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Parametric oscillations of the sessile drop
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Waves are formed on the surface of a sessile drop driven through substrate vibrations
oriented at a slanting angle from the normal. A mathematical model is derived, which
leads to an infinite system of coupled Mathieu equations governing the wave dynamics
that are solved using Floquet theory. The spatial structure of the waves is described
by the mode number pair [�,m], where � and m are the polar and azimuthal mode
numbers, respectively. Limiting cases corresponding to horizontal and vertical vibrations
are discussed with predictions agreeing well with prior literature. We focus our results
on three drop motions – (1) harmonic [1, 1] rocking mode, (2) harmonic [2, 0] pumping
mode, and (3) subharmonic rocking [1, 1] mode – as they depend upon the slanting angle,
static contact angle, and contact-line conditions, which we assume to be either pinned
or freely moving with fixed contact angle. New theoretical predictions are tested through
experiments over a range of parameters, showing good agreement.
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1. Introduction

Droplet manipulation on substrates is relevant to technologies such as inkjet printing
(Calvert 2001), spray cooling (James, Smith & Glezer 2003; Vukasinovic, Smith & Glezer
2007b; Tsai et al. 2012) and phase-change heat transfer (Daniel, Chaudhury & Chen 2001;
Macner, Daniel & Steen 2014), and is often facilitated by external driving forces associated
with acoustic fields (Marston & Apfel 1980; Chastrette et al. 2022), aerodynamic effects
(Bouwhuis et al. 2013), magnetic fields (Hill & Eaves 2012), electric fields (Feng &
Beard 1991; Oh, Ko & Kang 2008) and substrate vibrations (Brunet, Eggers & Deegan
2007; Chang et al. 2015). The temporal response of the droplet is often determined by
the particular type of applied forcing. In this paper, we study the oscillations of a sessile
drop on a mechanically vibrated substrate whose axis of vibration is oriented at an angle
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χ from the normal. This gives rise to parametric oscillations typically associated with
Faraday waves, which contribute to the unidirectional drop motion (Costalonga & Brunet
2020; Guo, Shui & Chen 2020) and climbing drops (Brunet et al. 2007; Sartori et al. 2015).

Faraday (1831) observed the formation of surface waves on a vertically vibrated liquid
bath that oscillated with frequency f one-half that of the driving frequency fd, i.e. f = fd/2,
above a critical threshold driving acceleration a. This is termed a subharmonic response.
Benjamin & Ursell (1954) showed that Faraday waves were solutions of a generalized
Mathieu equation,

ÿ + cẏ + (P − 2AQ cos fdt)y = 0, (1.1)

where y is the surface disturbance. Floquet theory is often invoked to solve (1.1) and
gives rise to a set of instability tongues for a subharmonic, harmonic and superharmonic
wave response in which the wave is observed. There is a large volume of literature on
Faraday waves on planar interfaces (Miles & Henderson 1990). However, there is limited
research on Faraday waves on drops, particularly theoretical modelling. Ebo-Adou &
Tuckerman (2016) use Floquet theory to predict the instability tongues for a free drop
subject to radial forcing. Maksymov & Pototsky (2019) develop a simple hydrodynamic
model of a one-dimensional pancake-shaped drop, and analytically determine the response
amplitudes for the first harmonic and first superharmonic. To our knowledge, there has
been no theoretical investigation of Faraday waves on a sessile drop with arbitrary contact
angle α and slanting angle χ . The aim of this study is to fill this gap in the literature. Unlike
the case of radial forcing, slanted vibrations lead to a set of coupled Mathieu equations,
which we solve using the Floquet theory method proposed by Kidambi (2013) for a brimful
circular cylinder.

The frequency spectrum for the sessile drop exhibits a rich structure that has been
predicted theoretically by Bostwick & Steen (2014) and verified experimentally under both
terrestrial (Chang et al. 2015) and microgravity (McCraney et al. 2022) conditions, and
numerically by Sakakeeny & Ling (2020). Here, the drop will oscillate with frequency
λ�,m and mode shape defined by the mode number pair [�,m], where � is the polar mode
number, and m is the azimuthal mode number, restricted such that �+ m = even due to
symmetry considerations associated with enforcement of the no-penetration condition at
the solid support. For reference, the �+ m = odd modes have been predicted recently
by Ding & Bostwick (2022), and are associated with a flux condition on the solid
support. Figure 1 shows typical mode shapes, which can be classified by their mode
number pair [�,m] into zonal [�, 0], lateral [�, 1], sectoral [�, �] and tesseral [�,m /= �]
shapes. The spectrum of an inviscid sessile drop depends upon the static contact angle α
and contact-line boundary condition. The special case of a hemispherical α = 90◦ base
state with fully mobile contact line exhibits a high degree of symmetry and inherits the
Rayleigh–Lamb spectrum for the free drop, including the well-known spectral degeneracy
with respect to azimuthal mode number m (Rayleigh 1879; Lamb 1924). Deviations
from this special base state lead to spectral splitting and spectral reordering, which have
been organized using a symmetry-breaking perspective into a periodic table of droplet
motions by Steen, Chang & Bostwick (2019). Recent work by Zhang, Zhou & Ding
(2023) has revealed symmetry-breaking due to gravitational effects, demonstrating that
the lowest-frequency mode is transformed from a zonal mode to a sectoral mode.

