions of the impact. Here, R = r/d0 is the radial position in
the sheet non-dimensionalized by the diameter d0 of the impacting drop and T = t/τimp is
the time non-dimensionalized by the impact time τimp = d0/u0, rather than the capillary
time τcap as used in figure 3. The physics underlying the difference between these
two time scales is discussed later (§ 2.3). H(R, T) = h(r, t)/d0 is the sheet thickness,
non-dimensionalized by d0, at position R and time T . The unified profile (2.1) was shown
to be robust and to capture well the experimental data of independent studies (Vernay,
Ramos & Ligoure 2015; Wang & Bourouiba 2017). For drop impacts on inviscid solid
surface, the thickness profile also follows a similarity profile H = (F/T2)(R/T) but with
a different expression of F(X) from that of (2.1) (Roisman et al. 2009; Eggers et al.
2010). Such distinction of sheet thickness profile between drop impact on small targets
or infinite inviscid solid surfaces, with respect to the impacting drop size, could explain
the discrepancy between the results of Lastakowski et al. (2014) and those of others shown
in figure 3.

2.3. Importance of multiple time scales
Physically, the self-similarity profile of the sheet thickness (2.1) is governed by the impact
time scale τimp = d0/u0, since the formation of the thickness profile of the expanding
sheet is only governed by the inertia of the fluid emanating from the impacting drop close
to onset of impact. However, the time evolution of the sheet radius, as discussed in detail
in § 4.3, is governed by the balance of inertia and surface-tension forces acting on the rim
over a longer time scale, the capillary time scale, resulting from

ρd3
0

d0

τ 2
cap

∼ σd0 =⇒ τcap ∼
√

ρd3
0

σ
. (2.2)

Here, we choose a conventional definition of the capillary time as used in prior studies
(Villermaux & Bossa 2011; Vernay et al. 2015; Wang & Bourouiba 2018b; Wang et al.
2018) with

τcap =
√

ρΩ0

πσ
=
√

ρd3
0

6σ
=
√

We
6

τimp. (2.3)

Choosing d0 and τcap (2.3), the non-dimensional variables are then

R = r
d0

, T = t
τcap

, Rs = rs

d0
, H = h

d0
and U = u

d0/τcap
. (2.4a–e)

The sheet thickness profile (2.1) expressed in terms of the dimensionless time
non-dimensionalized by the capillary time scale τcap reads

H(R, T) = 1
T2 F̄

(
R
T

)
, (2.5)
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with

F̄(X) = 6
We

F

(√
6

We
X

)
=

√
6We

6a3X3 + a2X2
√

6We + a1XWe
, (2.6)

where a1 = 24, a2 = −38 and a3 = 34 are the same coefficients as used in (2.1), and
We = ρu2

0d0/σ is the impacting We.

2.4. Rod-to-drop size ratio, η = dr/d0

The sheet radius rs upon drop impact on a target of diameter dr is affected by the ratio
of the rod-to-drop size, η = dr/d0. Wang & Bourouiba (2017) showed that when η is
too small, the sheet cannot expand horizontally. When η is too large, surface stresses
induce a sufficiently high dissipation to alter the velocity profile of the expanding sheet
in the air. The authors showed that a range of 1.4 ≤ η ≤ 1.9 is needed to obtain a
horizontal sheet while also being able to neglect surface stresses. Several studies shown
in figure 3 are in fact outside this range, which can explain the large discrepancies among
them. Indeed, 1.4 ≤ η ≤ 1.9 is satisfied for the experiments in Rozhkov et al. (2002),
Vernay et al. (2015) and the present study, and for all three, the maximum sheet radius
rs monotonically increases with Weber number, with a maximum extension reached
at the same dimensionless time around Tm = tm/τcap = 0.43 (figure 3-inset), recalling

that τcap = √
ρΩ0/πσ =

√
ρd3

0/6σ is the capillary time scale characteristic of the sheet

expansion, with Ω0 = πρd3
0/6 the volume of the impacting drop.

2.5. Continuous droplet shedding
Prior theoretical models predicting the radius of the inviscid expanding sheet (Eggers
et al. 2010; Villermaux & Bossa 2011; Lastakowski et al. 2014; Riboux & Gordillo
2016) were developed considering a control volume on the rim and applying rim mass
conservation and momentum balance. To simplify the problem, the fluid shed from the
rim during expansion prior to the maximum radius was systematically neglected. The
underlying assumption being that the sheet fragmentation and secondary droplet shedding
occurs primarily after the maximum expansion of the sheet is reached. However, using
specifically developed advanced image processing algorithms (§ 3.2), Wang & Bourouiba
(2018b) showed that droplets are shed continuously throughout the sheet expansion with
most shedding occurring prior to the sheet’s maximum expansion, and indeed even
continuing during its retraction (figure 2). Moreover, Wang et al. (2018) showed that the
rim destabilizes and sheds fluid, in the form of ligaments and droplets, due to the local
coupled interfacial and inertial instability driven by the continuous deceleration of the rim
(Roisman 2010; Agbaglah & Deegan 2014), imposing an instantaneous self-adjustment
of the rim thickness, b, to satisfy a robust local and instantaneous Bond number Bo =
ρb2(−r̈s)/σ = 1 condition. In turn, this condition has fundamental implications for the
continuous volume shed from the rim over the course of the full sheet dynamics. These
implications are the focus of the present paper.

3. Experimental approach and advanced image processing (AIP) algorithms

3.1. Experimental set-up
Figure 4(a) shows the schematic diagram of our experimental set-up, with two high-speed
cameras used to record the experiments from side and top views, simultaneously.
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B&
W

 cam
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θ ≤ 15°

4.8 (mm)
Volume-based diameter d0Area-based diameter dA
Horizontal diameter dx→
Vertical diameter dy→

4.6

4.4

dy→

dx→

4.2

4.0
–1.5
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–2.0–2.0–3.0 –1.0 –0.5 0

A

dy

(c)(b)(a)

Figure 4. (a) Schematic diagram of the experimental set-up. (b) Side-view image taken prior to drop impact.
(c) Time evolution of the diameter of an impacting drop measured by various approaches to estimate its
diameter. For all approaches, the measurement error of the drop diameter is ≈0.03 mm. Only a volume-based
measurement is free of influences induced by the drop deformation, while the other approaches induce
measurement errors of 10 %–25 % for the impacting drop volume; t = 0 is the time at which the droplet makes
contact with the surface.

d0 (mm) dx/dy u0 (m s−1) We Re (×104) Nexp Target diameter

3.55 ± 0.03 1.02 ± 0.04 3.10 ± 0.01 474 ± 9 1.10 ± 0.02 6 dr = 5.5 mm
1.03 ± 0.04 3.62 ± 0.01 654 ± 9 1.28 ± 0.02 6 η = 1.55

4.35 ± 0.03 1.01 ± 0.05 2.24 ± 0.01 304 ± 9 0.97 ± 0.02 6 dr = 6.3 mm
0.97 ± 0.04 2.83 ± 0.01 484 ± 9 1.24 ± 0.02 28 η = 1.45
0.96 ± 0.07 3.39 ± 0.01 679 ± 11 1.47 ± 0.02 28
1.05 ± 0.07 3.74 ± 0.01 848 ± 11 1.63 ± 0.02 6
1.03 ± 0.1 4.00 ± 0.01 963 ± 17 1.73 ± 0.03 28
1.08 ± 0.13 4.65 ± 0.01 1305 ± 15 2.02 ± 0.03 6

Table 1. Initial conditions used for the experiments of water drop impacts, including the impact drop
volume-based diameter d0 (figure 4), drop aspect ratio dx/dy at the time of impact, impacting velocity u0,
Weber number, We = ρu2

0d0/σ , and Reynolds number, Re = u0d0/ν, where ρ = 1.0 × 103 kg m−3, ν =
1.0 × 10−6 m2 s−1 and σ = 72 mN m−1, are the density, kinematic viscosity and surface tension of the drop,
respectively. Nexp is the number of experiments for each condition. For each drop diameter, the rod size is
chosen to maintain the rod-to-drop size ratio, η, that is optimal to ensure an inviscid two-dimensional sheet
horizontal formation (Wang & Bourouiba 2017).

The frame rate of the top-view and side-view cameras are 20 000 and 8000 frames per
second, respectively. The pixel resolution of videos recorded from top and side views are
�50 μm pixel−1 and �30 μm pixel−1, respectively. An impacting drop is released from a
needle from different heights selecting a range of different impact velocities u0, that are
measured directly using high-speed imaging. For most of this paper, we present results
using de-ionized water drops with Nigrosin dye of concentration 1.2 g l−1, with density
ρ = 1.0 × 103 kg m−3, surface tension σ = 72 × 10−3 N m−1, and kinematic viscosity
ν = 1.0 × 10−6 m2 s−1 (table 1). In the second part of this paper, other fluids are used to
assess robustness of the results to change of fluid viscosity, elasticity and surface tension
(table 2). The room temperature where the experiments are conducted is 21 ± 2 ◦C.

To generate the sheet, the drops impact stainless-steel cylindrical rods of different
diameters dr chosen to ensure formation of a horizontal expanding sheet (Wang &
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Fluid ρ σ μ τE d0 u0 We Re De
(g cm−3) (mN m−1) (mPa s) (ms) (mm) (m s−1) (×103)

Glycerol(30 %) 1.09 71 ± 1 2.7 0 4.14 3.42 750 5.77 0
Glycerol(50 %) 1.13 69 ± 1 5.2 0 4.12 3.45 782 3.00 0
PEO(0.1 %)–PEG(1 %) 1.01 69 ± 1 2.5 0.8 4.36 3.08 599 5.37 0.07
PEO(0.3 %)–PEG(1 %) 1.01 67 ± 1 4.6 1.6 4.38 3.10 628 3.77 0.13
Mucosalivery fluid 1.00 69 ± 1 1.5 3.5 4.35 3.65 840 10.6 0.29
Dodecane 0.75 25 ± 2 1.4 0 3.66 2.30 581 4.51 0
DMSO 1.10 42 ± 2 2.0 0 3.75 2.97 872 6.23 0

Table 2. Properties of the fluids used in this study, with corresponding initial conditions and dimensionless
Weber, We, Reynolds, Re, and Deborah, De, numbers. Glycerol–water mixtures were used to vary the
fluid viscosity, with percentage indicating the mass fraction used. Mixtures of poly(ethylene oxide) (PEO,
1 × 106 g mol−1) and poly(ethylene glycol) (PEG, 1 × 104 g mol−1) were used to examine the role of fluid

elasticity, quantified by the relaxation time τE in De = τE/

√
ρd3

0/8σ , consistent with the definition in Wang
(2018). The percentages shown indicate the mass concentration of each compound in the mixture. A naturally
elastic biofluid was also used: mucosalivary fluid (the rheology of which is characterized in Bourouiba 2021).
Dodecane and Dimethyl sulfoxide (DMSO) were used to vary the fluid surface tension. Six experiments per
impact condition and fluid are conducted. Impact target diameter used for the first five fluids in the table is
dr = 6.3 mm, and for the last two fluids is dr = 6 mm, to ensure a drop-to-target size ratio, η, between 1.5 and
1.7.

Bourouiba 2017). The rod surface is polished by a 1000-Grit sand paper, associated with a
root-mean-square roughness Rrms < 0.25 μm.

Each group of experiments is repeated at least six times (table 1). We ensure that
the impacts are at the centre of the rod, enabling an axisymmetric sheet expansion
(figure 1). The difficulty of studying fragmentation lies in its multi-scale nature and the
high precision of experimental measurements required at various scales to decipher the
underlying deterministic processes from fluctuations and thus gain fundamental insights
on the underlying physics. A limited number of physical quantities, such as the diameter,
d0, of the impacting drops and the radius, rs, of the expanding sheet can be measured
manually accurately, but with obvious low efficiency. Thus, we next present specifically
developed algorithms that allow us to measure key multi-scale critical physical quantities
systematically and, to our knowledge, with unprecedented precision.

