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PERFECT SETS OF UNIQUENESS ON THE GROUP 2
KAORU YONEDA

1. Introduction. Let wy, wj, . . . denote the Walsh-Paley functions and
let G denote the dyadic group introduced by Fine [3]. Recall that a
subset E of G is said to be a set of uniqueness if the zero series is the only
Walsh series > a;w; which satisfies

N-—-1
lim Y g (x) =0, x € G~E.
N-oo k=0
A subset E of G which is not a set of uniqueness is called a set of multi-
plicity.

It is known that any subset of G of positive Haar measure is a set of
multiplicity [5] and that any countable subset of G is a set of uniqueness
[2]. As far as uncountable subsets of Haar measure zero are concerned,
both possibilities present themselves. Indeed, among perfect subsets of
G of Haar measure zero there are sets of multiplicity [1] and there are
sets of uniqueness [5].

There is a natural identification between the group G with its Haar
measure and the unit interval [0, 1] with Lebesgue measure. Moreover,
Cantor sets C(¢) with constant ratio of dissection (7, p. 196], which can
be described by

1 C® = {x €01 =Q10—-%- ;ekfk'l

wheree, = Qor 1,k = 1,2,...} s

form an important class of perfect subsets of [0, 1]. Consequently, it is
tempting to look at preimages of C(¢) in G and try to determine which of
these are sets of uniqueness and which are sets of multiplicity. Sneider [5]
did this in the case when £ = 2" forn = 1, 2, .. ., showing that such
Cantor sets are sets of uniqueness for G. It is still not known whether any
other set of the form (1) is a set of uniqueness for G (see [6]).

The purpose of this paper is to show that if perfect sets S(¢) are defined
analogously to (1) but with group operations replacing the sum Y_g; and
the products ¢ - £-1, then S(£) is a set of uniqueness for G for all ¢ =
(0, &1, &, ...) € G. This is in sharp contrast to the trigonometric case
where C(§) is a set of uniqueness if and only if 1/£ is a Pisot number [4].
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Our method of proof is to show that all Dirichlet sets are H-sets and
that all closed subgroups of G of Haar measure are Dirichlet sets. It will
follow that a certain class of perfect subsets with variable ratios of
dxssectxon which includes the sets S(§), £ = (O £y, &2, . . .), contains only
H-sets. Since Wade [6] has shown that all H-sets are sets of uniqueness
for G, it will follow that S(£) is a set of uniqueness for G when ¢ =

(Or El» £2v .. ')'

2. Dirichlet sets. Analogous to the trigonometric case, a subset Eof
is called a Dirichlet set if

(2) liminf,,, supsee |1 — w,(x)| = 0.
In this section we shall show that every Dirichlet set is an H-set.

Recall [6] that given a non-negative integer m = » oo ;2(ax = Oor 1)
and a point x which either belongs to G or to the set {1, 2, . . .}, the product
of m with x is defined by

m@x = (e ®x) + (@2®@x) + (ad @ x) + ...
where the symbols a2! ® x are defined as follows. If x = (x¢, x1,...) is
a point in the group G then

22'®@ x = Yo, ¥,...) €G

where y; = Oforj < landy, = ax;for j = L Ifx = D> 508,27 (8, = 0
or 1) is a non-negative integer, then

@

a2'@x =Y B2t

7=0
The important fact to remember is that if x € G and if m and & are non-
negative integers then
3) wr(m ® x) = Wper(x).

Motivated by the association of the group G and the interval [0, 1],
for each non-negative integer n and each integer 0 = p < 2" we shall
denote those elements x = (x¢, x1, . . .) of G which satisfy

n—1
p/2t = 3 x,/2
=0
by [p/2", (p + 1)/2"]. We observe that these sets are both open and

closed in G, and that for each integer #,

2n—1

G= ,,L=}o [p/2" (p + 1)/2°].

