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We construct an uncountable family of pairwise non-isomorphic rings S, such that the corresponding full 2 by
2 matrix rings M2(Sj) are all isomorphic to each other. The rings Sf are Noetherian integral domains which
are finitely-generated as modules over their centres.
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1. Introduction

Let A and B be rings and suppose that the corresponding full 2 by 2 matrix rings
M2(A) and M2(B) are isomorphic. It is natural to ask whether this implies that A and B
are isomorphic. The answer is well-known to be "Yes" if A and B are commutative,
because then A and B are isomorphic to the centres of M2(A) and M2(B) respectively.
The situation is much more interesting when A and B are not commutative. It was
shown by S. P. Smith in [6] that there are non-isomorphic simple Noetherian integral
domains A and B (one of which is the first Weyl algebra) such that M2(A)^M2(B).
Thus even for naturally-occurring Noetherian non-commutative rings it is possible to
have M2(A)^M2(B) without having A^B. When this happens it is probably not going
to be easy to prove that A and B are not isomorphic, because the condition that
M2(A)^M2(B) implies that A and B are indistinguishable as far as most ring-theoretic
properties and invariants are concerned. For further developments concerning Smith's
example see for instance [7] and [3].

Some examples much more closely related to commutative rings than Smith's were
constructed in [2]. There it was shown that, for an odd prime number p, the different
representations of p as a sum of four squares give rise to pairwise non-isomorphic rings
S such that the corresponding rings M2(S) are all isomorphic to each other. In this case
the rings S are Noetherian Z-orders in the division algebra of quaternions over the
rational numbers. The present paper arose from an attempt to generalise the results in
[2], and in particular to replace number-theoretic conditions by ring-theoretic ones.
Thus the key property of the quaternion examples considered in [2] is that all relevant
one-sided ideals are principal, and the condition about sums of squares can be re-stated
in terms of the orbits of certain right ideals under the action of the automorphism
group of the ring.

In Section 3 we shall give a general method which starts with a suitable prime ring R
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and from it constructs pairwise non-isomorphic subrings S such that the corresponding
matrix rings M2(S) are all isomorphic. Roughly speaking, the subrings S correspond to
the orbits of the automorphism group of R acting on a certain set of right ideals (the
precise details are given in Theorem 3.10). As an illustration, in Section 4 we shall
construct an uncountable family of non-isomorphic subrings S of a ring R such that the
corresponding rings M2(S) are all isomorphic. All the rings in this example are
Noetherian orders in a division algebra which is 4-dimensional over its centre. It is now
becoming clear that non-isomorphic rings with isomorphic matrix rings occur quite
widely. For further results about matrix rings the interested reader is strongly
recommended to consult [4].

2. Conventions and notation

All rings considered here are associative with identity element. We shall use Z to
denote the ring of integers. Let R be a ring. For a positive integer n we use Mtt(R) to
denote the ring of all n by n matrices with entries in R. Let K be a right ideal of R. We
use IR(K) or I(K) to denote the idealiser of K in R, i.e. IR(K) = {xeR:xK^K}. Let
xeR. We use rR(x) or r(x) to denote the right annihilator of x in R, i.e. rR(x) = {aeR:
xa = 0}. Similarly /R(x) = /(x) = {aeR:ax=0}. We say that x is right regular, left regular,
or regular according as r(x) = 0, /(x) = 0, or r(x) = /(x) = 0 respectively. If X is an R-
module of finite length, we use length(X) to denote the length of X. Background
material about non-commutative rings can be found in [1] or [5].

3. Idealisers of principal right ideals

In this section we introduce the type of ring for which our methods work, before
calculating with a particular example in Section 4. We shall also establish ways of
proving that certain related rings are, or are not, isomorphic. Some standard notation
will be introduced and used subsequently without further explanation.