3.2. Advanced AIP algorithms and validation

3.2.1. Volume of the impacting drop
From the side view, the diameter d0 of the impacting drop can be measured directly in one
direction or based on the visible drop area, A, with d0 = √

4A/π (figure 4b). For spherical
drops, both methods give the same diameter. However, drops naturally oscillate. Figure
4(c) shows the time evolution of drop volume Ω0 = πd3

0/6 calculated based on the drop
diameter measured in one direction directly from the side view versus that computed from
the measured area of the drop. The drop volume should be invariant in time, yet neither one
of the two methods satisfy this invariance. To address this issue, we proceed to measure the
drop diameter d0 based on the measurement of its volume, Ω0, instead: d0 = (6Ω0/π)1/3.
Indeed, despite deformation, the shape of the drop remains typically axisymmetric aligned
with its trajectory and its cross-section in this direction remains spheroidal. Thus, the drop
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Figure 5. (a) Steps of our AIP algorithms analysing unsteady sheet fragmentation. The algorithms first
separate the fluid into several parts. (b) Time evolution of the fluid volume in each part of the system is
measured. (c) The sum of the volume of fluid in all parts recovers the volume of the initial impacting drop,
showing the high accuracy of our AIP algorithms. The error bar on the total volume curve shows that the
cumulative error of measurement for each part of the fluid is <10 %. The data shown are for We = 963.

volume, Ω0, is

Ω0 =
∫ d2

0

π

4
d2

c ( y) dy, (3.1)

where dc( y) is the diameter of the cross-section at the position y and d2 is the length of
the drop in the vertical direction (figure 4b). The measurements obtained satisfy volume
conservation (figure 4c). We use the same volume-of-revolution method to measure the
volume of fluid remaining on the rod, Ωc, during the impact, and volume of the secondary
droplets, Ωd, from continuous sheet fragmentation (figure 5a).

Drop oscillation can lead to variation in aspect ratio of the drop at the time of impact.
Prior studies (Durst 1996; Saylor & Grizzard 2004; Yun & Lim 2014) reported an effect of
this aspect ratio on the dynamics of impact. We maintain the aspect ratio of the drop at the
time of impact on the surface for all groups of experiments within the range dx/dy = 1 ±
0.05 (table 1). The convergence of the evolution of the diameter for different measurement
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Sheet dynamics in unsteady fragmentation

methods in figure 4(b) indicates that the impacting drop becomes spherical at the time of
impact. Occasionally, the aspect ratio dx/dy deviates from unity by 15 %, for which the
variation of the maximum sheet radius is around 3 %–5 %.

3.2.2. Tracking and total volume conservation
We derived and developed multi-step AIP algorithms to capture all key physical quantities
of the sheet, rim, ligaments and secondary droplets listed in figure 1(b) despite their
change in morphology and topology with time. For a given frame, one algorithm first
removes the background of the image to isolate the fluid fragmenting (figure 5ai) and
then detects the inner and outer contours of the rim and ligaments, and the expanding
sheet (figure 5aii). Between the inner and outer contours, the rim-ligament connection is
detected (figure 5aiii). Outside the outer contour, the ejected secondary droplets are also
detected (figure 5(aiv) and § 3.2.1).

For the expanding sheet, the radius of the sheet rs is captured by measuring the total area
As within the inner contour and calculating rs = √

As/π (figures 5(aii) and 5(avi)). The
thickness profile h(r, t) of the sheet is measured by light-absorption as shown in Wang &
Bourouiba (2017). With the radius rs and thickness profile h(r, t), the volume of fluid in
the sheet is

Ωs(t) =
∫ rs(t)

dr/2
2πh(r, t)r dr. (3.2)

For the rim–ligament connection, the extruded parts are the ligaments, which can be
systematically and precisely separated from the rim by our algorithms (figure 5avii).
Upon separation, the thickness of the rim, b, is measured locally at each angular position
and averaged along the entire rim. The length of each ligament 	 is measured as the
distance from its root to its tip. The width of each ligament w is measured locally at
each cross-section and averaged along the centreline of the ligament (figure 5avii). Using
cylindrical coordinates, the volume of fluid in the rim, Ωr, and total ligaments, Ω	, can be
evaluated as

Ωr(t) =
∫ 2π

0

π

4
b2(θ, t)R(t) dθ and Ω	(t) =

N(t)∑
n=1

∫ 	n(t)

0

π

4
w2

n(	, t) d	, (3.3a,b)

where b(θ, t) is the local thickness of the rim, N(t) is the number of ligaments, along the
rim, 	n(t) is the major-axis length of the nth ligament and wn(	, t) is the local width of the
nth ligament along the major axis at time t. The major axis of each ligament is computed
from the ligament’s contour detected by our AIP algorithms (figure 5avii). The tip of each
ligament detected at each frame is linked to the location of the tip in another frame with
the ligament-tracking algorithm described in Wang & Bourouiba (2018b), enabling us to
track the evolution of each ligament throughout the sheet expansion.

The position of the secondary droplets is also linked at each frame, by our AIP
algorithms (Wang et al. 2018), to construct their trajectory (figure 5aviii). Hence, the
number of trajectories represents accurately the number of droplets ejected throughout the
sheet dynamics undergoing continuous fragmentation. The travelling speed of a droplet
is measured by taking the difference in its position along its own trajectory. The droplet
ejection speed is defined as the initial speed along its trajectory, measured at the time
of shedding at which an associated change in the length of the ligament of origin of the
droplet is detected. The volume of each droplet, Ωd, is measured using (3.1) along its
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trajectory, with the cumulative droplet volume shed at time t, Ωd, being

Ωd(t) =
M(t)∑
m=1

Ωdm, (3.4)

with Ωdm the volume of the mth ejected droplet and M(t) the number of droplets ejected
by time t. Here, we note that using (3.1) to measure the secondary droplet volume is based
on the fact that secondary droplets oscillate along their trajectory and their cross-section
in axisymmetric in that direction. Wang & Bourouiba (2018b) verified experimentally that
>10 % of droplets shed from the sheet could have other degrees of motion due to the
complexity of the necking. Thus they have a small contribution to the estimation of total
volume ejected. In addition, Thoroddsen, Takehara & Etoh (2012) observed very tiny and
fast-moving micro-splashing droplets of size 5–20 μm at the very early stage of impact
when the impacting Reynolds number Re > 14 000. Such tiny micro-splashing droplets are
smaller than our pixel resolution (§ 3.1). We do not capture these in this study. Their total
volume is negligible with respect to the total volume of secondary droplets. Their speed is,
however, very high, but their deceleration induced by the air drag on their motion, limiting
their range, is also very high.

Finally, figure 5(c) shows the time evolution of the fluid volume in each of the different
parts of the system discussed above, clearly showing that our AIP algorithms ensure both
cumulative and instantaneous volume conservation. Indeed, all parts that are detected
and tracked sum up, at all times, to the initial volume of the impacting drop Ω0. This
conservation shows the high accuracy of our AIP algorithms in tracking and extracting key
features of the system despite their time-varying complex morphology, such as merging
and bending of ligaments. With this high precision in data collection, we can now tackle
the analysis of the quantitative results obtained.

4. Shedding throughout the sheet expansion

4.1. Importance of continuous shedding
Using the AIP algorithms discussed and validated in § 3.2, figure 6(b) shows the
experimental measurement of the volume of the rim Ωr compared to the volume shed from
the rim as a function of time. The cumulative volume shed from the rim at time t includes
the volume of the ligaments Ω	 at that time and the cumulative volume of droplets Ωd
ejected up to that time (figure 6). Clearly, the volume shed from the rim is of the same
order of magnitude as that of the rim throughout the entire sheet dynamics. Thus, the
volume shed from the rim cannot be neglected when modelling the sheet evolution. This
is true for all We (figure 6b–d). In this section, we discuss further the implications of this
robust finding for the dynamics of the sheet expansion. All critical quantities involved in
the physical models hereafter are examined both experimentally and theoretically.

4.2. Validity of the model of sheet dynamics without shedding from the rim
Upon impact on the surface, the drop is transformed into an expanding sheet bounded by a
rim (figure 1). The fluid of the drop is first transferred into the sheet and then accumulated
into the rim. Mass conservation in the sheet, without the rim, reads∫ rs(t)

r0

2πrh(r, t) dr =
∫ t

t0
2πqs(r0, t) dt −

∫ t

t0
2πqin(t) dt, (4.1a)
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Figure 6. (a) Sheet fragmentation with (red) the detected fluid shed from the rim isolated from the fluid in the
rim (blue). The fluid shed from the rim is either transferred into ligaments or secondary droplets. Scale bar is
4 mm. (b–d) Time evolution of the volume in the rim compared to the cumulative volume shed from the rim,
including the volume in all ligaments and the cumulative volume of all ejected droplets, for three different We.
All quantities are non-dimensionalized. For all different We, both volumes have the same order of magnitude
throughout the sheet dynamics, indicating that the fluid shed by the rim cannot be neglected when modelling
the sheet dynamics.

with

qs(r, t) = u(r, t)h(r, t)r and qin(t) = h(rs, t)rs(t)(u(rs, t) − ṙs), (4.1b,c)

where u(r, t) and h(r, t) are the velocity and thickness profiles of the sheet, respectively
(figure 1b); rs(t) is the radius of the sheet and ṙs is its time derivative, which is the sheet
expanding speed, as well as the rim velocity. The exact, and complex, initial condition of
sheet formation and expansion at early time is inaccessible; hence, here t0 does not refer
to the time of first contact between the drop and the surface but to the time after which a
sheet forms. A good choice is t0 = τimp, where τimp = d0/u0 is the drop impact time scale,
with r0 = rs(t0). qs(r, t) is the volume per radian and unit time entering the sheet at radial
position r and time t. qin(t) is the volume per radian and unit of time entering the rim from
the sheet.

Note that with the velocity profile u(r, t) = r/t and the self-similar thickness profile
(2.1) of the sheet, (4.1) holds identically. Indeed, the derivation of the sheet profiles (Wang
& Bourouiba 2017) already accounted for mass conservation (4.1). Considering mass
conservation at the rim and neglecting shedding from the rim, rim mass conservation
per radian reads

d
dt

(ars) = qin, (4.2a)
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with

a = πb2

4
, (4.2b)

where a is the cross-section area of the rim and the volume rate entering the rim, qin(t), is
given by (4.1). We also assume the cross-section of the rim to be circular, and the thickness
(diameter) of the rim, b, to be much smaller than the diameter of the sheet 2rs (figure 1b).
Momentum balance on the rim gives the total momentum change in the rim equal to the net
momentum influx into the rim in addition to the forces exerted on the rim. The only force
acting on the rim in the direction of its radial motion is the restoring surface tension force
exerted by the sheet. Momentum balance, per radian, on the control volume following the
rim then reads

d
dt

(ρars · ṙs) = ρqin(t)u(rs, t) − 2σ rs, (4.3)

where the dot 〈 · 〉 indicates the time derivative of the variable. Combining (4.1)–(4.3)
leads to the governing equation

ρ(ars)r̈s︸ ︷︷ ︸
inertia

− ρh(rs, t)rs(u(rs, t) − ṙs)
2︸ ︷︷ ︸

momentum influx

+ 2σ rs︸︷︷︸
surface tension

= 0, (4.4)

with

ars =
∫ t

t0
qin(t) dt + a0r0 =

∫ t

t0
qs(r0, t) dt −

∫ rs

r0

rh(r, t) dr + a0r0, (4.5)

where a0 is the initial cross-section area of the rim at initial time t0. The above
integro-differential equations are difficult to solve analytically. To simplify, the common
assumption made in prior studies (Roisman, Rioboo & Tropea 2002; Villermaux & Bossa
2011) was that the inertial effects associated with the acceleration are small and negligible
compared to the momentum input from the sheet into the rim. This assumption leads to
the elimination of the highest-order derivative term in (4.4), thus, simplifying it to

− ρh(rs, t)(u(rs, t) − ṙs)
2 + 2σ = 0 =⇒ u(rs, t) − ṙs =

√
2σ

ρh(rs, t)
, (4.6)

which is the Taylor–Culick speed (Taylor 1959b; Culick 1960). This would mean that
the difference between the velocity of fluid entering the rim u(rs, t) and the velocity of
the rim ṙs is fully determined by the sheet thickness at the rim h(rs, t). Similar to the
absence-of-shedding assumption, this assumption of negligible inertial effects in the rim
has not been verified experimentally. With our algorithms discussed in § 3.2, we measure
the quantities involved experimentally.