THEOREM 1. A necessary and sufficient condition for a set E C G to be
a Dirichlet set is that there exist integers my < my < ... suchthat m, @ x €
(0, 1/2], that is to say wn, (x) = 1,fork = 1,2,...and forx € E.
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To prove Theorem 1, we observe that (2) holds if and only if there
exist integers n; < my < ... such that 1 — w,, (x) — 0 uniformly for
x € E, as k — . But the Walsh functions assume only the values =1.
Hence (2) holds if and only if there exist integers m; < m,; < ... such
that w,, (x) = 1 forx € Eand fork = 1,2, .... By (3), this condition
is equivalent to w;(m; ® x) = 1forx € Eandfork =1,2,....Since w;
only takes the value +1 on [0, 1/2], it follows that (2) holds if and only if
there exist integers m; < m, < ... such that m; ® x € [0, 1/2] for
k=1,2,...and for x € E. The theorem is proved.

Recall [6] that a subset E of G is an H-set if there exist integers m; <

my, < ... and an open connected set A of real numbers such that if
Yo, ¥1, . . .) = my, ® x for some x € G and some integer &, then
22 A
3=0

If weuse A = {t € [0, 1] 01/2 < t < 1}, it follows from Theorem 1 that

o

every Dirichlet set is an H-set. Since H-sets are sets of uniqueness [6],
we have also established the following result.

CoROLLARY 1. If E is a Dirichlet set then E is a set of uniqueness.
3. Closed subgroups and symmetric sets. Throughout this section

let I,(x) = Gwhenn = 0and x € G, and if % is a positive integer and
x = (%o, %1, . . .) is a point in G, let

L(x) = [p/2", (p + 1)/2"] where
jgoxj/Zj“ = p/2".

Given a closed subgroup H of G, set

4) H,= U L), n=0,1,....
2€EH

It is clear that for each positive integer n, H, is a subgroup of H,_;, and
H C H,. Moreover, each H, can be expressed as a finite union of I, (x)’s.
Specifically for an integer » = 0 there exist integers 0 < p; < ... < p,
< 2" (depending upon #) such that

(5) H,=10,1/2"1\U [p1/2%, (pr + 1)/2"] V... U [ps/2", (ps + 1)/2%].

We shall call the sequence {H,}n-o the tower of subgroups associated with
H.
The main task of this section is to indicate a proof of the following:

THEOREM 2. If H is a closed subgroup of G of Haar measure zero, then H
is a Dirichlet set.
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To prove this result let {H,}7—0 be the tower of subgroups associated
with H. It is our aim to show that there exist integers m., m., . . . such
that lim sup,_ M, = o and such that w,,(x) = 1 for x € H,. Since
H C H, it will follow that w,,(x) = 1forx € H,forn =1,2,....
Since {m,}—o is unbounded we will have verified that (2) holds with H
in place of E. In particular, H is a Dirichlet set.

Before indicating how to choose the integers {m,}n o it is necessary to
look at the structure of each H, more closely. Fix # > 0 and let p1, po, . . .,
ps be determined by (5). Consider the collection T, = {0, p1, p2, . . ., Ps}.
Recall that the dual group of G is the set of non-negative integers I' where
addition is binary addition with no carrying: if

I =

Ms

2® and u = Z Bk2k
k=0

[
o

k
then

X0

t—i‘u = Z ](Xk —_ Bk|2k.

k=0

Since H, is a subgroup of G it is clear that T, is a subgroup of T, =
{0, 1, ..., 2" — 1} which in turn is a subgroup of T'. Moreover, since the
order of T, is 2", the order of its subgroup T, must be 2* for some 0 <
k = n. Therefore T, can be written as a direct sum of & cyclic subgroups
of order 2, say

(6) T,=1{0,q} +1{0,q} +...+1{0 g4

Without loss of generality we suppose that ¢; < ¢2 < ... < gx.
Let N; < N, < ... < N; be integers determined by

2V < g, < 2Vt forl £j < k.

