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Abstract. We investigate parallel Lagrangian foliations on Kähler manifolds. On the one
hand, we show that a Kähler metric admitting a parallel Lagrangian foliation must be flat.
On the other hand, we give many examples of parallel Lagrangian foliations on closed flat
Kähler manifolds which are not tori. These examples arise from Anosov automorphisms
preserving a Kähler form.
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1. Introduction
Inthis paper we investigate Kähler manifolds which admit a Lagrangian foliation that is
parallel with respect to the Levi-Civita connection. Our first theorem says that the presence
of a parallel Lagrangian foliation forces the Kähler metric to be flat.

THEOREM 1. If a Kähler metric admits a parallel Lagrangian foliation, then it is flat.

This is a local result not requiring any compactness assumption. The proof uses the fact
that the orthogonal complement of a parallel foliation is also parallel, so that the metric is
locally a product. Moreover, in the situation at hand both factors are Lagrangian, and the
Levi-Civita connection coincides with the Bott connection of the Lagrangian foliations
and is therefore flat.

By Theorem 1, there are very few closed Kähler manifolds with parallel Lagrangian
foliations, since they are all Bieberbach manifolds. Nevertheless, in the second part of
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this paper we construct many interesting examples arising from Anosov diffeomorphisms
which preserve a Kähler form and are therefore symplectomorphisms. We prove the
following criterion for the existence of an Anosov symplectomorphism with respect to
a Kähler form on a Bieberbach manifold.

THEOREM 2. A closed flat Kähler manifold M = R2n/� admits an Anosov symplecto-
morphism ϕ with respect to the Kähler form if there is a hyperbolic matrixH ∈ GL(2n, Z)
such that H ∗(ω0) = ω0 for the standard Kähler form ω0 on R2n, and H commutes with
the image of the holonomy representation ρ : � −→ GL(2n, Z) of M .

In this situation, the stable and unstable foliations for ϕ are parallel and Lagrangian.

The proof is an adaptation of arguments of Epstein and Shub [7] and Porteous [14],
who considered the existence of expanding, respectively Anosov, diffeomorphisms, with-
out involving a symplectic or Kähler form. We apply this criterion to show that the
holonomy representation of any Bieberbach manifold can be doubled to obtain a flat
Kähler manifold which admits an Anosov symplectomorphism with respect to the Kähler
form. This doubling construction was first used by Porteous [14] to construct Anosov
diffeomorphisms, and later by Johnson and Rees [12] to construct flat Kähler manifolds.
It turns out that the structures are compatible, so that doubling produces Anosov symplec-
tomorphisms on flat Kähler manifolds. The existence of parallel Lagrangian foliations on
closed Kähler manifolds that are not tori contradicts a claim made by Vaisman in [15]
(cf. top of p. 561).

While our motivation for proving Theorem 2 was to find examples of Kähler manifolds
with parallel Lagrangian foliations, there is a different, dynamical point of view, which
leads one to consider the same class of examples. It is a theorem of Benoist and
Labourie [2] that any symplectic manifold admitting an Anosov symplectomorphism
with smooth stable and unstable foliations is an infranilmanifold, so that the Anosov
symplectomorphism is conjugate to a linear automorphism. Since the only nilmanifolds
admitting Kähler structures are tori, the only infranil Kähler manifolds are infra-abelian,
i.e. Bieberbach. Theorem 2 produces many examples of this situation. Note that no version
of Theorem 1 can be deduced from the theorem of Benoist and Labourie [2], since we
do not assume that the Lagrangian foliation in Theorem 1 is induced by an Anosov
symplectomorphism.

Initially, our interest in parallel Lagrangian foliations arose from the fact that, together
with their orthogonal complements, they give rise to pairs of complementary Lagrangian
foliations on symplectic manifolds. Such structures, known variously as bi-Lagrangian [8],
para-Kähler [4], or Künneth structures [9], have a very rich geometry. Nevertheless, in this
paper we do not use any of the techniques specific to this bi-Lagrangian geometry but work
in the framework of standard Kähler geometry.

2. Flatness of Kähler manifolds with parallel Lagrangian foliations
Suppose that a smooth manifold M is endowed with a Kähler structure (J , g), meaning
that J is an integrable complex structure and g is a positive definite Riemannian metric
such that

g(JX, JY ) = g(X, Y ) for all X, Y ∈ TM ,
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and the 2-form ω defined by

ω(X, Y ) = g(JX, Y ) for all X, Y ∈ TM
is closed and hence symplectic. The Levi-Civita connection ∇ of the Kähler metric g then
preserves g and commutes with J , and hence is compatible with ω.