Figure 7(a) shows the measured time evolution of the absolute value of the inertial
term associated with the acceleration ρ(ars)r̈s compared to the momentum-influx term
ρh(rs, t)rs(u(rs, t) − ṙs)

2 and the surface-tension term 2σ rs. Although the inertial term
is smaller, the three terms remain of the same order of magnitude throughout the entire
sheet dynamics. Figure 7(b) shows that the ratio between the absolute value of the inertia
term and the surface-tension force term is approximately 0.4. Hence, the inertia of the
rim associated with the rim acceleration is non-negligible. Given that the acceleration is
changing with time, the rim dynamics would thus have to be considered in a non-Galilean
frame of reference. Moreover, figure 7(b) shows that the ratio between the inertia and
surface-tension terms remains constant throughout the entire sheet evolution, and this is
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Figure 7. (a) Measured time evolution of the three terms of the rim momentum balance (4.4), for We = 679.
Each term is non-dimensionalized by ρd4

0/τ 2
cap = 6σd0. (b) Time evolution of the ratio of surface-tension force

to inertia term in (4.4), for a range of We values. This term remains constant throughout the sheet dynamics,
and is robust for the change of We. This result is further discussed in § 5.1, with the experimental value of the
ratio being in good agreement with the theoretical prediction π/8 (5.2) derived from the local rim constraint
Bo = 1 from (4.14) (Wang et al. 2018).

robust to the change of We. We explain such constant ratio theoretically in subsequent
sections (§ 5.1). It is important to note that the measured inertia term (ρars)r̈s from our
experiments accounts for the fluid shed from the rim. In other words, if no shedding was
occurring from the rim, more fluid would accumulate in it and the inertial effect would
be even greater. Thus, our measurements do not support the assumption of absence of
shedding prior to the maximum sheet expansion. They also do not support neglecting the
inertia of the rim, the assumption of which leads to a Taylor–Culick dynamics, (4.6).

4.3. Rim dynamics incorporating continuous fluid shedding and inertial effects
We proceed to develop and validate a rim theoretical model that enables us to incorporate
both the non-negligible shedding (figure 6) and non-negligible inertial effects on the rim
(figure 7), while ensuring mass conservation for the full system, starting with

d
dt

(ars) = qin − qout, (4.7)

where qout is the volume per radian and unit time leaving the rim. The shedding from the
rim also induces momentum leaving the rim per unit of time. Momentum balance with a
control volume following the rim reads

d
dt

(ρars · ṙs) = ρqinu(rs, t) − ρqoutvout − 2σ rs, (4.8)

where vout is the speed of fluid leaving the rim. Equations (4.8) and (4.3) differ by the
term ρqoutvout representing the momentum leaving the rim. Combining (4.7) and (4.8),
the modified governing equation for the sheet expansion becomes

(ρars)r̈s − ρqin(u(rs, t) − ṙs) + ρqoutv	 + 2σ rs = 0, (4.9)

where v	 = vout − ṙs is the speed of fluid leaving the rim in the reference frame of the
moving rim. The combination of (4.1), (4.7) and (4.9) describes the sheet expansion
dynamics, in which two quantities remain unknown: the rate of volume loss from the rim,
qout, and its associated fluid outward speed v	.
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Clearly the time evolution of the expanding sheet (4.9) results from the balance of the
inertia and surface tension acting on the rim, confirming that the time evolution of
the sheet radius is indeed governed by the capillary time scale τcap (2.3), rather than
the impact time scale τimp = d0/u0. For the remainder of this paper, unless specified
otherwise, we use lower case letters for dimensional variables and capital letters for
variables non-dimensionalized using d0 and τcap.

4.4. Volume rate leaving the rim: qout

We now determine the rate of fluid volume leaving the rim, qout. The rim mass
conservation enables us to link qout(t) to the rate of fluid volume entering the rim from the
sheet, qin(t). Using (4.1) for qin(t), the cumulative volume Ωin(t) entering the rim is

Ωin(t) = Ωin0 +
∫ t

t0
2πh(rs, t)rs(t)(u(rs, t) − ṙs) dt, (4.10)

where Ωin0 is the volume of fluid that enters the rim prior to t = t0. Non-dimensionalizing
by the initial volume of the impacting drop Ω0 = πd3

0/6, leads to Vin = Ωin/Ω0 which
reads

Vin(T) = Vin0 + 12
∫ T

T0

H(Rs, T)Rs(T)(U(Rs, T) − Ṙs(T)) dT, (4.11)

where Vin0 = Ωin0/Ω0 is the dimensionless volume entering the rim prior to T0, and the
other non-dimensional variables are defined in (2.4a–e). Using the sheet velocity profile
U(Rs, T) = Rs(T)/T , and the self-similar sheet thickness profile (2.5), we can re-write the
expression of the cumulative volume Vin as

Vin(T) = Vin0 + 12
∫ T

T0

−Rs(T)

T
F̄
(

Rs(T)

T

)
d
(

Rs(T)

T

)
. (4.12)

By changing the integral variable U(T) = Rs(T)/T and using the expression of F̄(X) (2.5),
we can rewrite the expression of the cumulative volume Vin entering the rim as

Vin(T) = Vin0 + 12
∫ R0/T0

Rs(T)/T

√
6We

6a3U2 + a2U
√

6We + a1We
dU. (4.13)

Experimentally, the time evolution of Ωin(t) can be measured by summing the volume
in the rim Ωr(t), the ligaments Ω	(t) and the cumulative volume in the ejected droplets
Ωd(t) using (3.3a–e) and (3.4). Figure 8(b) shows the experimental measurement of the
cumulative volume entering the rim Ωin as a function of time. The estimation of Ωin using
(4.13) based on the experimental data of the sheet radius rs matches the experimental
data very well for all We (figure 8b, inset). Such a match further supports the accuracy
of the sheet velocity and thickness profiles (Wang & Bourouiba 2017) and the theoretical
expression of the volume influx (4.13). Thus, we can use these validated predictions to
pursue our derivation of the sheet evolution.

As described in § 2.5, the shedding of fluid from the rim is due to rim destabilization,
governed by the local instantaneous Bond number of the rim remaining equal to one (Wang
et al. 2018), inducing a self-adjustment that maintains the rim thickness b(t) equal to the
local and instantaneous capillary length lc(t), with

Bo = ρb2(−r̈s)

σ
= 1 =⇒ b = lc =

√
σ

ρ(−r̈s)
. (4.14)
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Figure 8. (a) Schematic diagram of the sheet. Experimental measurements of (b) the cumulative fluid volume
Ωin entering the rim from the sheet compared with the prediction (4.13), of (c) the rim thickness b compared
with the prediction (4.14) and of (d) the cumulative volume Ωout shed from the rim compared with the
prediction (4.18). The solid lines are the theoretical predictions and the main graphs are shown for We = 679.
The insets in (b) and (d) show the ratio of the experimental values with the theoretical predictions of
the corresponding quantity for all We. All ratios remain equal to one, indicating good agreement between
predictions and measurements, and robustness to change of We values.

Figure 8(c) shows a very good match, and robustness with respect to change of We, of
the time evolution of the measured rim thickness with the local instantaneous capillary
length lc using (4.14) based on the experimental data of the rim acceleration, as expected
from (Wang et al. 2018). Using (2.4a–e), the rim thickness in dimensionless form reads

B = b
d0

=
√

σ

ρd0/τ 2
cap(−R̈s)

= (−6R̈s)
−1/2. (4.15)

Taking a cylindrical coordinate system, the volume of the rim can be expressed as

Ωr(t) = 2πrs

(π

4
b2
)

= 2πd3
0

πRs

24(−R̈s)
. (4.16)

Similarly, non-dimensionalized by the initial volume of the impacting drop, Ω0 = πd3
0/6,

the dimensionless rim volume Vr reads

Vr(T) = Ωr(T)

Ω0
= πRs

2(−R̈s)
. (4.17)

The rim mass conservation (4.7) imposes that the cumulative volume of fluid shed from
the rim is Ωout(t) = Ωin(t) − Ωr(t). Using (4.13) and (4.17), the dimensionless cumulative
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volume Vout shed from the rim reads

Vout(T) = Ωout

Ω0
= Vin0 + 12

∫ R0/T0

Rs(T)/T

√
6We

6a3U2 + a2U
√

6We + a1We
dU − πRs

2(−R̈s)
.

(4.18)

Similar to Ωin, the time evolution of Ωout(t) can be measured experimentally by our AIP
algorithms, by taking the sum of the volume in the ligaments Ω	(t) and the cumulative
volume in the ejected droplets Ωout(t). Figure 8(d) shows the experimental measurement
of the cumulative volume Ωout(t) shed from the rim compared to its estimation from (4.18).
The estimation matches the experimental data very well, and is robust to changes of We,
indicating that the fluid shed from the rim is captured entirely by the criterion Bo = 1
(4.14). In other words, using (4.1) and (4.7), the volume per radian and unit of time shed
by the rim is

qout(t) = h(rs, t)rs(t)(u(rs, t) − ṙs) − d
dt

(π

4
b2rs

)
. (4.19)

Using the length scale d0 and time scale τcap, we choose the volume rate to scale as d3
0/τcap

leading to the dimensionless volume rate per radian

Qout(T) = qout

d3
0/τcap

= Rs

T2 F̄
(

Rs

T

)(
Rs

T
− Ṙs

)
− d

dT

(π

4
B2Rs

)
, (4.20)

expressed as a function of the variables (2.4a–e). Note that the same expression can also be
obtained by taking the derivative of (4.18) and recalling that Vout is non-dimensionalized
by the initial volume of the drop Ω0 = πd3

0/6, while the Qout(T) is the volume outward
per radian and time, non-dimensionalized by d3

0/τcap. Thus,

Qout(T) = π/6
2π

dVout

dT
= 1

12
dVout

dT
. (4.21)

With the volume leaving the rim per unit of time determined, we can now turn to determine
the associated fluid outward speed v	.

4.5. Speed of fluid leaving the rim: v	

The mechanism that governs the fluid emanating from the rim into ligaments is discussed
in detail in a separate study (Wang & Bourouiba 2021). In the non-inertial reference frame
of the rim (figure 9a), which decelerates, a fluid parcel is subject to the fictitious force ρ r̈s,
inducing a fluid flow from the junction – the region at the foot of the ligament – into the
ligament. This outward speed v	 is estimated using a local analysis involving Bernoulli
applied between point (1), at the centre of the rim, and (2), at the centre of the ligament
(figure 9a). Taking the centreline of the rim as the reference level for this body force, the
fluid in the rim has a zero velocity at point (1), the rim-curvature-induced pressure is thus
2σ/b, with the potential of the fictitious force being null. At point (2), the outward speed
is v	, the ligament-curvature-induced pressure is 2σ/w, while the potential of the fictitious
force is ρ(−r̈s)(rc + b/2), where rc is the effective radius of curvature at the rim–ligament
junction. The Bernoulli equation applied between points (1) and (2) then reads

0 + 2σ

b
= 1

2
ρv2

	 + 2σ

w
− ρ (−r̈s)

(
rc + b

2

)
. (4.22)

In a separate investigation (Wang & Bourouiba 2021) we conducted a detailed and
systematic study of isolated ligaments along the rim for different impact We and found
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Figure 9. (a) Schematic of the junction between the rim and a ligament as shown in the inset
of (c). (b) Quantities used to compute the experimental value of the outward velocity v	 from the rim to
the ligaments. (c) Experimental data of the outward velocity v	 as a function of time for We = 963. The
average experimental outward velocity of fluid shed from the rim is measured from the average volume rate
entering each ligament, qe	, divided by the average ligament cross-sectional area a	 = πw2/4. The cumulative
measurement error of v	 is around 15 %. The solid line is the prediction of the outward velocity v	 from (4.23),
which is in good agreement with experimental measurements. The upper-right inset shows the ratios between
the theoretical prediction and the data of v	 for different We, all remaining equal to unity.

that the effective radius of curvature at the rim-ligament junction, rc, is in fact close to the
width of the ligament w. The outward speed is thus

v	 =
√

(2w + b)(−r̈s) + 4σ

ρ

(
1
b

− 1
w

)
. (4.23)

The experimental measurement of v	, at each time, is indirect using v	(t) = qe	(t)/a	(t),
where qel(t) is the population average volume leaving the rim to enter each ligament, per
unit of time. This is obtained from the derivative of the cumulative volume shed from the
rim into each ligament measured by our AIP algorithms (§ 3). Here, a	(t) = πw2(t)/4
is the cross-sectional area of each ligament averaged along the ligament (figure 9b).
Figure 9(c) shows the experimental measurement of outward speed v	 as a function of
time for We = 679, compared with the estimation (4.23), which are in good agreement,
and robust to change of impact We (figure 9c, inset).