Sessile drop mobility is achieved once the pinning forces at the three-phase contact
line are overcome. Daniel & Chaudhury (2002) and Daniel et al. (2004) showed that
a drop placed on a chemically anisotropic substrate will undergo translational motion
once the contact-angle hysteresis has been overcome so as to mobilize the contact line.
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(a) [2, 0] (b) [1, 1] (c) [2, 2]

Figure 1. Sessile drop mode shape [�,m] classification into (a) zonal [�, 0], (b) lateral [�, 1], and (c) sectoral
[�, �] modes.

Here, substrate vibration is shown to help mobilize the contact line and induce such
motions through resonant shape oscillations. This effect can become so strong that a drop
may be driven up an inclined substrate against the weight of gravity (Brunet et al. 2007;
Sartori et al. 2015). Noblin, Kofman & Celestini (2009) have shown that such motion
can be decomposed into components associated with normal and tangential substrate
vibrations. To explain and quantitatively predict directional drop motion, direct numerical
simulations (Ding et al. 2018) and simplified flow models, e.g. lubrication theory (Savva
& Kalliadasis 2014) and shallow-water models (Benilov & Billingham 2011; Bradshaw &
Billingham 2016), have been put forth to simulate a drop climbing up a vibrating inclined
plate. Costalonga & Brunet (2020) conducted quantitative experiments of directional
motion of sessile drops induced by slanted vibrations to compare with existing models.
It is generally accepted that to induce directional drop motion requires the simultaneous
excitation of the asymmetric [1, 1] rocking mode and the symmetric [2, 0] pumping mode
as the minimal ingredients (Noblin et al. 2009; John & Thiele 2010). It is possible to
do so in an experiment with a single driving frequency. This is illustrated in figure 2,
which plots the subharmonic and harmonic tongues for the rocking and pumping modes
in the acceleration–frequency (Λ–ω) parameter space for a typical set of experimental
conditions. Note the overlap of the instability tongues for the subharmonic rocking mode
and harmonic pumping mode, which gives rise to drop motion that we will refer to
hereafter as a mixed mode. Thus the mixed mode is defined as the superposition of a
subharmonic rocking mode and harmonic pumping mode. For reference, other mixed
mode pairs have been observed experimentally that consist of a harmonic zonal mode
and subharmonic tesseral or sectoral mode (Chang et al. 2015, figure 12). What is also
interesting from figure 2 is that the harmonic [1, 1] rocking mode is isolated, which
makes it easy to observe in experiment. Given the interest in such motions, we focus on
presenting theoretical predictions for the [1, 1] and [2, 0] modes, and conduct preliminary
experiments to verify these theoretical predictions.

We begin this paper by describing our mathematical model of surface waves on a sessile
drop subjected to slanted substrate vibrations. This gives rise to a set of coupled Mathieu
equations, which are solved using Floquet theory to give the shape of the instability
tongues, as they depend upon static contact angle α, slanting angle χ , and contact-line
conditions. Experiments are performed to test theoretical predictions and are focused on
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Figure 2. Typical instability tongues for the [1, 1] and [2, 0] modes plotted in the acceleration–frequency
(Λ–ω) space. Here, the contact line is pinned, the slanting angle is χ = 30◦, and the contact angle is α = 90◦.

the [1, 1] rocking and [2, 0] pumping modes, as relevant to drop transport on substrates.
Theoretical predictions show good agreement with experimental observations for most
cases, but there are exceptions, and we provide a rationalization for these differences. We
finish by offering some concluding remarks.

2. Mathematical formulation

Consider a sessile drop defined by a base radius r and contact angle α on a horizontal
substrate, as shown in figure 3, and defined as

X(s, ϕ;α) = sin(s)
sin(α)

cos(ϕ), Y(s, ϕ;α) = sin(s)
sin(α)

sin(ϕ), Z(s;α) = cos(s)− cos(α)
sin(α)

,

(2.1a–c)

using arc-length-like s ∈ [0, α] and azimuthal angle ϕ ∈ [0, 2π] as generalized surface
coordinates (Bostwick & Steen 2014). The liquid is immersed in a passive gas, has density
�, and is assumed to be incompressible and inviscid. Gravitational effects are neglected.
The plate is driven by an applied acceleration att that is oriented at an angle χ away from
the vertical. This induces an interface disturbance η and corresponding free surface flow
that is described by a velocity field U and pressure field P that satisfy the continuity and
Euler equations, i.e.

∇ · U = 0, (2.2a)

�

(
∂

∂t
+ U · ∇

)
U = −∇P + �attk, (2.2b)

respectively.
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Figure 3. Definition sketch of a sessile drop on a substrate that is mechanically vibrated at angle χ defined
from the normal in (a) two-dimensional planar and (b) three-dimensional perspective views.

At the free interface, the interface shape η is coupled to the flow field through the
kinematic condition

∂η

∂t
+ U · ∇η = U · n, (2.3)

and the Young–Laplace equation

P/σ = 2H, (2.4)

which relates the pressure jump across the interface to the mean curvature H there, with σ
the surface tension. Finally, the no-penetration condition is applied on the solid boundary:

U · ẑ = 0|z=0. (2.5)

The orientation of the applied acceleration gives rise to both horizontal and vertical
forcing, and can be expressed in component form as attk = cosχ avttz + sinχ ahttx.
Here, we assume avtt = ahtt = (σ/�r2)Λ cosωt, with Λ ≡ A/r, where A is the driving
amplitude, and ω is the driving frequency.