We are interested in Lagrangian foliations F onM which are parallel with respect to the
Levi-Civita connection, i.e. ∇TF ⊂ TF . We first show that the orthogonal complement
to F is again a parallel Lagrangian foliation. This result is due to Etayo Gordejuela and
Santamaría [8, Theorem 2]. Although we will not need this generality here, we prove the
result in greater generality than in [8], not just for Kähler manifolds but for arbitrary almost
complex manifolds with a Hermitian metric.

PROPOSITION 3. Suppose F is a Lagrangian foliation on an almost Hermitian manifold
M , and that the Levi-Civita connection preserves TF . Then J (TF) is a parallel
Lagrangian complement to TF and is integrable to a Lagrangian foliation G.

Proof. We first show that J (TF) is complementary to TF and Lagrangian. First, the
subbundle J (TF) has the same rank as TF . Second, for X ∈ TF , we have

g(JX, Y ) = ω(X, Y ) = 0 for all Y ∈ TF
and hence J (TF) ⊂ (TF)⊥, where (TF)⊥ denotes the g-orthogonal complement of TF .
Since g is positive definite and TF has rank half that of TM , this shows that J (TF) =
(TF)⊥ and J (TF) is complementary to TF . It also follows that J (TF) is Lagrangian,
because

ω(JX, JY ) = ω(X, Y ) = 0

for all X, Y ∈ TF .
Since TF is parallel for the Levi-Civita connection, it follows that J (TF) = (TF)⊥ is

also parallel and hence integrable.

In this situation, the metric g on M is locally a product metric of the metrics on the
factors given by the leaves of F and G. In order to prove flatness, it is enough to prove that
the factors are flat.

We can now prove the main result of this section.

Proof of Theorem 1. Let (J , g, ω) be a Kähler structure on a smooth manifold M of
dimension 2n and F a Lagrangian foliation with g-orthogonal Lagrangian foliation G
given by Proposition 3. The tangent bundle of M decomposes as TM = TF ⊕ T G, and
so we can split a tangent vector X ∈ TM accordingly as X = XF +XG. In this situation
the Levi-Civita connection of g has a special form.

LEMMA 4. In the situation above, the Levi-Civita connection satisfies:
(1) ∇XY = [X, Y ]G for all X ∈ �(TF), Y ∈ �(T G), and
(2) ω(∇XY , Z) = (LXiYω)(Z) for all X, Y ∈ �(TF), Z ∈ �(T G).
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Proof. For the first part, let X be a section of TF and Y a section of T G. Since the
Levi-Civita connection is torsion-free and preserves both TF and T G, we have

∇XY = (∇XY)G = ([X, Y ] + ∇YX)G = [X, Y ]G.

For the second part, let X and Y be sections of TF and Z a section of T G. Since the
Levi-Civita connection is compatible with ω and F is Lagrangian, with (1) we obtain

ω(∇XY , Z) = LXω(Y , Z)− ω(Y , ∇XZ)
= LXω(Y , Z)− ω(Y , [X, Z]G)

= LXω(Y , Z)− ω(Y , [X, Z])

= (LXiYω)(Z).

LEMMA 5. The Levi-Civita connection is flat along the leaves of F , i.e. R(X, Y ) = 0
whenever X, Y ∈ TF .

Proof. We need to show R(X, Y )Z = 0 for all X, Y , and Z sections of TF .
Let V be a section of T G. Then parts (1) and (2) of Lemma 4 imply

ω(∇X∇YZ, V ) = LXω(∇YZ, V )− ω(∇YZ, ∇XV )
= LX((LY iZω)(V ))− (LY iZω)([X, V ])

= (LXLY iZω)(V ).

It follows that

ω(R(X, Y )Z, V ) = ω(∇X∇YZ, V )− ω(∇Y∇XZ, V )− ω(∇[X,Y ]Z, V )

= (LXLY iZω − LYLXiZω − L[X,Y ]iZω)(V )

= 0.

Since R(X, Y )Z is a section of TF and F is Lagrangian, it follows that

ω(R(X, Y )Z, V ) = 0 for all V ∈ TM ,

and hence R(X, Y )Z = 0 by the non-degeneracy of ω.