Lemma 3.1. Let S be a simple Artinian ring and let X1 and X2 be right ideals of S
such that length(Xi) = length(X2). Then there is an element u of S with u2 = \ such that

Proof. Set Y3 = X1nX2. We have X1 = Y1@Y3 and X2 = Y2@Y3 for some right
ideals Yt and Y2 of S with length (y1) = length(y2). The sum Yi + y2+y3 is direct, and
there is a right ideal Y4 of S such that S= Yt © Y2 © Y3 © Y4. Because length^ ) =
length(Y2), there are mutually-inverse right S-module isomorphisms / : Yi-»Y2 and g:
Y2^Y,. Define h: S^S by h{y1+y2 + y3+yA)=g(y2) + f(y1)+y3 + y4 for all y,e Yf. Then
h is a right S-module homomorphism, and h2 is the identity function. Set u = h(l). Then
M2 = /i(l)/i(l) = fc(/j(l)) = l, and uXl = h{l)Xi = h{X1) = h(Y1 + Y3) = f(Y1)+Y3 = Y2 + Y3 =
X2. •

Theorem 3.2. Let R be a ring with an ideal P such that the ring R/P is simple
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Artinian, and let K and L be right ideals of R which contain P and satisfy length(K/
P) = length(L/P). Then M2(L) = vM2{K) for some unit v of M2{R), and
M2(I{L)) as rings.

Proof. Set S = R/P, X = K/P, and Y = L/P. By Lemma 3.1 we have Y = uX for some
u € S with M2 = 1. As in the proof of Theorem 3.3 of [2], there is a unit v of M2(R) whose
image under the natural ring-homomorphism M2(R)^>M2(S) is

u 0
0 u

Because M2{Y) = uM2(X) it follows as in the above-cited proof that M2(L) and vM2{K)
have the same image in M2(S) and hence that M2(L) = vM2(K). We define an
automorphism / of M2(R) by / ( x ^ w c i r 1 for all xeM2(R). Then M2(L) = /(M2(K)).
It follows that / restricts to an isomorphism between the corresponding idealisers
I(M2(L)) and I(M2(K)). But /(M2(L)) = M2(/(L)) and similarly for K. Therefore

•

The general result in Theorem 3.2 shows that the full 2 by 2 matrix rings which we
shall consider are isomorphic, but we need to work in a much more specialised situation
in order to prove that the corresponding base-rings are not isomorphic.

Notation 3.3. Let R be a prime ring with a non-zero central element z such that
R/zR^Mn(D) for some division ring D and positive integer n> 1. We suppose that every
one-sided ideal of R which contains z is principal, that R has no proper non-zero
idempotent two-sided ideals, and that every right or left regular element of R is regular.
We shall identify R/zR with Mn(D) and use * to denote image in R* = R/zR. We fix a
right ideal K of R with zR^K^R and set k = length(K*). Let L be the left ideal of R
such that zeL and L* = lR.(K*), i.e. L is the inverse image in R of the left annihilator of
K* in R*. We have K = sR and L = Rt for some s, teR.

Remarks 3.4. (1) We shall refer repeatedly to the notation and assumptions of 3.3.

(2) Because zesR and z is a non-zero central element of the prime ring R, in the
notation of 3.3, it is easy to show that /(s)=0. Thus s is left regular and hence regular.
Similarly t is regular.

(3) It is not necessary for every one-sided ideal of R to be principal in order for R to
satisfy 3.3. For example let R be the ring of quaternions with coefficients in the ring Z
of integers, and let z = p be any odd prime number. Then R and z satisfy 3.3 with n = 2
and D = Z/pZ. But there are non-principal one-sided ideals of R containing the "bad"
prime 2. This example was studied in detail in [2].
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(4) Any principal right and left ideal domain satisfies 3.3 provided that there is a
suitable central element z, and such an example will be given in Section 4.