2.1. Linearized equations
Equation (2.2) admits the base state

Û = 0, ∇P̂ = σ

r2 Λ(cosχ z + sinχ x) cosωt. (2.6a,b)

We perform a linear stability analysis about this base state by decomposing the velocity
and pressure fields as

U = Û + ε u = ε∇φ, (2.7a)

P = P̂ + εp, (2.7b)

where ε is a small parameter. Here, we have assumed an irrotational velocity field that is
described by the velocity potential φ, such that u = ∇φ. Substituting (2.7) into (2.2) leads
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to the linearized equations

∇2φ = 0, (2.8a)

p = −� ∂φ
∂t
, (2.8b)

on the drop domain. Similarly, the kinematic condition (2.3) reduces to
∂φ

∂n
= ∂η

∂t
, (2.9)

and the no-penetration condition (2.5) reduces to
∂φ

∂z
= 0. (2.10)

The Young–Laplace equation (2.4) can be written as

P|ρ=R+η ≈ P̂|ρ=R + p|ρ=R + η

(
∂P̂
∂ρ

)∣∣∣∣∣
ρ=R

= σ(∇ · n)ρ=R+η, (2.11)

using a spherical coordinate system (ρ, θ, ϕ) with the static drop surface defined at ρ =
R. These linearized equations can be simplified by defining P̂|ρ=R = σ(∇ · n)ρ=R and
p|ρ=R = −�(∂φ/∂t), and performing some algebraic manipulations to get

�
∂φ

∂t
+ σ(∇ · n)ρ=R+η − σ(∇ · n)ρ=R

− σ

r2 Λ(cosχ cos θ + sinχ sin θ cosϕ) cosωtη = 0. (2.12)

2.2. Dimensionless equations
Dimensionless variables are introduced,

ρ∗ = ρ/r, η∗ = η/r, t∗ = t
√
σ

�r3 , φ∗ = φ

√
�

σ r
, p∗ = p

r
σ
, (2.13a–e)

and applied to the governing equations. Herein, we drop the ∗ and refer to dimensionless
quantities. The resulting equations to be solved are Laplace’s equation on the domain

∇2φ = 0, (2.14)
with no-penetration condition on the solid support z = 0,

∂φ

∂z
= 0, (2.15)

and kinematic condition
∂φ

∂n
= ∂η

∂t
(2.16)

and Young–Laplace equation

∂φ

∂t
− sin2(α)

(
∂2η

∂s2 + cot(s)
∂η

∂s
+ 2η + 1

sin2(s)

∂2η

∂ψ2

)
−Λη(cosχ cos θ + sinχ sin θ cosϕ) cosωt = 0 (2.17)

on the free surface ρ = R. The governing equations are augmented with a contact-line
boundary condition applied at s = α, which we assume to be either pinned or free to
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move, i.e.

η = 0, pinned condition, (2.18a)

∂η

∂s
− (cosα)η = 0, free condition, (2.18b)

and an integral condition ∫
Γ

∂φ

∂n
dΓ = 0, (2.19)

necessary to ensure volume conservation.

2.3. Derivation of the coupled Mathieu equations
We seek a solution (η, φ) to the governing equations (2.14), (2.15), (2.16), (2.17), (2.18),
(2.19) in the form

η(x, t) = cos mϕ
∞∑
�=1

a�(t)Vm
� (x), φ(ρ, θ, t) = cos mϕ

∞∑
�=1

b�(t) ρ� Pm
� (cos θ),

(2.20a,b)

where x = cos s. Here, Vm
� are a set of orthonormal basis functions chosen to satisfy the

contact line (2.18) and integral conditions (2.19). The idea is to choose basis functions
from the natural oscillations problem, as described by Bostwick & Steen (2014, (4.10)), as

Vm
� (x) =

∫ 1

b
G(x, y; m) (ρ� Pm

� ( y)+ δm,0C) dy, � = 1, 2, . . . ,N, (2.21)

where the Green’s function is defined in

G(x, y; m) =

⎧⎪⎪⎨
⎪⎪⎩

1
1 − y2

U(x; m)X( y; m)
W( y; m)

, b < y < x < 1,

1
1 − y2

U( y; m)X(x; m)
W( y; m)

, b < x < y < 1.
(2.22)

Here, b ≡ cosα, and U and X are the homogeneous solutions of

(
2 − m2

sin2(s)

)
∂φ

∂n
+ cot(s)

(
∂φ

∂n

)′
+
(
∂φ

∂n

)′′
= 0 (2.23)

that satisfy the associated boundary conditions

U = y1(x; m), X = y2(x; m)− τ2(m)
τ1(m)

y1(x; m), (2.24a,b)

and W is the Wronskian of the solutions U and X.
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The Green’s function is parametrized by the azimuthal mode number m and the
transformed contact angle b. The functions y1 and y2 in the solutions U and X are given by

y1(x; 0) = P1(x), y2(x; 0) = Q1(x), y1(x; 1) = P1
1(x), y2(x; 1) = Q1

1(x),

y1(x; m ≥ 2) = (x + m)
(

1 − x
1 + x

)m/2

, y2(x; m ≥ 2) = x − m
2m(m2 − 1)

(
1 + x
1 − x

)m/2

,

⎫⎪⎬
⎪⎭

(2.25)

where P1, Q1 and P1
1, Q1

1 are the Legendre functions of orders 0 and 1 and index 1,
respectively. The parameters τ1 and τ2 are related to the contact-line boundary conditions,
with