Lemma 5 also holds with F replaced by G. Thus our Kähler metric is locally a product
metric of flat metrics and is therefore flat. This completes the proof of Theorem 1.

Remark 1. By the Ambrose–Singer theorem, the flatness result of Theorem 1 can be
restated as saying that the reduced holonomy group of the Kähler metric g is trivial.
This could be proved by investigating the interaction of the different holonomy reductions
that appear in the proof. One is the reduction from SO(2n) to U(n) given by the Kähler
condition; the other is the reduction from SO(2n) to SO(n)× SO(n) given by the local
product structure. Since J is an isometry of g and interchanges the two factors, there is a
further reduction from SO(n)× SO(n) to SO(n).
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3. Anosov symplectomorphisms on flat Kähler manifolds
Recall that a diffeomorphism ϕ : M → M is called Anosov if there is a continuous
splitting of the tangent bundle into invariant subbundles of positive rank TM = Es ⊕ Eu

such that for all k > 0

‖Dϕk(v)‖ ≤ a · e−bk‖v‖ for all v ∈ Es ,
‖Dϕk(v)‖ ≥ a · ebk‖v‖ for all v ∈ Eu,

for some positive constants a and b.
Here, the norms are taken with respect to some arbitrary Riemannian metric. There is

the related concept of an expanding diffeomorphism, for which the second inequality holds
for all tangent vectors. This is excluded here by the assumption that both Es and Eu have
positive rank.

The defining property of an Anosov diffeomorphism is sometimes referred to as
the existence of an Anosov splitting TM = Es ⊕ Eu into stable (or contracting) and
unstable (or dilating) subbundles Es and Eu, respectively. This means that ϕ is hyperbolic
everywhere. It is easy to see that when an Anosov splitting exists, it is uniquely determined
by ϕ, as the contracting and dilating subspaces have to be maximal with these properties.

It is known that the subbundles Es and Eu are actually tangent to foliations F and G
with smooth leaves, although the subbundles are only assumed to be continuous. These
foliations are called the stable and unstable foliations of ϕ. In general, they are not smooth
transversely to the leaves, but they are Hölder continuous.

The following lemma is probably well known to some experts.

LEMMA 6. Let (M , ω) be a closed symplectic manifold admitting an Anosov symplecto-
morphism ϕ : M −→ M . Then Es and Eu are Lagrangian with respect to ω.

Proof. Suppose v, w ∈ Es . Then

ω(v, w) = (ϕ∗ω)(v, w) = ω(Dϕ(v), Dϕ(w)) = · · · = ω(Dϕk(v), Dϕk(w)).

Using the auxiliary metric g, we find that there is a constant c such that

|ω(v, w)| ≤ c · ‖ω‖ · ‖Dϕk(v)‖ · ‖Dϕk(w)‖ ≤ c · ‖ω‖ · a2 · e−2bk · ‖v‖ · ‖w‖.

Letting k go to infinity, the right-hand side becomes arbitrarily small. Therefore,
ω(v, w) = 0 and Es is ω-isotropic. By the same argument, with ϕ−1 replacing ϕ, we
conclude that Eu is also ω-isotropic. As the two subbundles are complementary, they must
be equidimensional and Lagrangian.

LetM be a closed flat Kähler manifold with Kähler form ω. Then its universal covering
with the lifted Kähler structure is isomorphic to R2n ∼= Cn with the standard Kähler form
ω0. The fundamental group π1(M) = � is a Bieberbach group given by an extension of
the form

1 −→ A −→ �
p−→ F −→ 1, (1)

where A ∼= Z2n is the maximal subgroup consisting of pure translations, and F , the
holonomy group of M , is finite. The group � acts on A by conjugation. Since A is
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abelian, this action factors through the projection p, giving rise to a representation
ρ : F −→ GL(A) called the holonomy representation of M . One can also consider this
as a representation of � factoring through p, as in the statement of Theorem 2 in the
Introduction.

We can now prove Theorem 2 stated in the Introduction.

Proof of Theorem 2. The first part is a simple adaptation of arguments in Epstein and
Shub [7] and Porteous [14]. Since the latter reference is elliptical and refers back to the
earlier [7], and our assumptions are a bit different, we spell out the details.

Let � = |F | be the order of F . Since the group GL(2n, Z�) is finite, there is a power
Hk of H satisfying Hk = I2n + �H̃ with H̃ ∈ GL(2n, Z).