(5) Once K is fixed in 3.3 then L is determined uniquely, but the same is not true of s
and t. For instance t is only determined up to multiplication on the left by a unit of R.
Hence tR is only determined up to conjugation by a unit of R, but this is enough for
our purposes because we are only interested in the isomorphism-type of the idealiser

(6) In the quaternion example in (3) above there is a natural choice for t given s,
namely t is the usual conjugate of s.

(7) For varying choices of K in 3.3 we wish to determine when the corresponding
idealisers I(K) are isomorphic. It follows from Theorem 3.2 that the rings M2(I(K)) are
isomorphic to each other for all choices of K corresponding to a fixed value of
fc = length(*:*).

Lemma 3.5. In the context of 3.3 suppose that z = abfor some a, beR. Then z = ba.

Proof. We have /(a) = 0 because /(z)=0. Thus a is left regular and hence regular. But
aba = za = az. Therefore ba = z. •

Lemma 3.6. Let R be as in 3.3. Then zetR, length(t*R*) = length{R*t*) = n-k, and
tsR = zR.

Proof. Because zeL we have z = rt for some reR. Hence z = tr by Lemma 3.5 so
that zetR. Because R* is simple Artinian and length(K*) = /c, it is well-known that
length(J?*t*) = length(/R.(K*)) = n-fc and that length(t*K*) = length(K*t*). Hence
length(R/t/?) = length(/?*) — length(t* R*)=n —(n-k) = k. Also because t is regular we
have tR/tsR^R/sR as right R-modules. Thus \ength(t R/tsR) = length(R/si?) =
length(i?*)-length(s*i?*) = n-/c. But tsR^zR and length(R/tsR) = length(R/tR) +
\ength(tR/tsR) = k+(n — k) = n = length(R/zR). Therefore tsR=zR. •

Remark 3.7. Let R be as in 3.3. By Lemma 3.6 we have z = tsw for some unit w of R.
We have swR = sR = K. Thus if we replace s by sw we may suppose without loss of
generality that z = ts. By Lemma 3.5 we also have z = st. From now on we shall suppose
that z = ts = st.

Proposition 3.8. With the assumptions of 3.3 and 3.7, there is a ring-isomorphism f.
I(sR)-•/((/?) such that f(Rt) = tR.

Proof. Let xeI(sR). Then xs = sy for some yeR. In fact y is unique because s is
regular. We shall show that yeI(tR). We have syt = xst = xz = zx = stx. Hence yt = tx and
yel(tR). With xs = sy as above, we define / : I(sR)->I(tR) by f(x) = y, i.e. f(x) = s~1xs.
Similarly we can define g:I(tR)->I(sR) by g(y) = t~1yt for all yeI{tR).
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It is routine to check that / and g are mutually-inverse ring-isomorphisms. Also
s-1Rts = s'1Rz = zs-lR = tss~1R = tR. •

Proposition 3.9. With the assumptions of 3.3 and 3.7, then sR and Rt are the only
idempotent maximal ideals of I(sR). Also I{sR)/sRsMn_k(D) and I(sR)/Rt^Mk(D).

Proof. It is well-known and easy to show that I(sR)/sR is isomorphic to the
endomorphism ring EndR(R/sR) of the right R-module R/sR. But R/sR^R*/s*R*. Also
R* = Mn(D) and \ength{R*/s*R*) = n-k. Therefore I(sR)/sR s EndR(R/sR) s
EndR.{R*/s*R*)^Mn_k(D). Similarly I(tR)/tR^Mk(D), because tength(R*/t*R*) =
length(K*)-length(t*K*) = n-(n-/c) = /c by Lemma 3.6. But by Proposition 3.8 we
know that I(tR)/tR^I{sR)/Rt. Therefore I(sR)/Rt^Mk(D). In particular it follows that
Rt and sR are maximal ideals of I(sR). Because zR ̂  sR and zR is a maximal ideal of R,
we have RsR = R. Therefore si? is idempotent, and similarly so also is Rt.