τ
p
1 = y1(b; m), τ

p
2 = y2(b; m), (2.26a)

for the pinned contact-line disturbance (superscript p), and

τ n
1 = y′

1(b; m)+ b√
1 − b2

y1(b; m), τ n
2 = y′

2(b; m)+ b√
1 − b2

y2(b; m), (2.26b)

for the natural contact-line disturbance (superscript n). The constant C is defined as

C = −

∫ 1

b

∫ 1

b
G(x, y; 0) φ( y) dy dx∫ 1

b

∫ 1

b
G(x, y; 0) dy dx

. (2.27)

Substituting (2.20a,b) into (2.16) and (2.17) gives

∞∑
�=1

b�(t)
∂(ρ� Pm

� (cos θ))
∂n

= da�(t)
dt

Vm
� (x) (2.28a)

and

cos mϕ
∞∑
�=1

db�(t)
dt

(ρ� Pm
� (cos θ))

×
(

− sin2 α

(
(1 − x2)

∂2

∂x2 − 2x
∂

∂x
+ 2 − m2

1 − x2

)
Vm
� (x)

)
a�(t)

− Vm
� (x) a�(t)(Λ cosχ cos θ +Λ sinχ sin θ cosϕ) cosωt = 0, (2.28b)

respectively. We can project these equations onto the function space cos mϕ Vm
k (x), k = 1,

2, . . . ,N, via the inner product 〈 f , g〉 = ∫ 1
b f (x) g(x) dx, noting the identity∫ 2π

0

∫ 1

b
cos2 mϕ Λ0 Vm

� (x)Vm
k (x) sinχ sin θ cosϕ cosωt = 0. (2.29)

We project (2.28a) onto the function space to give

b�(t) =
∞∑

k=1

β�k
dak

dt
, (2.30)
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with

β�k =
(∫ 1

b

∂(ρ� Pm
� (cos θ))
∂n

Vm
k (x) dx

)−1 ∫ 1

b
Vm
� (x)Vm

k (x) dx. (2.31)

Similarly, projecting (2.28b) onto the function space Vm
� yields

∞∑
�=1

db�(t)
dt

(ρ� Pm
� (cos θ))

×
(

− sin2 α

(
(1 − x2)

∂2

∂x2 − 2x
∂

∂x
+ 2 − m2

1 − x2

)
Vm
� (x)

)
a�(t)

−Λ cosχ cos θ cosωt Vm
� (x) a�(t) = 0. (2.32)

Finally, we can project (2.32) onto the function space Vm
p and use (2.30) to obtain a system

of N coupled second-order ordinary differential equations:

N∑
�=1

γp�

N∑
k=1

β�k
d2ak

dt2
+ (τp� −Λ cosχ Hp� cosωt)a� = 0, p = 1, 2, . . . ,N, (2.33)

with

γp� =
∫ 1

b
ρ� Pm

� (cos θ)Vm
p (x) dx, (2.34a)

τp� = sin2 α

∫ 1

b
−
(
(1 − x2)

∂2

∂x2 − 2x
∂

∂x
+ 2 − m2

1 − x2

)
Vm
� (x)Vm

p (x) dx, (2.34b)

Hp� =
∫ 1

b
cos θ Vm

� (x)Vm
p (x) dx. (2.34c)

As is customary, we have kept only a finite number of modes for N for numerical
computation. Equation (2.33) can be written in matrix form as

A
d2y
dt2

+ (P̂ − 2Λ cosχ Q̂ cosωt)y = 0, (2.35)

where y = (a1, a2, . . . , aN) is a coefficient vector, and the components of the matrices A
and P̂ are given by

Aij =
N∑
�=1

γi�β�j, P̂ij = τij, Q̂ij = H ij/2. (2.36a–c)

To facilitate a solution, we rescale (2.35) by defining T = ωt/2, P = 4A−1P̂, Q = 4A−1Q̂,
which gives

ω2 d2y
dT2 + (P − 2Λ cosχ Q cos 2T)y = 0. (2.37)
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2.4. Solution method
Floquet theory is used to determine the stability of (2.37). We follow the method suggested
by Kumar & Tuckerman (1994) and Kidambi (2013) by fixing the values of the Floquet
exponent μ for both harmonic and subharmonic tongues to trace out the shape of the
instability tongues. In general, this is a computationally efficient method.

We begin by seeking a solution of the form

y(T) = eμT

( L∑
l=−L

ξ l exp(i2lT)

)
, (2.38)

with ξ l a vector with components ξn
l , n = 1, . . . ,N. Substituting (2.38) into (2.37) gives

L∑
l=−L

⎛
⎝ω2(μ+ i2l)2ξn

l +
N∑

j=1

(Pnj − 2Λ cosχ Qnj cos 2T)ξ j
l

⎞
⎠ = 0. (2.39)

For a given Λ, we can compute the stability boundary by setting μ = 0 for
the harmonic case and μ = i for the subharmonic case, and solving for the
unknown ω from the generalized eigenvalue problem (Mω2 + W )v = 0, where v =
(ξ1

−L, ξ
1
−L+1, . . . , ξ

1
L−1, ξ

1
L , ξ

2
−L, . . . , ξ

N
L−1, ξ

N
L )

T .