Here, we note that the effect of aerodynamic forces on the sheet expansion can be
estimated. The pressure force F ∼ ρa(ṙs)

2b, where ρa is the air density, acting on the
rim-ligament system during the sheet evolution is <4 % of the capillary force, and
is comparable to our measurement error. Thus, we neglect aerodynamic forces in our
analysis.

5. Unified closed-form theory of sheet dynamics under continuous unsteady
fragmentation

5.1. The Bo = 1 criterion: balance of inertial and surface-tension forces and
first system reduction

With (4.1) and (4.9), and the expression of quantities qout (4.19) and v	 (4.23), we now
have a closed system governing the sheet evolution, incorporating inertial and shedding
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effects. Using the local rim condition Bo = 1 (4.14), the first term in (4.9) is re-written as

(ρars)r̈s =
(
ρ

π

4
b2rs

)
r̈s = −π

4
σ rs, (5.1)

which is analogous to a surface-tension force. Thus, the ratio between the absolute value
of the inertia and the surface-tension force terms in (4.9) is constant throughout the sheet
dynamics and independent of the impact We, with

|(ρars)r̈s|
|2σ rs| = π

8
≈ 0.39. (5.2)

This constant is in excellent agreement with the experimental measurements of this ratio
(figure 7b), confirming that the inertia associated with the rim acceleration is, indeed,
non-negligible.

More importantly, the Bo = 1 criterion means that the local instantaneous inertial force
acting on the rim is always equivalent, in magnitude, to the instantaneous local capillary
force. Remarkably, this balance enables us to reduce the complexity of the inertial term, a
second-order derivative of rs and the cross-sectional area of the rim a which would require
taking the integral of (4.7). Instead, the equivalent surface-tension term is linear in rs,
thus dramatically, reducing the complexity of (4.9) while ensuring that both inertial and
continuous-shedding effects remain captured. The reduced system reads

− ρqin

⎛
⎝u(rs, t) − ṙs︸ ︷︷ ︸

vin

⎞
⎠

︸ ︷︷ ︸
pin

+ ρqoutv	︸ ︷︷ ︸
pout

+
(

2 − π

4

)
σ rs = 0. (5.3)

Recall that
qin = ρh(rs, t)rs

(rs

t
− ṙs

)
and u(rs, t) = rs

t
, (5.4a,b)

which are functions of sheet radius rs and time t only. Thus, the only remaining term to
close the reduced system governing the sheet evolution is the momentum leaving the rim
per unit of time ρqoutv	, tackled next.

5.2. Closed system of equations governing the sheet evolution, rs(t)
The expressions of qout and v	 are given by (4.21) and (4.23), respectively, as

qout = qin − π

4
d
dt

(
b2rs

)
and v	 =

√
(2w + b)(−r̈s) + 4σ

ρ

(
1
b

− 1
w

)
, (5.5a,b)

where qin is the volume entering the rim per unit of radian and time (4.1) and b =√
σ/ρ(−r̈s) is the rim thickness determined by Bo = 1 (4.14). Thus, the only unknown

quantity in (5.3) is the ligament width, w.
Figure 10(a) shows the time evolution of ligament width, w, compared to rim thickness,

b, with inset showing that the ratio w/b is approximately 1–1.4 throughout the sheet
evolution, and for all different We. Thus w and b are considered approximately equal,
at first order. Using w ≈ b and Bo = 1, v	 simplifies to

v	 =
√

3(−r̈s)b =
√

3σ

ρb
. (5.6)

We quantify the error induced by the approximation w ≈ b on the sheet dynamics,
by comparing the magnitudes of the rates of momentum inward and outward in (5.3).
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Figure 10. (a) Comparison of the measured time evolution of the width of a ligament, w, and rim thickness, b,
for We = 679, non-dimensionalized by d0. The ratio w/b is mostly invariant to change of We (inset).
(b) Comparison of measured time evolution of fluid speed vin = u(rs, t) − ṙs entering the rim and outward
speed v	 leaving the rim, in the rim reference frame and for We = 679. Both are non-dimensionalized by
d0/τcap. The ratio vin/vout remains close to 4 throughout the sheet evolution (inset). (c) Comparison of
measured time evolution of the volume rate qin entering the rim and the volume rate qout leaving the rim in the
rim reference frame, for We = 679, both non-dimensionalized by d3

0/τcap. The ratio qin/qout is mostly invariant
to change of We (inset). (d) Comparison of measured time evolution of the rate of momentum from the sheet
to the rim, pin = ρqinvin, and the rate of momentum from the rim into the ligaments/droplets, pout = ρqoutv	,
in the rim reference frame, for We = 679. Both quantities are non-dimensionalized by ρd4

0/τ 2
cap = 6σd0. The

ratio of pin/pout ranges from 10 to 3, showing that pout remains systematically smaller than pin.

Figure 10(b) shows the time evolution of the measured fluid speed from the rim to
the ligaments, v	, compared with the fluid speed from the sheet into the rim, vin =
u(rs, t) − ṙs, both shown in the rim reference frame: v	 is systematically smaller than
vin during the entire sheet dynamics, with vin/vout ≈ 4 and constant. Figure 10(c) shows
the comparison between the volume shed from the rim per unit of time and radian, qin,
and the volume entering the rim per unit of time and radian, qout: qin/qout ranges from 1
to 3 (figure 10c, inset). Thus, the rim momentum loss, pout = ρqoutv	, is systematically
smaller than the momentum gain, pin = ρqin(u(rs, t) − ṙs), in (5.3) (figure 10d), with an
instantaneous ratio pin/pout = 3 − 10, and a time-averaged ratio ≈ 5 over the course of
the sheet’s life (figure 10d, inset). Thus, recalling that w/b = 1–1.4 (figure 10a, inset),
the approximation w ≈ b introduces a time-averaged error of approximately 10 % on v	

(4.23). With the time-averaged ratio pin/pout ≈ 5 in (5.3), the error on the prediction of
rs(t) introduced by the approximation w ≈ b and plugging the expression of v	 (5.5a,b)
into pout in (5.3) is 0.1 × (1/5) = 0.02, namely a negligible error of 2 %.
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We emphasize that, physically, the width of a ligament, w, and the rim thickness,
b, should not be considered to be equal for all purposes. They are in fact selected by
different underlying mechanisms. The rim thickness is determined by the Bo = 1 criterion
and a self-adjustment of the rim thickness selecting its width to be the local capillary
length based on the sheet instantaneous acceleration; while the width of a ligament is
determined by the fluid mass and momentum shed by the rim combined with the ligament
population growth dynamics. In a separate study (Wang & Bourouiba 2021), we elucidate
the details of the ligament evolution and prediction of the time evolution of the ligament
width, w, important for prediction of the properties of the droplets shed over time. Here,
for the purpose of elucidating and capturing the sheet evolution, at first order, w ≈ b is
an acceptable approximation (introducing 2 % error on rs) that enables us to decouple
the sheet from the ligament dynamics, thus close the governing system, with the rim
momentum loss now reading

pout = ρqoutv	 = ρ

[
qin − π

4
d
dt

(
b2rs

)]√3σ

ρb
. (5.7)

Figure 11(a) confirms the validity of (5.7), showing that the time evolution of
the measured pout = ρqoutv	 matches well (5.7) computed using the experimental
measurements of rs and b. The closed system governing the sheet radius rs is thus

− ρqin

(rs

t
− ṙs

)
︸ ︷︷ ︸

vin

+ ρ

[
qin − π

4
d
dt

(
b2rs

)]√3σ

ρb︸ ︷︷ ︸
ρqoutv	

+
(

2 − π

4

)
σ rs = 0, (5.8a)

with

qin = h(rs, t)rs

(rs

t
− ṙs

)
︸ ︷︷ ︸

vin

and b =
√

σ

ρ(−r̈s)
. (5.8b,c)

This closed system is a nonlinear differential equation involving only rs(t) and its
derivatives, while incorporating the inertial effects and continuous fluid shedding from
the rim. With pout = ρqoutv	 in (5.8) being a second-order derivative of the sheet radius
rs via its dependence on b; (5.8) is a nonlinear third-order ordinary differential equation
on rs. This system is self-contained and can be directly solved numerically to predict rs,
using known initial conditions.

To gain further physical insights, an analytical closed-form solution is also desirable.
We discuss next how a key result about the ligament dynamics and momentum outward
allows us to further reduce (5.8) to a first-order equation on rs(t) more suitable to derive
an analytical solution for the sheet evolution for different We impact regimes, while
continuing to capture continuous-shedding and inertial effects.

5.3. Reduced sheet evolution system, with continuous shedding: non-Galilean
Taylor–Culick law

The fluid shed from the rim enables the growth of the ligaments along it. Wang &
Bourouiba (2021) show that there is a critical minimum distance λ between two adjacent
ligaments required to maintain the growth of a fully formed ligament. The minimum
distance between ligaments is determined by the constraint that the rate of volume leaving
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Figure 11. (a) Experimental measurement of the momentum leaving the rim per unit of radian pout = ρqoutv	

as a function of time. The experimental pout is indirectly measured by multiplying the measured volume rate
outward qout and the measured outward speed v	 shown in figure 9(b). The experimental measure of pout is
compared with the estimation (5.7) based on the experimental data of rs and b, and also compared with the
surface-tension force per radian exerted by the sheet 2σ rs. Each term is non-dimensionalized by σd0. The inset
of (a) shows the ratio of the measured pout with 2σ rs, multiplied by We3/8. The dash shows the theoretical value
of the ratio = 2.1 (5.13), in good agreement with the experimental data. (b) Time evolution of the measured
critical length λ(t) between neighbouring growing ligaments along the rim, relative to the instantaneous rim
thickness b. The inset of (b) shows the ratio λ/b normalized by We3/8 for different We collapses on a single
curve. The dash line shows the theoretical value of the normalized ratio equal to 0.56 (5.11), in good agreement
with the experimental data.

the rim within a distance λ must equal the rate of volume entering one ligament at that
time, qe	(t), namely,

qout(t)
rs(t)

λ(t) = qe	(t) = a	(t)v	(t), (5.9a)

with
a	(t) = π

4
w(t)2, (5.9b)

where, qout is the volume rate leaving the rim per radian, qout(t)/rs(t) is the volume
rate leaving the rime per unit arclength, a	(t) is the average cross-sectional area of
the ligaments and v	(t) is the average outward fluid speed (4.23). Using (5.9) and the
approximation w ≈ b, the momentum loss term (5.7) is re-expressed as

pout = ρqoutv	 = ρ
rs

λ
a	v

2
	 = ρrs

λ

π

4
b2
(

3σ

ρb

)
= 3π

4

(
b
λ

)
σ rs. (5.10)

Figure 11(b) shows that λ(t)/b(t) remains approximately constant throughout the sheet
life. Wang & Bourouiba (2021) derived that, in fact, the ratio of the minimum distance λ
with the rim thickness b is a constant in time, with dependence on We such that