Now let M be a maximal ideal of I(sR) with sR^M^Rt. We must show that M is
not idempotent. Suppose that RMR = R; we shall obtain a contradiction. We have
sR- Rt=sRt = sRMRt^M. Hence either sRgM in which case sR = M, or Rt^M giving
Rt = M. This is a contradiction, so that we have RMR^R. Therefore RMR is not
idempotent, by 3.3. Thus RMR^(RMR)2^RM2R. It follows that M2 # M . •

We have shown in Proposition 3.9 that sR and Rt can be distinguished from all other
ideals of I(sR) because they are the only idempotent maximal ideals. The proof of the
following result depends heavily on this fact. We have Rt^sR for otherwise

Theorem 3.10. Let R, z, s, t be as in 3.3 and 3.7. Also let u be an element of R such
that zR^uR^R and length(u*R*) = k = length(s*R*), and let v correspond to u in the
same way that t corresponds to s. Suppose that there is a ring-isomorphism f:
I(sR)->I(uR). Then there is a ring-automorphism g of R with g(zR)=zR such that one of
the following is true:

(1) fis the restriction of g to I(sR) and g(sR) = uR, or
(2) g(sR) = vRand2k = n.

Proof. Set S = I(sR) and U = I(uR). By Proposition 3.9 we know that sR is an
idempotent maximal ideal of S. Hence f(sR) is an idempotent maximal ideal of U. But
uR and Rv are the only idempotent maximal ideals of U, by Proposition 3.9. Therefore
either f(sR) = uR or f(sR) = Rv.

Case (1): Suppose that f(sR) = uR. We shall show that / lifts to an automorphism of
R. Because Rt and Rv are the only other idempotent maximal ideals of S and U
respectively (Proposition 3.9), we have f(Rt) = Rv. Hence f(zR) = f(RtsR) =
f(Rt)f(sR) = RvuR = zR. Set w = /(z). We wish to show that wR = zR. We have wezR so
that w=za for some aeR. But z is central in R and S and hence w is central in U. Thus
zau = wu = uw = uza = zua so that au = ua. Hence aeU. Similarly by using the isomor-
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phism f~l: U-+S we see that f~\z) = zb for some beS. Set c = f(b). Then ceU and
z = f(zb) = f(z)f(b) = wc. Hence zR = wcR^wR. Because w=f(z)ezR it follows that
zR = wR as required.

Now for xeR we have f(zx)ef(zR) with /(zJ?) = zK = w/?. Thus f(zx) = wy for some
yeR. Set g(x)=>', i.e. g(x) = w"1/(zx) for all xeR. It is straightforward to check that g
is an automorphism of R. For example if p, qeR then g(pq) = w~1f(zpq) =
w ~ 2f(z)f(zpq) = w~ 2f(z2pq) = w~ 2f(zp)f(zq) = w ~ x/(zp) w "1 f(zq) = g(p)g(fl); here we
have used the fact that w is central in U. Also for xeS we have g(x) = w~lf(zx) =
w-1f(z)f{x) = f(x).

Case (2): Suppose that f(sR) = Rv. Then / : S->1/ induces an isomorphism between
S/sR and If/flu. But by Proposition 3.9 we have S/sR^Mn_k(D) and U/Rv^Mk(D).
Therefore Mn_(t(D)^M)t(D), i.e. n-k = k, i.e. 2/c = «. Set F = /(t;R). By Proposition 3.8
there is an isomorphism h: U-*V such that h(Rv) = vR. Thus hf: S-+F is an
isomorphism with hf(sR) = h(Rv) = vR. Now we can use what was proved in (1) to
deduce that hf extends to an automorphism g of R with g(zR) = zR and g(sR) = vR. Q

Corollary 3.11. In the notation of 3.10 suppose that k^n/2 and that f: I{sR)-*I(uR) is
a ring-isomorphism. Then f extends to an automorphism of R.