Set
I; = {x:w,(x) =1} and
Ji=[py/2V 1, (b + 1)/2#1] for1 = j <k
where
p1 = max {p: [p/2V*, (p + 1)/2VF1] C I} and
p; = max {p: [p/2V¥it (p4+1)/2VH1 ) CJ,.1MNI;} forl <j=k.

Since J; 2 J; 2 ... 2 Jr and N+ 1 = #n, there exists an integer
m, < 2" such that

) m,/2", (m, + 1)/2"] C Jj.

In particular, the following identity holds forall1 £ j < k:
(8) wg;(m,/2") = 1.

We are now prepared to show that w,, = 1 on H, and that

lim sup,_, m, = ©.
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To show that w,, = 1 on H,, return to (6) to see that given p € T,
there exist numbersa; = 0 or 1 such that

P =a1~q1—i—...—:}-ak-gk.
Hence given x € H, N [p/2", (p + 1)/2"] (see (b)) it is the case that
x = a1(q/2") + as(q2/2?) F ... + anlg/27) +0/2"

where 0 = 8 < 1. Since m,, < 2" we have that
wmn(x) = wﬂLnal(ql/zn) AR wmnak(qk/zn) : 1'

But w,,(¢,/2") = w,,(m,/2") so from (7) we conclude that w,,(x) = 1
for all x € H,.

To show that lim sup,_, 7, = % we first observe that since H is closed,
it is the case that H = M=, H,. Indeed, if x € H, for all integers n > 0
then by (5) x belongs to a shrinking family of sets of the form [p/2",
(p + 1)/2*], which contains points x™ € H forn = 1,2, ... . Since such
a family of sets shrinks to the point x, it follows that x™ — x asn — 0.
Since H is closed we have verified thatx € H.

Letk, = k,n =1,2,...where kand » are related by the identity (6),
N®™ = N; and ¢, = g,. Since m(H) = 0, we can choose integers
n1 < ny < ...such that m(H,,_,) = 2 - m(H,,), so that

N].(”i) = N],(M—D + 1.

There happen three cases: (i) 2 £ ¢:"?, (ii) ;™ + 1, ¢~ = 2 and
¢:®? = 1 and (iii) T,;—1 = {0, 1} for all 7. In the case (i), from (7) we
have

1/2 £ m,, /2"
In the case (ii), since
Ly = (0,1} + {0, g0} 4 ...

and ¢,*? = 4, we have 1/4 < m,;/2"i. Therefore in the cases (i) and (ii),
we have 2%i/4 < m,;. In the case (iii), then, H = {0} which is obviously
a Dirichlet set. This completes the proof of Theorem 2.

The symmetric set S(£1, &, . . .) associated with a sequence &y, &, . . . of
points in G is defined to be those points x € G which have the form

9) x=€1®$1+€2®52'{-...

where ¢, = Oor 1fork =1,2,....If £ € Gis fixed, then the symmetric
set S(¢) of constant ratio of dissection ¢ is the set S(&i, £, ...) where
& = tand & = £ ® & for B > 1. Clearly, S(¢) is the group analogue
of the Cantor set described by (1).
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COROLLARY 2. Let by < ks < .. . be a sequence of integers for which there
exists a sequence ny < ny < . .. such that

boit < kuy J=1,2,....

Suppose further that for each integer n > 0, &, is a point in G whose first
n — 1 coordinates are zero and whose nth coordinate is 1. Then S(&1, &, . - .)
is a set of uniqueness.

Indeed, under the imposed conditions, S(&1, &, . . .) is a closed subgroup
of Haar measure zero. Thus we need only apply Theorem 2, Corollary 1
and the previously cited result in [6].

Observe that the conditions of Corollary 2 are surely met by S(¢),
when £ € [0, 1/2]. Hence we have proved the following result.

CoroLLARY 3. If ¢ € [0, 1/2] then S(£) s a set of uniqueness.

We close by noting that if £ € [1/2, 1] (i.e., if the first component of §
is 1), then S(¢) = G. In particular, S(¢) is not a set of uniqueness.
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