λ

b
≈ 0.56We3/8, (5.11)

consistent with the experimental data in figure 11(b). Substituting (5.11) into the
momentum loss term (5.10) gives

pout = ρqoutv	 = 1.34π

We3/8 σ rs. (5.12)

Thus, similarly to the inertia term (5.1), the momentum exiting the rim, pout, introduces an
equivalent surface-tension force. Hence, the ratio between the magnitude of pout and the
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surface-tension force term in (5.3) is
|ρqoutv	|
|2σ rs| = 0.67π

We3/8 ≈ 2.1
We3/8 . (5.13)

Figure 11(a) shows the measured time evolution of the momentum exiting the rim pout =
ρqoutv	, compared with the surface-tension force 2σ rs. A systematic gap between the two
curves is observed with the ratio between them matching the theoretical value given by
(5.13), a prediction that remains robust to the change of We (figure 11a, inset), confirming
that the approximate expression (5.10) captures, at first order, pout well. Using (5.10), the
governing equation of sheet radius rs, (5.3), can be further reduced to

− ρh(rs, t)
(rs

t
− ṙs

)2 + (2 − β) σ = 0, (5.14a)

with

β = π

4
− 1.34π

We3/8 , (5.14b)

which is analogous to a Taylor–Culick law, with an additional term βσ . We emphasize
that the reduction of the governing equation of sheet radius to an analogue Taylor–Culick
law is not because the inertia of the rim is negligible. Instead, it is due to the continuous
shedding of the fluid from the rim, with the instantaneous volume rate leaving the rim,
qout(t), governed by the nonlinear rim destabilization, which enables the rim to self-adjust
its thickness to remain governed by a universal instantaneous Bo = 1 criterion, with an
instantaneous speed of fluid leaving the rim, v	(t), of shedding determined by a local
rim–ligament dynamics (Bernoulli).

It is the combination of these two local mechanisms underlying the rim destabilization
and the ligament growth that enables us to convert the rim inertia (mr̈s) and pout = ρqoutv	

of the shedding to effective additional surface-tension forces acting on the rim, the
additional term −βσ . The original Taylor–Culick law (4.6) is derived for steady flow in a
Galilean frame (non-accelerating), while (5.14) is derived for an unsteady sheet dynamics,
where the rim constantly decelerates and sheds fluid, i.e. moving in a non-Galilean frame.
Thus, we name (5.14) the non-Galilean – or non-inertial – Taylor–Culick law for rims
undergoing unsteady fragmentation with continuous shedding. The great advantage of
the non-Galilean Taylor–Culick law is that it reduces the complex and high-order rim
governing equation (4.9) to a first-order differential equation in addition to enabling
accurate prediction of the droplet shedding occurring continuously throughout the sheet
expansion and retraction. Using the length scale d0 and capillary time scale τcap with
the dimensionless variables introduced by (2.4a–e), the final governing equation in
dimensionless form reads

− 6H(Rs, T)

(
Rs

T
− Ṙs

)2

+ (2 − β) = 0, (5.15a)

with

β = π

4
− 1.34π

We3/8 (5.15b)

with

H(Rs, T) = T
√

6We

6a3R3
s + a2R2

s T
√

6We + a1RsT2We
, (5.15c)

where H(Rs, T) is the thickness profile of the sheet at the rim derived from (2.5) and Wang
& Bourouiba (2017).

969 A19-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

51
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.519


Sheet dynamics in unsteady fragmentation

6. Solutions of the non-Galilean Taylor–Culick law

Before deriving the exact solution of (5.15), we first review the general behaviour of
its solutions, requiring a choice of initial conditions. Both theoretical and experimental
studies of early-time dynamics of the sheet expansion (Thoroddsen et al. 2012; Gordillo,
Lhuissier & Villermaux 2014; Philippi, Lagrée & Antkowiak 2016) showed that, at very
early times, the rim velocity ṙs(0) is proportional to the drop impact speed u0. This
is reasonable as, at very early times prior to the formation of the sheet, the surface
tension force is not dominant, with an initial rim horizontal momentum proportional to the
incoming vertical momentum of the impacting drop, thus, ṙs(0) ∼ u0. However, the exact
factors remain debated, from ṙs(0) = u0 (Villermaux & Bossa 2011) to ṙs(0) ∼ 1/

√
T with

singularity at T = 0 (Thoroddsen et al. 2012; Riboux & Gordillo 2014). Without loss of
generality, and for the purpose of illustration of the properties of the solution of (5.15)
governing the sheet reaching the air after expansion on finite surface, we use ṙs(0) ≈ 2u0
as the initial condition.

Non-dimensionalizing the initial velocity ṙs(0) = 2u0 using the length scale d0 and time
scale τcap (2.3), the dimensionless initial condition reads

Ṙs(0) = ṙs(0)

d0/τcap
= 2u0

d0

√
ρd3

0
6σ

=
√

2
3

We. (6.1)

Figure 12 shows the solution of (5.15) for impact We ranging from 500 to 500 000,
with the sheet radius Rs normalized by

√
We. Note that we chose to explore the full range

of We values to illustrate the regimes of solutions (5.15). However, phenomena such as
prompt splash and sheet disintegration with hole formation would occur in experiments
for such high values of Weber number (Mundo, Sommerfeld & Tropea 1995; Yarin 2006;
Josserand & Thoroddsen 2016) under certain conditions of air pressure, surface properties,
fluid properties and purity (Poulain, Villermaux & Bourouiba 2018). Assuming that these
effects are suppressed, for such wide range of We, the maximum radius Rm, normalized
by

√
We, and the time of maximum radius Tm of the solutions of (5.15) vary slowly, 10 %

change, over a wide range of impact We spanning three orders of magnitude. We show
next that such slow variations of Rm/

√
We and Tm are clearly embedded in the structure of

(5.15).
We introduce a new variable Ym = Rm/

√
We. Substituting the new variable into the

non-Galilean Taylor–Culick equation (5.15) gives

− 6H(Ys, T)

(
Ys

T
− Ẏs

)2

+ (2 − β) = 0, (6.2a)

with

β = π

4
− 1.34π

We3/8 , (6.2b)

with

H(Ys, T) = T
√

6

6a3Y3
s + a2Y2

s T
√

6 + a1YsT2
, (6.2c)

from which, it is clear that the only explicit dependence on We is 1.34π/We3/8, which
corresponds to the momentum outward discussed in § 5.3. Given that Ṙs(0) ∼ √

We, the
structure of the equation on Ym (6.2) has initial conditions free of explicit We dependence.
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Figure 12. (a) Full solution of the non-Galilean Taylor–Culick law (5.15) for impact We
ranging from 50 to 500 000. The radius of the expanding sheet is normalized by

√
We.

(b) The equivalent maximum radius Ym and (c) the time of maximum radius Tm as a function of We,
normalized by the maximum radius Y∞

m and the time of maximum radius T∞
m as We → ∞. The inset of (a)

shows the snapshot of an expanding sheet at the time of maximum radius for We = 250, for which the rim
does not fragment.

Moreover, limWe→∞ using the 1.34π/We3/8 = 0. In other words, as We becomes large
(6.2) becomes independent of We, thus a loss of explicit dependence of Ym = Rm/

√
We

and Tm on We as We increases. This is clearly confirmed by the full solution (figure 12a).
Even when We is not very high, such as We ∼ O(102)–O(103), the variations of Ym

and Tm with We remain limited. To better quantify the slow variation of Ym and Tm for
the full range of We, we denote Y∞

m and T∞
m the normalized maximum radius and time

of maximum radius, respectively, as We → ∞. Figures 12(b) and 12(c) show the ratio of
normalized maximum radii Ym/Y∞

m and the ratio of times of maximum radius Tm/T∞
m ,

respectively, as a function of We. The full range of Weber values can be separated into
three different regimes. In the high-We regime of We > 104, both Ym and Tm can reach
95 % of the upper limit value, thus, in this range, 1.34π/We3/8 in (5.15) is negligible,
with a contribution to the solution of the order of 5 % only. In this high-We regime, (5.15)
simplifies to

− 6H(Rs, T)

(
Rs

T
− Ṙs

)2

+
(

2 − π

4

)
= 0, (6.3a)

with

H(Rs, T) = T
√

6We

6a3R3
s + a2R2

s T
√

6We + a1RsT2We
. (6.3b)

In the low-We regime of We < 250, the Weber-dependent term 1.34π/We3/8 in Ym and
Tm is non-negligible (figure 12b,c). However, in this low-We regime (figure 12a, inset),
no fragmentation occurs typically as the time of rim destabilization into corrugations and
their growth into ligaments is of the same order of magnitude as that of the sheet expansion
itself (Clanet et al. 2004; Wang et al. 2018). In this regime, prior models not incorporating
droplet shedding throughout the sheet dynamics, such as (4.4), would be valid. However,
given the lack of fluid fragmentation inducing ejection of droplets beyond the impact area
this regime is not the focus of this study.
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Sheet dynamics in unsteady fragmentation

In the last intermediate-We regime of 250 < We < 10 000, the Weber-dependent term
1.34π/We3/8 continues to affect Ym and Tm within 10 %, with a variation of both Ym/Y∞

m
and Tm/T∞

m from 0.85 to 0.95, (figure 12b,c). In this regime, (5.15) can be simplified by
maintaining the weak dependence on We as an approximate constant term of mean value
0.9. Namely, 1.34π/We3/8 ≈ 3π/28 in this We range used in (5.15) to read as

− 6H(Rs, T)

(
Rs

T
− Ṙs

)2

+
(

2 − π

7

)
= 0, (6.4a)

with

H(Rs, T) = T
√

6We

6a3R3
s + a2R2

s T
√

6We + a1RsT2We
. (6.4b)

In this formulation, over the range of We of interest, the Ym and Tm are effectively
independent of Weber, at first order. The error introduced by this approximation in the
prediction of rs is limited to 5 % (figure 12), of the same order of magnitude as our
measurement errors, thus negligible.

6.1. Application-specific selection of relevant We regime of impact
Common unsteady fragmentation processes upon drop impact in nature are in the
intermediate-We regime (blue in figure 12b,c). Indeed, the size of a drop is restricted by
the capillary length, the definition of which can be generalized from the gravitational
acceleration to any resulting acceleration induced by other forces. Taking ac as drop
acceleration, the capillary length is dc ∼ √

σ/ρac. The terminal velocity, obtained by
balancing the drag and the acceleration, is

ρd3
c ac ∼ 1

2
Cdρau2

cd2
c =⇒ uc ∼

√
ρ

ρa
· dcac

Cd
, (6.5)

where ρa is the air density and Cd is the Re-dependent drag coefficient (figure 13a). The
resulting maximum We is

Wemax = ρu2
cdc

σ
∼ ρ

ρa
· ρd2

c ac

σCd
= ρ

ρa

1
Cd

≈ 10
ρ

ρa
, (6.6)

where the minimum value of Cd = 0.1 was used (figure 13a), showing that the density
ratio between liquid and gas phases sets the maximum value of the impact We of drops
naturally or artificially generated. Figure 13(b) shows that the density ratio of most
common fluids, including alcohol, oil, water-based solution, acid and alkaline, with
air would be approximately O(103), thus an associated Wemax ∼ O(104), same as the
boundary between the intermediate-We and the high-We regimes (figure 12). In extreme
conditions, such as a mercury fluid at high temperature, falling in air or another fluid
falling in lower pressure surrounding gas, Wemax could reach O(105). Note that for impacts
of drops on high-speed moving objects such as airplanes, the Wemax could, however, be
higher, thus producing sheets governed by (6.3). Hereafter, we focus on the sheet evolution
in the intermediate-We, with We ∼ 250 − 104, most relevant for environmental and health
applications, and with (6.4) as governing equation.