3. Theoretical predictions

For the results presented here, we use a truncation N = 10 and L = 20 to produce sufficient
convergence for the Floquet theory calculations. We begin by verifying our model against
prior results in the literature. We then examine the limiting cases of horizontal and vertical
vibrations, before discussing the more general case of slanted vibrations. Our focus is on
the low-frequency [1, 1] and [2, 0] modes as the main contributors to directional drop
transport, as discussed in the Introduction.

3.1. Radial vibration verification of solution method
To our knowledge, only Ebo-Adou & Tuckerman (2016) have considered the parametric
oscillations of a free spherical drop, and they focus on the case where motion is driven by
a time-harmonic radial acceleration. A sessile drop with hemispherical base state α = 90◦
and free contact line has a subset of motions that may be extended smoothly by symmetry
operation to the full drop (Steen et al. 2019). This allows us to verify our Floquet theory.
It is straightforward to adapt our analysis to this limiting case, where (2.17) becomes

∂φ

∂t
− sin2(α)

(
∂2η

∂s2 + cot(s)
∂η

∂s
+ 2η + 1

sin2(s)

∂2η

∂ψ2

)
−Λη cosωt = 0. (3.1)

The steps from § 2.3 may then be applied to generate a set of uncoupled Mathieu equations
from which the subharmonic and harmonic tongues are computed by Floquet theory.
Figure 4 compares the shape of the subharmonic instability tongues for the [2, 0], [4, 0],
[6, 0] hemispherical sessile drop modes to those for the free drop, which reveals excellent
agreement, verifying our Floquet theory for sessile drops.
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Figure 4. Verification of Floquet theory for sessile drops with radial forcing. Subharmonic instability tongues
for the [2, 0], [4, 0], [6, 0] hemispherical sessile drop modes with free contact line compared with those
predicted by Ebo-Adou & Tuckerman (2016) for the full spherical drop.

3.2. Horizontal vibration
Horizontal vibration χ = 90◦ is a limiting case where (2.37) becomes

ω2 d2y
dT2 + Py = 0. (3.2)

Here, there is no parametric term implying that the temporal response is harmonic, which
has been observed experimentally by Khan & Eslamian (2019) for surface waves on a water
layer with pinned contact line, and argued mathematically by Or (1997) for a liquid film
with infinite lateral extent. We similarly report a harmonic drop response in experiments
for slanting angle close to χ = 90◦, which we will discuss in the next subsection. For
reference, the frequency spectrum for the hemispherical sessile drop subject to horizontal
forcing has been reported by Lyubimov, Lyubimova & Shklyaev (2004).

3.3. Vertical vibration
Vertical vibration χ = 0◦ is another limiting case that is relevant to most experimental
studies. Here, (2.37) becomes

ω2 d2y
dT2 + (P − 2ΛQ cos 2T)y = 0. (3.3)

Figure 5 plots the instability tongues for the three modes [2, 0], [1, 1], [2, 2] with smallest
natural frequencies for the case of vertical vibration. For both harmonic and subharmonic
tongues, note that the pinned contact-line modes are shifted to higher frequency relative
to the free contact-line modes. This is due to the fact that the pinned contact line is
more constrained than the free contact line, which is known to lead to higher frequencies
according to variational principles (Bostwick & Steen 2015). Also, the instability tongues
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Figure 5. (a) Subharmonic and (b) harmonic instability tongues for the [2, 0], [1, 1] and [2, 2] modes plotted
in the acceleration–frequency (Λ− ω) space, contrasting pinned and free contact-line conditions for α = 60◦.

for the free contact line are notably wider than those for the pinned contact line, a feature
that is more prominent for the harmonic tongues (cf. figure 5b). A comparison between
modes shows that the [2, 0] mode has the largest instability tongue, which we attribute
to the fact that zonal modes are dominated by vertical motions, making them easier to
be excited by vertical vibration. Figure 6 shows how the shape of the instability tongues
depends upon the contact angle α. Here, the bandwidth increases with α, suggesting that
larger drop inertia makes it easier to excite waves.
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Figure 6. (a,c) Subharmonic and (b,d) harmonic instability tongues for the (a,b) [2, 0] and (c,d) [1, 1] modes
plotted in the acceleration–frequency (Λ− ω) space, depending upon contact angle (α = 60◦, 90◦, 120◦).

3.4. Slanted vibration
Equation (2.37) describes the most general case for slanted vibration, as defined by the
slanting angle χ . Here, the cosχ coefficient on the parametric forcing term strongly
affects the shape of the instability tongues. Our focus is on the [1, 1] harmonic mode,
[2, 0] harmonic mode and [1, 1] subharmonic mode, as these are the easiest to excite
in experiment for small driving frequency and related to translational drop motion.
Figure 7 plots the instability tongues for a hemispherical α = 90◦ drop showing an overlap
of the [1, 1] subharmonic mode with the [2, 0] harmonic mode. This occurs because the
natural frequencies for these spatial modes are related by 2ω1,1 ≈ ω2,0 for α = 90◦. This
gives rise to the mixing mode, which we will discuss in detail in the next section when
we describe our experimental results. We also note that the bandwidth for the instability
tongues decreases with increasing slanting angle χ , which makes sense given that the
coefficient cosχ on the parametric term also decreases with χ .