Proof. This is an immediate consequence of Theorem 3.10, because possibility (2) is
ruled out by the assumption that k # n/2. •

It would be nice if (2) of Theorem 3.10 never occurred, and certainly it does not occur
if n is odd. However, even for n = 3, the calculations in a particular example can be very
complicated. The easiest examples to work with have n = 2, but then Theorem 3.10(1)
may fail as in the following example.

Example 3.12. As in Example 3.8 of [2], let R be the ring of quaternions with
integer coefficients, and take z = 71, s= 1 + 3i' + 5/ + 6fc, and u = l — 3i — 5/—6k. Then
us = su-z, so that we can take t = u. By Proposition 3.8 we have I(sR) = I(uR). We are
in the situation of Theorem 3.10 with n = 2, k=l, and D = Z/71Z. But it was shown in
3.8 of [2] that there is no automorphism g of R such that g(sR) = uR. Thus Theorem
3.10(1) fails. •

4. The example

We shall now look in detail at the example which will provide an uncountable family
of pairwise non-isomorphic rings S such that the corresponding 2 by 2 matrix rings
M2(S) are all isomorphic to each other.

Notation 4.1. C denotes the field of complex numbers; for ceC we use c and real(c)
to denote respectively the complex conjugate of c and the real part of c; R is the ring of
polynomials in X over C with multiplication twisted by the rule that Xc = cX for all
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The notation of 4.1 will be used through the rest of this section. It is well-known that
R is an integral domain in which every one-sided ideal is principal (see for example [5]
1.2.9). Clearly z is a central element of R. It is known that R/zR^M2(Q, and we shall
prove this in 4.5 as a consequence of studying those right ideals of R which contain z.
Thus we are in the situation of Section 3 with n = 2. We shall also need to look at the
automorphisms of R, and the word "automorphism" here will always mean
"ring-automorphism".

Proposition 4.2. With the notation of 4.1 let g be an automorphism of R. Then
g(X) = aX for some non-zero element a of C. Also the restriction of g to C is either the
identity function or complex conjugation.

Proof. The non-zero elements of C are the units of R. From this it follows that g
restricts to an automorphism of C. Also g(X) generates R as a C-algebra, so that
g(X) = aX + b for some a, beC with a#0. For all ceC we have g(Xc)=g(cX), so that
(aX + b)g(c)=g(c)(aX + b). In particular_g(c)b=g(c)b for aJl_ceC. Hence b = 0. Thus for
all ceC we have aXg(c)=g(c)aX, i.e. (g(c))a=g(c)a, i.e. (g(c))=g(c). Therefore g(c) is a
real number if and only if c is real. Hence the restriction of g to the real numbers is an
automorphism and consequently is the identity function. It follows from this that the
restriction of g to C is either the identity function or complex conjugation. •

Corollary 4.3. Let g be an automorphism of R such that g(zR) = zR. Then g(X) = aX
for some aeC with \a\ = 1.

Proof. By Proposition 4.2 we have g(X) = aX for some aeC with a#0. Thus
g(z)=g(X* + l) = (g(X))4 +1 = (aX)4 +1 =(aa)2X4 + 1 = |a|4X4 + l. But zR=g(zR)=g(z)R.
Hence z=g(z)u for some unit u of R, i.e. for some non-zero element u of C. Thus
X* +1 =(|a|4Ar4 + l)u. Therefore u= 1 and \a\ = 1. •

Proposition 4.4. Let K be a right ideal of R with zR^K^R. Then K =
(X2 + aX + b)Rfor some a, beC with \b\ = l and \a\2/2 = real(b). Conversely if a and b are
any such elements of C and K = (X2 + aX + b)R, then zR^K^R.

Proof. Firstly suppose that K is a right ideal of R with zR^K^R. Because every
one-sided ideal of R is principal we have K = sR for some seR. Thus z = st for some
teR. If reR let deg(r) denote the degree of r as a polynomial in X. Then
deg(s) + deg(t) = deg(z) = 4. Because zR^sR^R we have 4#deg(s)#0. Therefore l g
deg (s) ̂  3. Without loss of generality we can suppose that s is monic.