969 A19-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

51
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.519


Y. Wang and L. Bourouiba

100

Cd

Cd = 0.1

Reair

101

10–1

103

102 104 106

FluidFluid
Acetone
Ethanol
Dodecane
Gas oil
Silicon oil
Food oil
Water
Milk
DMSOSphere

784
785
754

965–980
900–1000

1000
1020–1050

1100

890

Hydrochloric acid
Sodium hydroxide
Nitric acid
Sulfuric acid
Liquid Gallium
Liquid Tin
Liquid Indium
Gn–In–Sn alloy
Mercury

1180
1250
1510
1890
6095
6990
7020
6440

13 590
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Figure 13. (a) Drag coefficient, Cd , for a sphere as a function of Reynolds number Reair = ud/νa, where νa
is the air kinematic viscosity. (b) Density values for common liquids at room temperature.

6.2. Independence of the temporal dynamics from the impact energy
Focusing on the sheet dynamics in the intermediate-We regime, we introduce the new
variable Y(T) = Rs(T)/

√
We into the reduced non-Galilean Taylor–Culick equation (6.4)

leading to

6
√

6T

6a3Y3 + √
6a2Y2T + a1YT2

(
Y
T

− Ẏ
)2

=
(

2 − π

7

)
. (6.7)

Since the Weber-dependent term corresponding to the momentum outward term, in this
regime, is approximately constant, (6.7) is independent of We. Moreover, recalling that
Ṙs(0) ∼ √

We (6.1), the initial condition for Y(T) is also independent of We. With both the
governing equation on Y(T) and its initial condition being independent of We, Y(T) is also
independent of We. More precisely, the temporal evolution of the sheet radius Rs(T)/

√
We

is governed by a characteristic time scale, the capillary time τcap, that is independent of
the initial impact energy or We. This is a property typical of linear dynamical systems,
such as harmonic oscillators, with their temporal evolution, or period, independent of their
amplitude (energy). However, such property is not generally true for nonlinear systems,
even when they are as simple as a weakly nonlinear pendulum for which the time to peak
depends on its amplitude or energy. We would thus certainly not expect, a priori, this
property to be true for a complex nonlinear system such as (6.7). In a separate study, we
show that (6.7) indeed satisfies this peculiar property (Wang & Bourouiba 2022), implying
that two drops with the same τcap impacting a surface at the same time, but with different
energies, or We, would in fact evolve in synchrony, including reaching their maximum
sheet expansion and final retraction at the same non-dimensional time. This property is
clear in our data (figures 14 and 15a) and is also notable in the data of prior studies, which
show the time of maximum radius Tm to be independent of We (Villermaux & Bossa 2011;
Lastakowski et al. 2014), while the maximum radius Rs is proportional to

√
We (Eggers

et al. 2010; Villermaux & Bossa 2011; Riboux & Gordillo 2016).

7. Full and approximate expression of the sheet radius Rs(T )

7.1. Initial condition and full solution
The non-Galilean Taylor–Culick law imposes that the sheet radius reaches its maximum
at a fixed dimensionless time regardless of initial We. Our focus being on the unsteady
sheet dynamics incorporating the shedding, not just the very early contact dynamics,
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Figure 14. (a) Temporal evolution of the non-dimensional radius, Rs, of the expanding sheet, for different We.
The vertical dashed line shows that independently of the We, the sheet reaches its maximum extension at the
same dimensionless time Tm = tm/τcap. (b) The temporal evolution of the sheet radius is shown for different
impacting drop diameters d0, confirming that the magnitude of the sheet radius is governed by We and not d0;
while the time of maximum radius is reached at the same non-dimensional time independent of We (inset), i.e.
Tm = const.
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Figure 15. (a) Measured temporal evolution, with time normalized by τcap, of the dimensionless sheet radius,
normalized by

√
We, collapses on a single curve. The solid line is the full solution of (6.4), and the dashed

line is its approximate analytic expression (7.3), both matching the data very well. The inset shows that the
measured, and predicted maximum radius (7.2), of the expanding sheet scales as

√
We, robust to the change

of impacting drop diameter. (b) Measured temporal evolution of the sheet radius with different viscosity and
elasticity values within the range of validity of the rim thickness Bo = 1 criterion, which is well captured by
the prediction (7.3).

without loss of generality, we use the time of maximum radius Tm as the condition to fully
determine (6.4). Experimentally, Tm = 0.43 (figure 14b inset), consistent with the prior
literature (figure 3 inset). Using Tm = 0.43, the full numerical solution of (6.4) shown in
figure 15(a), captures the data well. Recalling the properties of invariance of time evolution
of the sheet radius § 6, the full solution predicts and confirms that the sheet radius Rs(T),
normalized by

√
We, follows a universal time evolution independent of impact We. Thus,

confirming that the maximum radius Rm is proportional to
√

We (figure 15a, inset).

7.2. Approximate explicit solution
Having verified that the full solution captures the data well, we now turn to the derivation
of the approximate explicit solution of (6.4). Our focus is the dynamics of shedding
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throughout the sheet dynamics, not just its very early time, thus we leverage what we
already learned from the full solution of (6.4) confirmed by data (figure 14), namely
that the maximum radius Rs(Tm) is reached at a constant dimensionless time Tm = 0.43,
independent of impact We (figure 14b inset). This peculiar, but robust condition is
sufficient to derive an explicit approximate expression for the solution of (6.4), which we
here expand around time T = Tm, associated with Ṙs(T = Tm) = 0, the maximum radius
Rm = Rs(Tm) determined by

a3Tm

(√
6

We
Rm

)2

+ (a2T2
m − α)

(√
6

We
Rm

)
+ a1T3

m = 0, (7.1)

where α = 6/(2 − π/7). a1, a2 and a3 are constant coefficients of the sheet thickness
profile, independent of We, determined in Wang & Bourouiba (2017) and Tm = 0.43, thus
(7.1) is algebraic on Rm, with

Rm = 1
2a3Tm

√
6

We

(
α − a2T2

m −
√

(a2T2
m − α)2 − a1a3T4

m

)
≈ 0.12

√
We, (7.2)

which is close to the full solution of (6.4) and matching the experiments (figure 14b inset).
However, different from the maximum radius Rm, the derivation of the explicit analytical
solution for the time evolution of sheet radius Rs(T) is not trivial, due to the nonlinearity of
the thickness profile, H(Rs, T). Leveraging the property of independence of the temporal
evolution of the sheet from the initial energy, or We, (§ 6.2), and using the condition of
maximum radius reached at Tm = 0.43, we derive an approximate analytical solution using
a power series expansion (appendix A) which ultimately lead to

Rs(T) =
√

We
[
0.15(T − Tm)3 − 0.4(T − Tm)2 + Rm

]
(7.3a)

with
Tm = 0.43 and Rm = Rm/

√
We = 0.12 (7.3b,c)

for 250 < We < 10 000, which also captures the data and full solution very well
(figure 15a). Note that the two coefficients in the approximate analytical solution (7.3)
are not free nor fitted parameters. They were derived from the power series expansion of
the non-Galilean Taylor–Culick system (appendix A), showing that the two coefficients are
universal, independent of impact conditions in the intermediate-We regime: 250 < We <

10 000.

8. Robustness of the prediction of the sheet evolution, rs(t)

8.1. Comparison with experiments using fluids of various properties
To further verify the robustness of our model (5.15) and (7.3) for the prediction of the
sheet radius, we conducted experiments using fluids of various properties (table 2). The
non-Galilean Taylor–Culick equation (5.15) that governs the sheet radius is derived for
the inviscid limit, in which the sheet evolution is independent of the fluid viscosity, as well
as the fluid elasticity, when the impact We = ρu2

0d0/σ and Re = u0d0/ν are much larger
than 1. However, Wang et al. (2018) shows that as the fluid viscosity and elasticity increase,
the Bo = 1 criterion for the local dynamics of the rim is violated when the local rim R̂e =√

σb/(ρν2) < 6
√

2 and local rim De = τE/
√

ρb3/σ > 16, where τE is the relaxation time
of the elastic fluid. When the Bo = 1 criterion breaks, the simplification of the inertial
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term associated with the rim acceleration in the momentum conservation (5.1) is violated.
In addition, the expressions of the volume outward qout, (4.19), determined based on the
Bo = 1 criterion also becomes invalid. Thus, the prediction (7.3) of the time evolution of
the sheet radius would be violated when the fluid viscosity and elasticity are high enough
to push the system outside the region of validity of the rim Bo = 1 condition. On the other
end, the prediction (7.3) of the sheet radius should be robust within the range of the fluid
viscosity and elasticity where the rim Bo = 1 criterion holds, which we verify next.

We use the glycerol–water mixtures to increase the fluid viscosity and the PEO–PEG
solution to increase the fluid elasticity (table 2). Figure 15(b) shows the time evolution
of the sheet radius of 50 %–50 % glycerol–water mixture and PEO0.1 %–PEG1 % water
solution, compared with that of water. It shows that within the regime of validity of the rim
thickness’ Bo = 1 constraint, the radius of the sheet of the fluids with different viscosity
and elasticity continue to be captured by (7.3) well. Finally, we use dodecane and Dimethyl
sulfoxide (DMSO) to vary the fluid surface tension. The surface tension of dodecane σ =
25 ± 2 mN m−1 and DMSO σ = 42 ± 2 mN m−1 are measured by tensiometer, leading
to a time evolution of the sheet radius that remains well captured by our prediction, (7.3).

8.2. Comparison of the prediction with the prior literature results
Having verified the robustness of our prediction of the sheet radius evolution (7.3) for fluids
of various properties, we compare our prediction with experimental data and predictions
from prior studies. Figure 16(a) shows the experimental data of the time evolution of sheet
radius from Vernay et al. (2015), which used the same impact condition as this study,
compared with our data and prediction (7.3). It shows that their data match well our
experimental data and both of them match the prediction (7.3). Figure 16(a) also shows
the comparison of our experimental data with theoretical and numerical predictions in the
literature, for various solid surfaces.

Figure 16(c) shows the experimental data of the time evolution of sheet radius from other
studies, for inviscid sheet expansion upon drop impact on solid surfaces, but with slightly
different impact conditions, which can explain the discrepancies as discussed in § 2.
However, after normalizing by

√
We, the curves from most studies collapse. Figure 16(b)

shows the dimensionless time Tm, non-dimensionalized by τcap, of the maximum sheet
radius as a function of Weber number for all these studies, showing that for all but
one study Tm = 0.43, consistent with our data. Figure 16(d) shows that the maximum
radius of the sheet also follows our prediction Rm = 0.12

√
We well, further confirming the

robustness of (7.3) for the prediction of the time evolution of the radius of sheet dynamics
in the air.

The deviation of the experimental data of Villermaux & Bossa (2011) from the others
may be caused by differences in experimental conditions as a small drop-to-rod size ratio is
used, η = 1 (figure 3), which is out of the range (Wang & Bourouiba 2017) that guarantees
a complete momentum transfer from the vertical to horizontal direction upon drop impact.
An insufficient transfer can reduce the extension of the sheet, consistent with the lower
Rm in Villermaux & Bossa (2011). In addition, fluid loss on the edges of the target used to
control the sheet ejection angle – a brass jacket fitted to the impacted cylinder – combined
with initial potential prompt splash for a fluid such as ethanol may also explain the smaller
time of maximum radius, Tm, in Villermaux & Bossa (2011). An effective diameter d0e =
0.8 d0 and an effective impact Weber number Wee = 0.4 We. We would reconcile the data
with the rest of the studies shown in figure 16. These effective values of d0e and Wee would
correspond to an impact speed u0e reduced to 70 % of the measured impacting drop u0.
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Figure 16. (a) Comparison of our sheet radius prediction, (7.3), with other models in the literature.
(b) Comparison of our prediction (7.3) with the experimental data from prior studies. (c and d) Experimental
data of the maximum sheet radius, Rm, and the time of maximum radius, Tm, as functions of We from different
studies. The values of Tm remain remarkably fixed at (≈ 0.43), for most studies with our prediction, (7.2),
capturing also Rm well. Abbreviations for different studies are defined in figure 3.

This is similar to the required adjustment in initial condition, in particular initial energy
used, discussed in Klein et al. (2020).