4. Experiment

Experiments were performed and compared with the theoretical predictions discussed
previously. Given the recent interest in directional drop motion on substrates, we focus
on characterizing the motions for the [2, 0] harmonic pumping mode and the [1, 1]
subharmonic rocking mode for pinned contact-line conditions, as they depend upon the
slanting angle χ and drop contact angle α.
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Figure 7. Instability tongues for [2, 0] harmonic and [1, 1] subharmonic modes plotted in the
acceleration–frequency (Λ− ω) space, depending upon the slanting angle χ = 0◦ and 60◦, with pinned contact
line and α = 90◦.

4.1. Experimental procedure
Experiments are performed using the set-up shown in figure 8. A droplet of distilled water
is deposited onto a substrate through a needle using an AL-1000 syringe pump at low
flow rate to induce pinch-off of a droplet of known volume V . The liquid properties of
distilled water include the density ρ = 986.2 ± 2.4 kg m−3, surface tension σ = 71.06 ±
0.01 mN m−1 and dynamic viscosity μ = 1 mPa s. The droplet contact line is pinned by a
circular depression with depth 0.1 mm and diameter D = 3.3 mm, which is machined into
a solid piece of either aluminium or copper. The substrate is secured to a tilting angle table
(TAT) (Sherline 3750-LAZ), which consists of two plates separated by angle χ , the bottom
of which is mounted on a Labworks ET-139 mechanical shaker. The shaker is driven by a
Labworks power amplifier (PA-138) with feedback from an accelerometer (PCB J352C33)
that is controlled by VibeLab Pro software (VL144x-7.09) to provide sinusoidal vibrations
with acceleration a and frequency f at an angle χ ∈ [0◦, 90◦] with limiting cases of vertical
χ = 0◦ and horizontal χ = 90◦ vibration.

Droplet dynamics are captured by a Phantom VEO 410L high-speed camera at over
1000 fps. The camera is positioned on a three-axis stage and equipped with a LAOWA
Ultra Macro 25 mm lens. An optical diffuser (Edmund optics, 127 × 178 mm sandblasted
glass) is used to diffuse the backlight (MultiLED LT-V9-15). Both the shaker and the
camera are placed on separate optic tables to minimize interference. The shaker rests on
a 2.5 cm thick vibration isolation pad for bench isolation. Image calibration is carried
out through ImageJ using the outer diameter of the needle as the known length scale.
An in-house MATLAB code is developed in which the drop image undergoes Gaussian
filtering, a morphological closing operation using disk-shaped structuring elements, and
finally binarization. The contact angle α is measured by fitting the interface shape to
a second-order polynomial for the 50 closest points adjacent to the contact line, and
computing the slope of the tangent line to give α. Given α and the fixed wetted radius
r = D/2, the drop volume can be determined by assuming a spherical cap shape to give
V . The shape change dynamics are tracked using the binarized image from which the
interface shape and centre of mass are readily computed. The resulting signal is subjected
to a fast Fourier transform to extract the resonant frequency. Following each experiment,
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Figure 8. Experimental schematic shown in (a) front and (b) side views.

5/8 T 6/8 T 7/8 T T

1.1 mm t = 0 s 1/8 T 2/8 T 3/8 T 4/8 T

a, f

Figure 9. Harmonic pumping mode [2, 0] over a complete cycle of oscillation with period T , which has been
excited at acceleration a = 0.25 g and frequency f = 128 Hz using vertical χ = 0◦ vibration, with contact angle
α = 60.7◦ and volume V = 4.6 ml.

the droplet is removed using compressed air, and periodic cleaning of the substrate is
performed using an ultrasonic cleaner (MGUC500).

4.2. Results
Two types of motion are observed in experiment: (1) low driving amplitude harmonic pure
modes, and (2) high driving amplitude mixed modes. The latter involves the simultaneous
excitation of a subharmonic mode and a harmonic mode at a single driving frequency.
Here, we quantify the drop response for these motions, as it depends upon the experimental
parameters.

4.2.1. Pumping and rocking modes
Pure [2, 0] pumping and [1, 1] rocking modes are excited at comparatively low driving
acceleration (a = 0.25 g in this case), as shown in figures 9 and 10, respectively. The
pumping mode is dominated by vertical motion, and the rocking mode by horizontal
motion.

4.2.2. Harmonic instability tongues
The harmonic rocking mode is isolated, as there is no adjacent mode to interact with.
Here, the wave emerges gradually, making it experimentally challenging to identify the
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10/16 T 12/16 T 14/16 T T
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2/16 T 4/16 T 6/16 T 8/16 T

Figure 10. Harmonic rocking mode [1, 1] over a complete cycle of oscillation with period T , which has been
excited at acceleration a = 0.25 g and frequency f = 63.5 Hz using horizontal χ = 90◦ vibration, with contact
angle α = 60.7◦ and volume V = 4.6 ml.