The short exact sequence (1) gives rise to a five-term exact sequence in group
cohomology. We consider this with twisted coefficients in A, with respect to the �-action
given by conjugation. The induced action of A on itself is trivial, and the action of F is by
the holonomy representation ρ. A piece of the five-term exact sequence is:

H 1(�; A) −→ H 1(A; A)F = Hom(A, A)F −→ H 2(F ; A).

The assumption that H commutes with the image of the holonomy representation means
that H ∈ Hom(A, A)F . Since Hk − I2n = �H̃ , the image of Hk − I2n in H 2(F ; A)
vanishes, because in the latter group every element is of order (a divisor of) �. By
exactness, Hk − I2n lifts to an element [ψ] ∈ H 1(�; A). A representative ψ is a crossed
homomorphism with respect to the �-action on A, in other words, a map ψ : � −→ A

satisfying

ψ(xy) = ψ(x) · ρ(p(x))ψ(y)

for all x, y ∈ �. Since [ψ] lifts Hk − I2n from A to �, the restriction of ψ to A is
Hk − I2n.

Now, given ψ , we define f : � −→ � by f (x) = ψ(x) · x. This is a homomorphism
whose restriction to A is Hk , and which induces the identity on F . Therefore, f is
injective and gives an isomorphism between � and the (proper) subgroup Im(f ) ⊂ �.
By Bieberbach’s theorems, any such isomorphism between Bieberbach groups is induced
by an affine isomorphism B : R2n −→ R2n, in the sense that for all p ∈ R2n and x ∈ �
we have

(f (x))(p) = (BxB−1)(p).

The linear part of the affine map B is Hk , because that is the restriction of f to A. Now,
the assumption H ∗(ω0) = ω0 means that B is a symplectomorphism with respect to ω0.
Moreover, this affine symplectomorphism descends to M = R2n/� by construction, and
provides the required Anosov symplectomorphism ϕ of M .

Finally, for an affine Anosov diffeomorphism, the stable and unstable foliations are
linear and therefore parallel with respect to the standard flat connection. They are
Lagrangian by Lemma 6.
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Our main application of Theorem 2 is the so-called doubling construction. Let N be a
closed flat manifold of dimension n with fundamental group

1 −→ Zn −→ π1(N)
p−→ F −→ 1 (2)

and holonomy representation ρ : F −→ GL(n, R). Then N ×N is a closed flat manifold
of dimension 2n with fundamental group

1 −→ Z2n −→ π1(N)× π1(N)
p×p−→ F × F −→ 1 (3)

and holonomy representation

ρ × ρ : F × F −→ GL(n, R)×GL(n, R) ⊂ GL(2n, R).

We denote by � the subgroup (p × p)−1(	(F )) of π1(N)× π1(N), where 	(F) ⊂ F ×
F is the diagonal. This is a subgroup of index |F |, and the corresponding covering space
of N ×N is a flat 2n-manifold M whose fundamental group is given by

1 −→ Z2n −→ � = π1(M) −→ F −→ 1, (4)

with holonomy representation

D(ρ) : F −→ GL(2n, R)

g 
−→
(
ρ(g) 0

0 ρ(g)

)
.

We call this the double of the holonomy representation ρ ofN , and callM the double ofN .
On R2n, we consider the constant complex structure

J =
(

0 −In
In 0

)
.

Since this commutes with the image ofD(ρ), it descends to the manifoldM . This complex
structure is Kähler, since it is parallel for the flat metric on M . The corresponding Kähler
form is

ω0 =
n∑
i=1

dxi ∧ dyi ,

where the xi and yi are the linear coordinates on the first and second factors of R2n =
Rn × Rn. Moreover, the matrix

H =
(

2In In

In In

)

is hyperbolic, commutes with the image of D(ρ), and satisfies H ∗(ω0) = ω0. Therefore,
Theorem 2 implies the following.

COROLLARY 7. For any closed flat manifold N of dimension n, the double M is a
flat Kähler manifold of real dimension 2n, which admits an Anosov symplectomorphism
whose stable and unstable foliations form a pair of complementary parallel Lagrangian
foliations.
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Anosov diffeomorphisms and flat Kähler metrics were first constructed on doubles by
Porteous [14] and Johnson and Rees [12], respectively. This corollary shows that the two
constructions are compatible, and the Anosov diffeomorphisms one constructs preserve
the Kähler form of a flat Kähler metric.