In order to obtain a contradiction we suppose that deg(s) = l, i.e. that s=X + c for
some ceC. Then t = X3 + uX2 + vX + w for some w, v, weC. Because XA+\ = z=st =
(X+c)(X3 + uX2 + vX + w) we have O = c + u = cu + v = cv + w and l = cw. Hence l = cw =
c( — cv)=—ccv = c2cu=—(cc)2, i.e. 1 = — |c|4. This is a contradiction. Hence deg(s)#l.
Similarly deg(()#l, i.e. deg(s)#3.

Therefore deg(s) = 2, i.e. s = X2 + aX + b for some a, beC. Also t=X2+pX + q for
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some p, qeC. Because X4t+ l=(X2 + aX-t-b)(X2 + pX + q) we have 0=p+a =
b = aq + bp and l=bq. Hence p= —a and O = aq + bp=a(q — b). Thus either a=0 or b = q.
If a = 0 then 0 = q + ap + b = q + b, so that l = bq=—b2 and b = ± i . Now suppose that
a#0 . Then b = q so that l=bq = bb~. Hence |fc| = l and 0 = q + ap + b = 5-aa + b = 2

| || |
Conversely let a, fceC with |fe| = l and |a|2/2 = real(fr). Set s=X2 + aX + b and

t = X2-aX + 5. Then st = z from which it follows easily that zR^sR^R. •

Corollary 4.5. « / zRsM 2 (q .

Proof. Let epq denote the 2 by 2 matrix with 1 in the (p, <j)-position and O's
elsewhere. Set f(X) = iel2 + e2l where i2 = — 1 in C, and for each ceC set f(c) =
cell+ce22. Then f(X)f(c) = f(c)f(X) for all c e C Therefore / can be extended to a
ring homomorphism from R to M2(C). It follows from 4.4 that Ker(f) = zR. Also
deg(z) = 4 so that R/zR has dimension 4 as a vector space over C. It follows that
f(R) = M2(Q and that R/zR s M2(C) •

Corollary 4.6. Let K be a right ideal of R with zR^K^R. In the notation of 33 we
have n = 2 and fc=l. Also we can take K = sR and L = Rt where s = X2+aX + b and
t = X2-aX + b~for some a,beC with \b\ = l and |a|2/2 =

The next result will enable us to avoid the awkward Case (2) of Theorem 3.10.

Lemma 4.7. Let a, beC with \b\ = l and |a|2/2 = real(b). Set s = X2 + aX + b and
t=X2 — aX + B. Then there is an automorphism g of R such that g(zR) = zR and

Proof. If a = 0 set g(X) = X; if a^0 set g(X) = (-a/a)X; set g(c) = c for all ceC. Then
g can be extended to an automorphism of R with the desired properties. In fact g(s) = t,
g(t) = s, and g(z) = z. •

Theorem 4.8. Let R be as in 4.1, and let a, b, c, deC with \b\ = l = \d\, |a|2/2 = real(b),
|c|2/2 = real(d). Set s = X2 + aX + b and u = X2+cX + d. Then

(a) M2(IR(sR))^M2(IR(uR)),and
(b) The following statements are equivalent:

(1) IR(sR)^IR(uR) as rings;
(2) real (&) = real (d);

(3) uR =g(sR) for some automorphism g of R.

Proof, (a) follows from Proposition 4.4, Corollary 4.5 and Theorem 3.2.
(b) (3)=>(1) is elementary.