boundary of these tongues. This is in stark contrast to the threshold instability typically
associated with the emergence of subharmonic Faraday waves. As such, we employ
an artificial criterion to detect the harmonic drop response, which we use to present
an equivalent harmonic instability tongue. The procedure that we use is to construct a
frequency response curve by tracking the dynamic contact angles αL, αR on the left and
right sides of the drop during a frequency sweep with fixed driving acceleration, as shown
in figure 11. This metric is more suitable for our experiments than tracking the centre of
mass (COM) for two main reasons: (1) any rocking motion corresponds to a change in
dynamic contact angles, and (2) this method focuses on accurately capturing the region
near the contact points, whereas the calculation of the COM relies on the entire drop
shape, making it susceptible to the influence of any defects in the interface shape due
to light reflection. Figure 11(a) plots the time trace of the dynamic contact angles with
the contact-angle difference |αR − αL|, an effective metric to quantify the drop response.
Figure 11(b) plots the time trace of the contact-angle difference and identifies the local
maxima (red dots) with associated average value (red solid line), as well as the average
value of the overall signal (blue dashed line). This gives the average value representing
the maximum difference in dynamic contact angles for that specific frequency, which we
repeat across multiple frequencies (with maximum interval 2 Hz) to generate the frequency
response curves shown in figure 11(c) for different slanting angles χ . Each response curve
exhibits a peak near the resonant frequency and an associated bandwidth, consistent with
the resonance plots of Celestini & Kofman (2006). The bandwidth can be defined by
choosing some fraction of the maximum drop response, for example 65 % shown as the
green dashed line. We note that this choice is arbitrary and will change the corresponding
value of the bandwidth, but it will not change the interpretation of the drop response if the
same metric is used for all response curves. This procedure is repeated for various driving
accelerations.

Figure 12 plots the bandwidth, computed using the procedure described in the previous
paragraph, in the acceleration–frequency domain for two different slanting angles (χ =
30◦ and 60◦) to produce an equivalent harmonic instability tongue. It is important to note
that we have not observed a pronounced rocking mode below a = 0.05 g and a = 0.1 g for
slanting angles χ = 60 and 30◦, respectively, for α = 60.7◦ and V = 4.6 ml. Below these
critical accelerations, the size of the dynamic contact angle difference is comparable to the
contact-angle hysteresis, and the periodic signature of the rocking mode is not observed in
the corresponding time trace. Here, decreasing the slanting angle χ increases the threshold
acceleration where the rocking mode is prominent, while also decreasing the bandwidth.
This is because the horizontal component of the vibration force, which contributes to the
rocking mode, decreases as the slanting angle decreases, shifting the response curves
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Figure 11. Procedure for obtaining the harmonic frequency response curve by measuring the time trace of (a)
the dynamic contact angles at two sides of the drop, αL, αR, for a = 0.25 g, f = 63 Hz and χ = 60◦. (b) The
difference in contact angles |αR − αL| is used as a metric for the frequency response, where the red dots denote
the peak points of the signal, and the red line is the average value of these points, while the dashed blue line
represents the overall average. (c) Frequency response curve plotting |αR − αL| against driving frequency f for
two different slanting angles, χ = 30◦ (squares) and χ = 60◦ (circles). The green dashed line corresponds to
65 % of the peak value of the response curve at χ = 60◦.

downwards (cf. figure 11c). Consequently, we observed no harmonic rocking mode at
χ = 0◦. Figure 6(d) shows that there exists a theoretical rocking mode at vertical forcing
(χ = 0◦), but its bandwidth is so small that is difficult to observe in our experiments.
Increasing the static contact angle α decreases the threshold acceleration and increases the
bandwidth of the instability tongue, consistent with our theoretical results (cf. Figure 6d).

It is important to note that hysteresis is a factor in our measurements. To be precise,
the measurements obtained during the sweeping process (over either frequency or
acceleration) in the increasing direction differ from those obtained in the reverse direction
due to the influence of wave size and nonlinearities (Benjamin & Ursell 1954). To mitigate
this, we conduct each measurement using a new drop, with the sweep performed in the
increasing direction.

4.2.3. Mixed mode
The close proximity of the instability tongues for the subharmonic [1, 1] rocking mode
and the harmonic [2, 0] pumping mode leads to the mixed mode shown in figure 13.
The observed subharmonic response implies that it takes time 2T for the drop to complete
one cycle of oscillation, whereas the substrate oscillation completes one cycle in time T .
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Figure 12. Harmonic instability tongue for the [1, 1] rocking mode with α = 60.7◦ and V = 4.6 ml for
χ = 60◦ (red) and χ = 30◦ (blue), and α = 74.2◦ and V = 6.5 ml for χ = 30◦ (green).
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χ

Figure 13. Mixed mode excited with a = 2.2 g, f = 128 Hz, χ = 60◦, α = 60.7◦ and V = 4.6 ml. The period
of the substrate oscillation is T , whereas the period of the drop oscillation is 2T .

A characteristic feature of the mixing mode is that the COM has both horizontal and
vertical components, as shown in the time trace of figure 14(a), with the subharmonic
behaviour attributed to the horizontal motion (i.e. rocking mode) of the drop COM, and
the harmonic behaviour to the vertical motion (i.e. pumping mode) of the drop COM. This
is more clearly illustrated by plotting the COM motion in the phase space, as shown in
figure 14(b), which demonstrates that two cycles of vertical motion occur for every one
cycle of horizontal motion. Note that the trajectory is not symmetric because the drop
motion is biased in the forcing direction. The shape of this trajectory is expected to vary
with the slanting angle, among other parameters, but such an exploration is beyond the
scope of this paper.