The experimental condition from Lastakowski et al. (2014), which involves a drop
impact on a super-heated infinite solid surface (figure 3), is more distinct than that of
our experimental set-up. However, the deviation of their data from ours remains small. As
mentioned in § 2.2, we attribute the discrepancy to the expected difference between the
sheet thickness profile of a sheet on an infinite surface compared to that of a sheet in the
air. Other potential factors, such as the effect of the vapor layer or the different volume
rate of fluid shed from the rim, could also explain the deviation and are to be determined
in future work.

9. Conclusion

We presented the results of a combined experimental and theoretical investigation of sheet
dynamics – expansion and retraction in the air – under unsteady fragmentation upon
drop impact on a surface of comparable size to that of the drop. We used especially
developed AIP algorithms to quantify, with high accuracy, key quantities involved in
unsteady fragmentation, from sheet, to rim, to ligaments, to droplet properties. First, the
AIP method enabled us to show the importance of continuous shedding from the rim
bounding the sheet: such shedding not only removes a non-negligible amount of mass
from the rim (figure 6), but also a non-negligible amount of momentum (appendix B).
Quantifying and modelling the continuous shedding occurring during both expansion
and retraction of the sheet is not only important for the prediction of the resulting spray
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properties, but also for the prediction of the sheet dynamics itself as it is influenced by the
continuous loss of the rim’s mass and momentum, from shedding.

The sheet formed from drop impact expands and retracts, continuously decelerating
throughout the process, while it is bounded by a rim from which the ligaments and
drops are shed. The inherent unsteadiness of this dynamics associated with continuous
deceleration introduces a fictitious force, in the non-Galilean reference frame of the rim,
acting outward during both phases of sheet extension and retraction in the air. This
fictitious force induces a self-adjustment of the rim thickness (Wang et al. 2018), with
its thickness continuously adjusting to be equal to the local instantaneous capillary length
defined with the rim’s acceleration: a robust Bo = 1 condition on the rim (4.14). In this
paper we derived the governing equation capturing the intricate interplay between such a
non-Galilean dynamics of the sheet – and its bounding rim in particular – coupled with
the continuous shedding of fluid from the rim into ligaments and drops governed by the
Bo = 1 condition. At each step of the derivations, we conducted detailed comparisons
between theory and experimental measurements to validate our approach and intermediate
assumptions. The shedding induces sinks of mass and momentum on the rim (4.8).

In the range of impact Weber numbers relevant for applications involving spray
production, We > 250, we show that the resulting rim’s nonlinear equation has a
remarkable property of time to peak invariance to initial impact We – or energy (§ 6.2
and figure 12). This is a property typical of linear systems, such as simple harmonic
oscillators, that reach their maximum amplitude at a time independent of the initial energy
injected into the system at rest (§ 6.2). Leveraging this robust property of the nonlinear
equation of motion of the rim, we demonstrate that the full governing equation of the
sheet radius, (4.9), can be reduced to a continuous-shedding non-Galilean Taylor–Culick
law (5.15) and more specifically takes the form (6.4) for common ranges of applications
with 250 < We < 104 (§ 6.1).

We showed that the continuous-shedding non-Galilean Taylor–Culick law (6.4), governs
the sheet dynamics while accounting for continuous ligament formation and droplet
shedding. We showed that the predictions from (6.4), both in the form of a full solution
and approximate analytical solution (7.3), capture very well the sheet dynamics of our
experiments and those of the prior literature on sheet expansion in the air (figure 15a).
Finally, we showed the robustness of our predictions to changes of fluid properties,
including moderate fluid viscosity and elasticity, including biological mucosalivary
fluid (as characterized in Bourouiba 2021), and reconciled prior literature’s inconsistent
experimental results on the sheet dynamics upon drop impact (figure 15b).
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Appendix A. Derivation of the approximate solution of sheet radius rs using a power
series expansion

We have successfully incorporated the fluid shed from the rim into our modified model
of the sheet and simplified it to a non-Galilean Taylor–Culick law, a first-order ordinary
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differential equation that reads

− 6H(Rs, T)

(
Rs

T
− Ṙs

)2

+
(

2 − π

7

)
= 0, (A1a)

with

H(Rs, T) = T
√

6We

6a3R3
s + a2R2

s T
√

6We + a1RsT2We
, (A1b)

Tm = 0.43, (A1c)

where we recall that a1, a2 and a3 are all known from the thickness profile of the sheet
(Wang & Bourouiba 2017). Recall that the full solution captures the data very well, as
shown in figure 15. Here, we show how we derive the approximate analytic solution of
(A1) using a power series expansion at the time of maximum radius Tm, which we have
shown to be independent of impact We and robustly taking the value Tm = 0.43 for our
data and that of others (figures 3 and 14a).

Since the rim velocity is zero at the time of maximum radius Tm, with a rim deceleration
approximately constant at that time (figure 14), without loss of generality, a power series
of second order O(T2) should be sufficient to capture the dynamics. The ansatz is

Rs(T) = b0 + b2(T − Tm)2 + b3(T − Tm)3 + O(T3), (A2)

where the maximum radius is reached at time Tm = 0.43 is known as discussed in § 7.2;
b0, b2 and b3 are constants to be determined. Physically, b0 is the maximum radius of the
sheet, and 2b2 is the deceleration of the rim velocity. To determine these coefficients, we
multiply both sides of the non-Galilean Taylor–Culick law (5.15) by the denominator of
the sheet thickness profile times T , leading to

6
(
Rs − ṘsT

)2 =
(

2 − π

7

)
T

(
a3R3

s

√
6

We
+ a2R2

s T + a1RsT2

√
We
6

)
. (A3)

For simplification, we now introduce the new variables

Y = Rs

√
6

We
and U = T − Tm, (A4a,b)

by which, the ansatz (A2) can be re-expressed as

Y(U) = β2U2 + β3U3 + β0, (A5a)

where

(β0, β2, β3) = 6(b0, b2, b3)√
We

, (A5b)

and the governing equations in terms of Y and U become

6
(
Y − Ẏ(U + Tm)

)2 =
(

2 − π

7

) [
a3Y3(U + Tm) + a2Y2(U + Tm)2 + a1Y(U + Tm)3

]
,

(A6)

which does not depend explicitly on the impact We. This indicates that the solution of Y is
independent of the impact We, and, in turn, based on (A4), the dimensionless sheet radius
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Rs = Y
√

We/6 becomes proportional to
√

We, which is consistent with the results in the
literature (Rozhkov et al. 2004; Eggers et al. 2010; Villermaux & Bossa 2011; Lastakowski
et al. 2014) and with our own data (figure 15).

Substituting (A5) into (A6) and rearranging and combining the terms with the same
power of U, β0, β2, β3 should take values that ensure that the prefactors of each power of
U term is zero. That of U0 gives

6β0 =
(

2 − π

7

) (
a3β

2
0 Tm + a2β0T2

m + a1T3
m

)
. (A7)

Taking Tm = 0.43 (§ 7.2) as known, the coefficient β0 is solved from

(a3Tm)β2
0 + (a2T2

m − α)β0 + a1T3
m = 0, (A8)

where α = 6/(2 − π/7) ≈ 3.9, and β0 becomes the solution of a quadratic algebraic
equation. Using the experimental value of Tm = 0.43 (figure 14a) and the values of a1,
a2 and a3 determined by Wang & Bourouiba (2017), β0 can then be estimated by

β0 = 1
2a3Tm

(
α − a2T2

m −
√

(a2T2
m − α)2 − a1a3T4

m

)
≈ 0.3. (A9)

From (A2) and (A5), the maximum radius of the sheet is

Rm = b0 =
√

We
6

β0 = 0.12
√

We. (A10)

The inset of figure 15(a) shows the maximum radius of the sheet Rs as a function of We,
which (A10) matches very well.

To compute β2 in (A5), we turn to the prefactor of the term O(U), combining (A5) into
(A6), leading to

− 4β0β2Tm = 1
α

[
a3β

3
0 + 2a2β

2
0 Tm + 3a1β0T2

m

]
, (A11)

where α = 6/(2 − 5π/36) ≈ 3.84. Using Tm = 0.43 and β0 (A9), as well as the value of
a1, a2 and a3 known from the sheet thickness profile (Wang & Bourouiba 2017), β2 is
solution of

β2 = − 1
4α

[
a3β

2
0

Tm
+ 2a2β0 + 3a1Tm

]
≈ −1.0. (A12)

Using (A2) and (A5), the deceleration of the sheet rim reads

R̈s(Tm) = 2b2 = 2

√
We
6

β2 = −0.81
√

We. (A13)

Thus, the power series to the second order of T2 can be expressed by

Rs(T) =
√

We
[
−0.4(T − 0.43)2 + 0.12

]
. (A14)

Figure 17(a) shows how the approximate solution of Rs (A14) captures the full solution
of (A1) well.

For higher precision at early time of sheet expansion, we add the contribution of the
O(U2) term. Indeed, an offset between (A14) and the full solution does occur at early
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Figure 17. (a) Comparison of the full solution of (A1), using Ṙs(T = Tm) = 0 at Tm = 0.43, and the
approximate explicit solutions derived by power series at two orders (A14) and (A18). The solution expanded
to order O(T3) captures well the full solution, including initial expansion. (b) Time evolution of the momentum
loss per radian and unit of time Ṗout (B1) due to continuous fluid shedding from the rim, in the radial direction,
compared to the rate of change of rim momentum per radian Ṗrim (B4); Ṗout and Ṗrim remain of the same
order of magnitude during the entire sheet dynamics, showing that the continuous shedding from the rim has a
leading-order effect on the sheet dynamics.

time. Substituting the ansatz (A5) into (A6), and computing the prefactor of the O(U2)
term gives

2β0(β2 − 3β3Tm) + (2β2Tm)2

= 1
α

[
a3(3β2

0β2) + a2(β
2
0 + 2β0β2T2

m) + a1(β2T3
m + 3β0Tm)

]
, (A15)

where α = 6/(2 − 5π/36) ≈ 3.84. Using the known Tm = 0.43, β0 (A9) and β2 (A12),
β3 is derived explicitly

β3 = α(2β0β2 + 4β2
2 T2

m) − 3a3β
2
0β2 − a2(β

2
0 + 2β0β2T2

m) − a1(β2T3
m + 3β0Tm)

6αβ0Tm
≈ 0.37.

(A16)

From (A2) and (A5),

b3 =
√

We
6

β3 = 0.15
√

We, (A17)

leading to

Rs(T) =
√

We
[
0.15(T − 0.43)3 − 0.4(T − 0.43)2 + 0.12

]
. (A18)

Figure 17(a) shows the prediction of Rs now including the third-order term in the power
series (A18), showing that (A18) captures the full solution well, and better at early time of
expansion close to T = 0.1, which corresponds to about one impact time τim for the We
values involved in this paper.

Appendix B. Importance of momentum loss from shedding

Since the modified model (5.15) incorporating the fluid shedding can capture well the
evolution of the sheet radius rs, we can now quantify the effect of shedding on the sheet
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dynamics. The momentum loss due to shedding ρqoutv	 introduced in (4.9) is the relative
momentum loss in the non-Galilean reference frame of the rim, since the outward fluid
speed v	 is relative to the reference frame of the rim. The total momentum (per radian)
leaving the rim, in the laboratory frame, is in fact ρqoutvout as introduced in (4.8), where
vout = v	 + ṙs is the fluid velocity in the laboratory frame.