Since every finite group is the holonomy group of a closed flat manifold by a classical
result of Auslander and Kuranishi, cf. [16, Theorem 3.4.8], we have the following corollary.

COROLLARY 8. Every finite group is the holonomy group of a closed flat Kähler manifold
which admits an Anosov symplectomorphism.

If one does not look for Lagrangian foliations induced by Anosov symplectomorphisms,
then one does not have to discuss H . Instead, one notes that the two factors of the splitting
R2n = Rn × Rn are Lagrangian with respect to ω0. Moreover, this splitting is preserved
by D(ρ) and so descends to a pair of complementary Lagrangian foliations on M . Unlike
the stable and unstable foliations of the Anosov symplectomorphism, these Lagrangian
foliations have essentially trivial dynamics. Topologically, M may be thought of as a
smooth T n-bundle over N with finite structure group F . In fact, this is a flat bundle in
which the leaves of the horizontal foliation are tori, and are copies of the F -covering of
N . The vertical and horizontal foliations of this flat bundle are the Lagrangian foliations
induced by the splitting R2n = Rn × Rn. This is an instance of the global action-angle
coordinates discussed by Duistermaat [6].

4. Examples in small dimensions
In this section, we give concrete examples of closed flat Kähler manifolds of small
dimension admitting Anosov symplectomorphisms with respect to the Kähler form.

In real dimension two, the only closed flat Kähler manifolds are tori, or elliptic curves.
The Kähler form is just an area form, and any area-preserving Anosov diffeomorphism of
T 2, such as ( 2 1

1 1 ), provides an example.
In real dimension four, there are eight distinct closed flat Riemannian manifolds,

which admit flat Kähler structures, one of them being T 4. With the potentially stronger
assumption that the structure is not just Kähler but projective algebraic, the other such
complex surfaces were classified by Bagnera and de Franchis at the beginning of the 20th
century. They not only proved that there are seven families up to deformation equivalence,
but also showed that all the complex structures are obtained as certain finite quotients
of a product of elliptic curves, so that one does not encounter quotients of irreducible
complex tori. Through the Kodaira classification of non-algebraic complex surfaces, it
became clear much later that there were no additional (non-projective) flat Kähler surfaces.
The finite quotients of a product of elliptic curves are now called hyperelliptic or bielliptic
surfaces; the Bagnera–de Franchis classification appears, for example, in [1, p. 148]. From
the point of view of the associated Bieberbach groups, this classification reappears in
[5, Lemma 2.2], where it is proved that the holonomy group of a closed flat Kähler
4-manifold is one of the groups {1}, Z2, Z3, Z4, or Z6. Moreover, the corresponding
flat manifold is unique in the first and last cases, whereas for Z2, Z3, and Z4 there
are two distinct manifolds for each holonomy group. This leads precisely to the eight
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possibilities given by tori and the seven Bagnera–de Franchis families. In comparing
the two classifications, one needs to remember that the groups used to describe the
Bagnera–de Franchis families in [1, p. 148] are sometimes larger than the Riemannian
holonomy groups. This is because the minimal toroidal covering space of a flat Kähler
surface, whose number of sheets is the order of the holonomy group, may not be a product
of elliptic curves, although it turns out to be isogenous to one. To obtain this product of
elliptic curves one has to pass to a higher-degree covering.

PROPOSITION 9. A closed flat Kähler manifold of real dimension four admits an Anosov
symplectomorphism if and only if the holonomy group has order at most two.

In other words, Anosov symplectomorphisms exist for exactly three of the eight cases
in the classification. One is the case of tori, and the other two are the manifolds with
holonomy group Z2. One of these manifolds with holonomy Z2 is the double of the Klein
bottle.

Proof. There is nothing to prove in the case of tori, so we consider only manifolds
with non-trivial holonomy group. Without any assumption about Kähler or symplectic
structures, Porteous [14, p. 314] proved that a closed flat 4-manifold admitting an Anosov
diffeomorphism has holonomy group of order at most two. In the case of order two, we
have the following two families of Kähler surfaces. Let E1 × E2 be a product of elliptic
curves, and τ1, τ2 ∈ E2 two distinct elements of order two. The map

ι1 : E1 × E2 −→ E1 × E2

(e, f ) 
−→ (−e, f + τ1)

is an involution, and the quotient is one of the manifolds with holonomy of order two. The
other one is the quotient of E1 × E2 by Z2 × Z2, where the first copy of Z2 is generated
by ι1 and the second by

ι2 : E1 × E2 −→ E1 × E2

(e, f ) 
−→ (e + σ , f + τ2),

with σ ∈ E1 of order two. To show that these manifolds admit Anosov symplecto-
morphisms, it is enough to exhibit an Anosov symplectomorphism on E1 × E2 which
commutes with ι1 and ι2.