(1)=>(2): Suppose that I(sR)^I{uR) and set v = X2-cX + 2. By Corollary 4.6 and
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Theorem 3.10 there is an automorphism g of R with g(zR) = zR such that either
g(sR) = uR or g(sR) = vR. Also by Lemma 4.7 there is an automorphism h of R such that
h(zR) = zR and h(uR) = vR. Therefore there is an automorphism f of R such that
f(zR) = zR and f(sR)=uR. By Proposition 4.2 and Corollary 4.3 we have f(X) = wX
for some weC with |w| = l, and the restriction of / to C is either the identity function
or complex conjugation. We have f(s) = f(X2 + aX + b) = (wX)2 + f(a)wX + f(b) = X2 +
f(a)wX + f(b). Also f(sR) = uR, i.e. (X2 + f(a)wX + f(b))R=(X2 + cX + d)R. Hence
X2 + f(a)wX + f(b) = X2 + cX + d. In particular this gives d = f(b) where f(b)=b or
/(b) = 5. Therefore real (d) = real (ft).

(2)=>(3): Suppose that real (b) = real (d). Because |ft| = l = |d| and real (b) = real (d) we
have d = b or d = B. We must show that uR=g(sR) for some automorphism g of R, and
we shall do this by considering various cases. Suppose firstly that a = 0. Then
|c|2/2 = real (d) = real (b) = |a|2/2 = 0 so that c = 0. If d = b we can take g to be the identity
function on R. If d = B we can take g to be the automorphism of R determined by
g(X) = X and g{p) = p for all peC.

Now assume that a / 0 . Then we also have c#0. If d = b we can take g to be the
automorphism of R determined by g(X) = (c/a)X and g(p)=p for all peC. If d=E we
take g(Z)=(c/a)AT and g{p) = p for all peC. In all cases we have determined an
automorphism g of R such that g(sR) = uR. •

Corollary 4.9. Let A and B be maximal right ideals of R which contain z. Then
M2(I(A))^M2(I(B)), but I(A)^I(B) if and only if B=g(A) for some automorphism g of
R.

Proof. This follows from Theorem 3.2, Proposition 4.4 and Theorem 4.8. •

Corollary 4.10. Set I = {x: x is a real number with O ^ x ^ l } . For each pel set
Kp={X2 + (2p)1/2X+p + i(l-p)2)ll2)R. Then Kp is a maximal right ideal of R containing
z. As p ranges over the elements of I the corresponding uncountable family of rings IR{KP)
are pairwise non-isomorphic, but the matrix rings M2{IR(Kp)) are all isomorphic to each
other.

Proof. By Proposition 4.4 each Kp is a maximal right ideal of R containing z. Let p,
qel. It follows from Theorem 4.8 that the three following statements are equivalent:
/ ( * , ) £ / ( * , ) ; real(p + i ( l -p 2 ) 1 ' 2 ) = realta + / ( l - ( ?

2 ) 1 / 2 ) ; p = q. We have M2( / (K,))s
M2(I(Kq)) by Theorem 3.2. •

REFERENCES

1. A. W. CHATTERS and C. R. HAJARNAVIS, Rings with chain conditions (Pitman, London, 1980).

2. A. W. CHATTERS, Matrices, idealisers, and integer quaternions, J. Algebra, 150 (1992), 45-56.

3. G. LETZTER and L. MAKAR-LIMANOV, Rings of differential operators over rational affine
curves, Bull. Soc. Math. France, to appear.

4. L. S. LEVY, J. C. ROBSON and J. T. STAFFORD, Hidden matrices, in preparation.

https://doi.org/10.1017/S0013091500018435 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018435


348 A. W. CHATTERS

5. J. C. MCCONNELL and J. C. ROBSON, Non-commutative Noetherian rings (Wiley, 1987).

6. S. P. SMITH, An example of a ring Morita-equivalent to the Weyl algebra Au J. Algebra 73
(1981), 552-555.

7. J. T. STAFFORD, Endomorphisms of right ideals of the Weyl algebra, Trans. Amer. Math.
Soc. 299 (1987), 623-639.

SCHOOL OF MATHEMATICS

UNIVERSITY WALK,

BRISTOL BS8 1TW

https://doi.org/10.1017/S0013091500018435 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018435