The subharmonic instability tongues are obtained by conducting an acceleration sweep
at a constant driving frequency. As the driving acceleration surpasses the threshold
value, the COM of the drop experiences a sudden and pronounced horizontal oscillation
corresponding to the emergence of the subharmonic [1, 1] rocking mode. This process is
repeated over a range of driving frequencies. Figure 15(a) plots the instability tongues
comparing experiment (dashed line type) to theory (solid line type), depending upon
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Figure 14. The COM motion for the mixing mode plotted (a) as a time trace and (b) in the phase space,
showing the trajectory corresponding to the experiment shown in figure 13.
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Figure 15. (a) Instability tongue for the mixed mode plotted in the acceleration–frequency (Λ− ω) space.
Experimental data are given by the symbols. Theoretical predictions are shown in solid lines for the
subharmonic [1, 1] rocking mode and harmonic [2, 0] pumping mode for α = 60.7◦ and V = 4.6 ml with
pinned contact line. (b) Threshold acceleration a/g against slanting angle χ at the resonance frequency
f = 128 Hz.

the slanting angle χ . These curves shift upwards with increasing χ , indicating that
higher driving accelerations are required to excite the mixing mode. This trend is further
highlighted in figure 15(b), which plots the normalized threshold acceleration ath/g for
the mixed mode against χ , showing an increasing trend. For the special case of horizontal
forcing (χ = 90◦), we did not observe a subharmonic [1, 1] rocking mode, which agrees
well with our theoretical predictions (§ 3.2).

Comparing experimental results with theoretical predictions, we observe that the
right-hand side of the tongue shows good agreement with the subharmonic [1, 1]
mode, whereas the left-hand side has deviations. In addition, theory does not predict
an overlap of the instability tongues for the subharmonic [1, 1] rocking and harmonic
[2, 0] pumping modes for these experimental conditions. This suggests that the harmonic
[2, 0] pumping mode is not a Faraday wave, but rather a meniscus wave excited by
low-amplitude vibrations. The interactions between this harmonic meniscus wave with
the subharmonic rocking mode may manifest themselves through the shape of the
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instability tongue. Our model does not account for such interactions, which could
explain the discrepancy with experiment. The presence of the meniscus wave is known
to affect the shape of the Faraday wave instability tongue, as has been reported for
waves in a cylindrical geometry by Batson, Zoueshtiagh & Narayanan (2013, figure 14).
Low-amplitude meniscus waves have also been reported in the theoretical model of
Maksymov & Pototsky (2019) for pancake-shaped sessile drops. These prior observations
support our conclusion that the harmonic [2, 0] mode is indeed a meniscus wave.

5. Concluding remarks

We have derived a mathematical model of the parametric oscillations of the sessile drop
subject to slanted vibrations, which gives rise to an infinite system of coupled Mathieu
equations that is solved by Floquet theory. The limiting case of horizontal (χ = 90◦)
vibrations gives rise to a purely harmonic drop response, consistent with experimental
observations (Sharp, Farmer & Kelly 2011; Khan & Eslamian 2019), whereas the more
general case χ /= 90◦ produces parametric oscillations defined by subharmonic and
harmonic instability tongues in the driving frequency–amplitude space. We show how
the shape of the instability tongues depends upon the static contact angle α, slanting angle
χ , and contact-line boundary conditions.

Experiments have been performed to validate theoretical predictions focusing on
the [1, 1] rocking mode, the [2, 0] pumping mode, and the mixed mode that is the
superposition of a subharmonic rocking mode and harmonic pumping mode, the latter
of which is highly relevant to directional drop motion (Brunet et al. 2007; Noblin et al.
2009; Guo et al. 2020). The agreement between theoretical predictions and experimental
observations is generally quite good, with the exception of the shape of the instability
tongue for the mixed mode (cf. figure 15a). Here, the theoretical instability tongue for
the harmonic [2, 0] pumping mode does not overlap with the instability tongue for the
subharmonic [1, 1] rocking mode, as we both expect and observe experimentally for the
mixing mode. We conjecture that this is because the harmonic pumping mode is not a true
Faraday wave associated with a threshold instability, but rather an edge wave that can be
excited at comparatively low driving acceleration. This has been observed experimentally
for zonal modes in general (Vukasinovic, Smith & Glezer 2007a; Chang et al. 2015).
Similar wave dynamics has been observed in Faraday waves in a cylindrical container,
including axisymmetric harmonic edge waves excited at low driving amplitude (Shao
et al. 2021b), and mode mixing of a harmonic axisymmetric wave with a subharmonic
asymmetric waves at a single driving frequency (Shao et al. 2021c). Shao et al. (2021a)
conduct a set of experiments that clearly demonstrate that the presence of a meniscus
at the container sidewall is responsible for generating harmonic edge waves, which are
suppressed whenever the interface is perfectly flat. This observation can help to explain
the reason why sessile drop zonal modes exhibit a harmonic response, and is perhaps not
surprising given that a sessile drop necessarily has a meniscus.

Dissipation gives rise to a non-trivial threshold acceleration, which we do not predict
given that our analysis is focused on inviscid fluids with either pinned or free contact-line
boundary conditions. In the future, extensions to our model could be made to account
for sources of dissipation, including bulk viscous dissipation (Prosperetti 1980; Strani &
Sabetta 1988; Bostwick & Steen 2013) and contact-line dissipation (Davis 1980; Bostwick
& Steen 2015). To incorporate the former into a model would require one to resolve
the rotational component to the velocity field, while the latter can be accommodated
through the Hocking (1987) contact-line condition. Recent interest in complex fluids with
a non-trivial rheology suggests model extensions to include viscoelastic effects (Tamim &
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Bostwick 2021), which are known to produce novel dynamics in classical Faraday wave
systems (Müller & Zimmermann 1999).
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