For simplicity, take E1 = E2 = E = C/Z2, the square elliptic curve. Then,

H =

⎛
⎜⎜⎝

2 1
1 1

2 1
1 1

⎞
⎟⎟⎠

acts on C2 = Ẽ × E as an Anosov symplectomorphism and the action descends toE × E.
Moreover, (

2 1
1 1

)3

=
(

13 8
8 5

)
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fixes all the points of order two in E, and so H 3 commutes with ι1 and ι2. This completes
the proof.

Next, we consider flat Kähler manifolds of real dimension six. Via the doubling con-
struction of Corollary 7, the known classification of closed flat 3-manifolds (see [16, § 3.5])
gives 10 examples of closed flat Kähler threefolds admitting Anosov symplectomorphisms.
Their holonomy groups are all abelian but not necessarily cyclic, since the Klein 4-group
Z2 × Z2 occurs.

All the closed flat Kähler manifolds of real dimension six were classified by Dekimpe,
Halenda, and Szczepanski [5], who found that there were 174 such manifolds up to
diffeomorphism. All but one of them have abelian holonomy groups. We will not try to
work out here how many of these admit Anosov symplectomorphisms, beyond the 10
examples obtained by doubling. Instead, we consider the unique example with non-abelian
holonomy, described first in [5, p. 367], for which the holonomy is the dihedral group of
order eight. In [5] it is said that this example is not projective, because it does not appear
in the corresponding classification for the projective case due to Lange [13]. However,
since this manifold is Kähler with second Betti number equal to two, it must be projective
by the Kodaira embedding theorem. After one of us alerted Johnson to this discrepancy,
he clarified the construction and properties of this flat manifold with dihedral holonomy;
see [11]. Note that by Johnson’s much older result [10], every flat Kähler manifold also
admits the structure of a smooth complex projective-algebraic variety. (The claim in [13]
to the effect that [10] is erroneous is unjustified and possibly due to a misunderstanding.)
It has turned out that the discrepancy between [5, 13] was due to a mistake in [13], where
the proof that dihedral holonomy cannot appear in the projective case was erroneous.
In response to a question from the second author, Catanese and Demleitner located
the mistake and gave another description of the manifold in question; see [3]. Their
description, in the style of Bagnera and de Franchis, exhibits the flat Kähler manifold as
a finite quotient of a product of elliptic curves. We can therefore use it to find an Anosov
symplectomorphism by the same kind of argument as in the proof of Proposition 9.

PROPOSITION 10. The unique closed flat Kähler threefold with non-abelian holonomy
admits an Anosov symplectomorphism.

Proof. As mentioned before, we use the description of the manifold given in [3]. For
simplicity, we take the elliptic curves appearing in the construction to be the square E =
C/Z2. Let A′ = E × E × E and A = A′/(1/2, 1/2, 0). One considers r and s acting on
A′ by

r(z1, z2, z3) = (
z2, −z1, z3 + 1

4

)
and

s(z1, z2, z3) =
(
z2 + 1 + i

2
, z1 + i

2
, −z3

)
.

It was checked in [3] that r and s induce a free action of the dihedral group of order eight
on A, and that this action contains no pure translations. The quotient is then the sought flat
Kähler manifold with dihedral holonomy.
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In order to prove that this manifold admits an Anosov symplectomorphism, it is enough
to find an Anosov symplectomorphism onA′ which fixes (1/2, 1/2, 0) and commutes with
r and s. On C ⊕ C ⊕ C, we consider

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 1
1 1

2 1
1 1

2 1
1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

This descends to A′ = E × E × E as an Anosov symplectomorphism. Since
(

2 1
1 1

)3

=
(

13 8
8 5

)

fixes 1/2, we conclude that H 3 descends from A′ to A. Moreover,
(

13 8
8 5

)
fixes 1/4

and i/2, and therefore commutes with r and s. This shows that H 3 induces an Anosov
symplectomorphism on the quotient of A by the dihedral group generated by r and s.
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