Using the same dimensionalization introduced in § 4.3, with the rate of momentum
loss non-dimensionalized with ρd4

0/τ
2
cap(= 6σd0) and using qout (4.19), the dimensionless

momentum loss due to shedding, per radian and unit of time, Ṗout is

Ṗout = ρqout(v	 + ṙs)

ρd4
0/τ

2
cap

= π

54
Rs + π

18
√

3
ṘsRs

√
B, (B1)

where, based on the Bo = 1 criterion (4.14), the dimensionless rim thickness B reads

B = b
d0

=
√

στ 2
cap

ρd3
0

1
(−R̈s)

= (−6R̈s)
−1/2. (B2)

In comparison, the rate of change of momentum, per radian and unit of time, Ṗrim in the
rim is

Ṗrim = 1
ρd4

0/τ
2
cap

d
dt

(
πb2

4
rs · ṙs

)
= (ARs) · R̈s + ˙(ARs) · Ṙs, (B3)

where A = πB2/4 is the dimensionless cross-sectional area of the rim. Using (B2), the
rate of change of momentum per radian Ṗrim in the rim is

Ṗrim = − π

24
Rs + π

4
B2(Ṙs)

2 + π

2
ḂBRsṘs. (B4)

Using (A14), figure 17(b) shows the time evolution of Ṗout (B1) compared to Ṗrim (B4).
Clearly, Ṗout and Ṗrim remain of the same order of magnitude during entire sheet dynamics,
thus, confirming that the continuous fluid shedding from the rim has a leading-order
effect on the sheet dynamics, and needs to be incorporated in a theoretical model of sheet
dynamics rs.

REFERENCES

AGBAGLAH, G. & DEEGAN, R. D. 2014 Growth and instability of the liquid rim in the crown splash regime.
J. Fluid Mech. 752, 485–496.

BOUROUIBA, L. 2021 Fluid dynamics of respiratory infectious diseases. Annu. Rev. Biomed. Engng 23 (1),
547–577.

BOUROUIBA, L., DEHANDSCHOEWERCKER, E. & BUSH, J. W. M. 2014 Violent expiratory events: on
coughing and sneezing. J. Fluid Mech. 745, 537–563.

CLANET, C., BÉGUIN, C., RICHARD, D. & QUÉRÉ, D. 2004 Maximal deformation of an impacting drop.
J. Fluid Mech. 517, 199–208.

COMISKEY, P. M., YARIN, A. L., KIM, S. & ATTINGER, D. 2016 Prediction of blood back spatter from a
gunshot in bloodstain pattern analysis. Phys. Rev. Fluids 1, 043201.

CULICK, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 1128–1129.
DURST, F. 1996 Penetration length and diameter development of vortex rings generated by impacting water

drops. Exp. Fluids 21, 110–117.
EGGERS, J., FONTELOS, M. A., JOSSERAND, C. & ZALESKI, S. 2010 Drop dynamics after impact on a solid

wall: theory and simulations. Phys. Fluids 22, 1–13.
GILET, T. & BOUROUIBA, L. 2014 Rain-induced ejection of pathogens from leaves: revisiting the hypothesis

of splash-on-film using high-speed visualization. Integr. Compar. Biol. 54, 974–84.

969 A19-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

51
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.519


Y. Wang and L. Bourouiba

GILET, T. & BOUROUIBA, L. 2015 Fluid fragmentation shapes rain-induced foliar disease transmission.
J. R. Soc. Interface 12, 20141092.

GORDILLO, J. M., LHUISSIER, H. & VILLERMAUX, E. 2014 On the cusps bordering liquid sheets.
J. Fluid Mech. 754, R1.

JOSSERAND, C. & THORODDSEN, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48,
365–391.

KLEIN, A., KURILOVICH, D., LHUISSIER, H., VERSOLATO, O., LOHSE, D., VILLERMAUX, E. &
GELDERBLOM, H. 2020 Drop fragmentation by laser-pulse impact. J. Fluid Mech. 893, A7.

LAAN, N., DE BRUIN, K. G., SLENTER, D., WILHELM, J., JERMY, M. & BONN, D. 2015 Bloodstain pattern
analysis: implementation of a fluid dynamic model for position determination of victims. Sci. Rep. 5, 11461.

LAGUBEAU, G., FONTELOS, M. A., JOSSERAND, C, MAUREL, A., PAGNEUX, V. & PETITJEANS, P. 2012
Spreading dynamics of drop impacts. J. Fluid Mech. 713, 50–60.

LASTAKOWSKI, H., BOYER, F., BIANCE, A. L., PIRAT, C. & YBERT, C. 2014 Bridging local to global
dynamics of drop impact onto solid substrates. J. Fluid Mech. 747, 103–118.

LEE, J. B., LAAN, N., DE BRUIN, K. G., SKANTZARIS, G., SHAHIDZADEH, N., DEROME, D., CARMELIET,
J. & BONN, D. 2016 Universal rescaling of drop impact on smooth and rough surfaces. J. Fluid Mech. 786,
R4.

MADEJSKI, J. 1976 Solidification of droplets on a cold surface. Intl J. Heat Mass Transfer 19, 1009–1013.
MUNDO, C. H. R., SOMMERFELD, M. & TROPEA, C. 1995 Droplet-wall collisions: experimental studies of

the deformation and breakup process. Intl J. Multiphase Flow 21, 151–173.
PHILIPPI, J., LAGRÉE, P.-Y. & ANTKOWIAK, A. 2016 Drop impact on a solid surface: short-time

self-similarity. J. Fluid Mech. 795, 96–135.
POULAIN, S., VILLERMAUX, E. & BOUROUIBA, L. 2018 Ageing and burst of surface bubbles. J. Fluid Mech.

851, 636–671.
REIN, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 61–93.
RIBOUX, G. & GORDILLO, J. M. 2014 Experiments of drops impacting a smooth solid surface: a model of

the critical impact speed for drop splashing. Phys. Rev. Lett. 113, 1–13.
RIBOUX, G. & GORDILLO, J. M. 2016 Maximum drop radius and critical Weber number for splashing in the

dynamical Leidenfrost regime. J. Fluid Mech. 803, 516–527.
ROISMAN, I. V. 2010 On the instability of a free viscous rim. J. Fluid Mech. 661, 206–228.
ROISMAN, I. V., BERBEROVI, E. & TROPEA, C. 2009 Inertia dominated drop collisions. I. On the universal

flow in the lamella. Phys. Fluids 21, 052103.
ROISMAN, I. V., RIOBOO, R. & TROPEA, C. 2002 Normal impact of a liquid drop on a dry surface: model

for spreading and receding. Proc. R. Soc. Lond. A 458, 1411–1430.
ROZHKOV, A., PRUNET-FOCH, B. & VIGNES-ADLER, M. 2002 Impact of water drops on small targets. Phys.

Fluids 14, 3485.
ROZHKOV, A., PRUNET-FOCH, B. & VIGNES-ADLER, M. 2004 Dynamics of a liquid lamella resulting from

the impact of a water drop on a small target. Proc. R. Soc. Lond. A 460, 2681–2704.
SAVART, F. 1833 Mémoire sur le choc de deux veines liquides animées de mouvements directement opposés.

Ann. Chim. 55, 257–310.
SAYLOR, J. R. & GRIZZARD, N. K. 2004 The optimal drop shape for vortices generated by drop impacts: the

effect of surfactants on the drop surface. Exp. Fluids 36, 783–790.
SCHELLER, B. L. & BOUSFIELD, D. W. 1995 Newtonian drop impact with a solid surface. AIChE J. 41,

1357–1367.
STOW, C. D. & STAINER, R. D. 1977 The physical products of a splashing water drop. J. Met. Soc. Japan 55,

518–532.
TAYLOR, G. I. 1959a The dynamics of thin-sheets of fluid. I. Water bells. Proc. R. Soc. Lond. A 253, 289–295.
TAYLOR, G. I. 1959b The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc.

Lond. A 253, 313–321.
THORODDSEN, S. T., TAKEHARA, K. & ETOH, T. G. 2012 Micro-splashing by drop impacts. J. Fluid Mech.

706, 560–570.
TING, L. & KELLER, J. B. 1990 Slender jets and thin sheets with surface tension. SIAM J. Appl. Maths 50

(6), 1533–1546.
TRAVERSO, G., LAKEN, S., LU, C. C., MAA, R., LANGER, R. & BOUROUIBA, L. 2013 Fluid fragmentation

from hospital toilets. arXiv:1310.5511.
VERNAY, C., RAMOS, L. & LIGOURE, C. 2015 Free radially expanding liquid sheet in air: time- and

space-resolved measurement of the thickness field. J. Fluid Mech. 764, 428–444.
VILLERMAUX, E. & BOSSA, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412–435.

969 A19-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

51
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.519


Sheet dynamics in unsteady fragmentation

WACHTERS, L. H. J. & WESTERLING, N. A. J. 1966 The heat transfer from a hot wall to impinging water
drops in the spheroidal state. Chem. Engng Sci. 21, 1047–1056.

WANG, Y. & BOUROUIBA, L. 2017 Drop impact on small surfaces: thickness and velocity profiles of the
expanding sheet in the air. J. Fluid Mech. 814, 510–534.

WANG, Y. & BOUROUIBA, L. 2018a Non-isolated drop impact on surfaces. J. Fluid Mech. 835, 24–44.
WANG, Y. & BOUROUIBA, L. 2018b Unsteady sheet fragmentation: droplet sizes and speeds. J. Fluid Mech.

848, 946–967.
WANG, Y. & BOUROUIBA, L. 2021 Growth and breakup of ligaments in unsteady fragmentation. J. Fluid

Mech. 910, A39.
WANG, Y. & BOUROUIBA, L. 2022 Mass, momentum and energy partitioning in unsteady fragmentation.

J. Fluid Mech. 935, A29.
WANG, Y., DANDEKAR, R., BUSTOS, N., POULAIN, S. & BOUROUIBA, L. 2018 Universal rim thickness in

unsteady sheet fragmentation. Phys. Rev. Lett. 120, 204503.
WILDEMAN, S., VISSER, C. W., SUN, C. & LOHSE, D. 2016 On the spreading of impacting drops.

J. Fluid Mech. 805, 636–655.
XU, L., BARCOS, L. & NAGEL, S. R. 2006 Splashing of liquids: interplay of surface roughness with

surrounding gas. Phys. Rev. E 76, 066311.
XU, L., ZHANG, W. W. & NAGEL, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94,

184505.
YARIN, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing . . .. Annu. Rev. Fluid

Mech. 38, 159–192.
YARIN, A. L. & WEISS, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and

splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141–173.
YUN, S. & LIM, G. 2014 Ellipsoidal drop impact on a solid surface for rebound suppression. J. Fluid Mech.

752, 266–281.

969 A19-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

51
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.519

	1 Introduction and goals
	2 Background
	2.1 Discrepancies on sheet evolution upon drop impact
	2.2 Sheet thickness
	2.3 Importance of multiple time scales
	2.4 Rod-to-drop size ratio, = dr/d0
	2.5 Continuous droplet shedding

	3 Experimental approach and advanced image processing (AIP) algorithms
	3.1 Experimental set-up
	3.2 Advanced AIP algorithms and validation
	3.2.1 Volume of the impacting drop
	3.2.2 Tracking and total volume conservation


	4 Shedding throughout the sheet expansion
	4.1 Importance of continuous shedding
	4.2 Validity of the model of sheet dynamics without shedding from the rim
	4.3 Rim dynamics incorporating continuous fluid shedding and inertial effects
	4.4 Volume rate leaving the rim: qout
	4.5 Speed of fluid leaving the rim: v

	5 Unified closed-form theory of sheet dynamics under continuous unsteady fragmentation
	5.1 The Bo = 1 criterion: balance of inertial and surface-tension forces andfirst system reduction
	5.2 Closed system of equations governing the sheet evolution, rs(t)
	5.3 Reduced sheet evolution system, with continuous shedding: non-Galilean Taylor--Culick law

	6 Solutions of the non-Galilean Taylor--Culick law
	6.1 Application-specific selection of relevant We regime of impact
	6.2 Independence of the temporal dynamics from the impact energy

	7 Full and approximate expression of the sheet radius Rs(T)
	7.1 Initial condition and full solution
	7.2 Approximate explicit solution

	8 Robustness of the prediction of the sheet evolution, rs(t)
	8.1 Comparison with experiments using fluids of various properties
	8.2 Comparison of the prediction with the prior literature results

	9 Conclusion
	A Appendix A. Derivation of the approximate solution of sheet radius rs using a power series expansion
	B Appendix B. Importance of momentum loss from shedding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


