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Abstract

We consider an M/G/1 queue that is idle at time 0. The number of customers sampled at
an independent exponential time is shown to have the same geometric distribution under
the preemptive-resume last-in—first-out and the processor-sharing disciplines. Hence,
the marginal distribution of the queue length at any time is identical for both disciplines.
We then give a detailed analysis of the time until the first departure for any symmetric
queueing discipline. We characterize its distribution and show that it is insensitive to the
service discipline. Finally, we study the tail behavior of this distribution.
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1. Introduction

One of the major success stories in applied probability has been the development of the
theory of product-form queueing networks. Classic papers include [1], [4], [5], [8], and [10];
see [11] for a textbook treatment. Recent interesting papers are [3] and [15].

Important components of such product-form networks are M/G/1 queues operating under a
symmetric queueing discipline. This class of disciplines, treated in Section 3.3 of [11], contains
both the preemptive-resume last-in—first-out (LIFO) and the processor-sharing (PS) disciplines
as special cases. A special feature of these symmetric queues is the fact that the steady-state
distribution of the queue length (the number of customers in the system, including those in
service) is geometric with probability of success 1 — p, where p < 1 is the traffic intensity.
In particular, the steady-state distribution of the queue length depends only on the mean of the
service time and is otherwise insensitive to the service time distribution.

In this paper, a different approach to symmetric queues is taken. We focus on time-dependent,
rather than steady-state, behavior, and also explore insensitivities with respect to the service
discipline rather than the service time distribution.

We first investigate the queue length process {L(t), r > 0} of the M/G/1 LIFO queue with
L(0) = 0. Letting 7(g) be an independent exponential random variable with rate g > 0, we
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show that L(7(g)) has a geometric distribution. We find this very pleasing, since exactly the
same distribution was found earlier for the PS discipline [12]. This implies that, for any # > 0,
L(t) has the same distribution for both disciplines.

It would be a very nice result if the distribution of L(¢) were found to be the same for all
symmetric disciplines. At present, however, this is beyond our reach and is left as an open
question. Nevertheless, we do give a complete description of the distribution of the time D
until a first departure occurs. This distribution is shown to be insensitive to the particular
symmetric discipline chosen. We prove this result by applying an insensitivity property of
random permutations. As will become clear, the class of symmetric service disciplines is
exactly the right class to consider in this setting.

The paper is organized as follows. Section 2 includes some preliminary notation and
definitions. In Sections 3 and 4, the LIFO and PS queue length distributions are treated.
In Section 5, we present a simple, but useful, insensitivity result for random permutations that
is the basis for the analysis of Section 6. In Section 6, the Laplace-Stieltjes transform (LST)
of Dy is derived for an arbitrary symmetric queueing discipline. Section 7 is devoted to the
distribution of Dy, which can be given in an explicit and intuitively appealing form. The tail
behavior of the distribution of Dy is derived in Section 8.

2. Preliminaries

We consider an M/G/1 queue. The Poisson process {N(¢), t > 0}, with rate A, represents the
customer arrival process. The independent, identically distributed random variables B;, i > 1,
denote the service times of successively arriving customers, with distribution B(-). As usual, we
write p := AE Bj. Let (o) := Ee~*81 be the LST of B for « > 0, and define the net input
process X (¢) = ZlN:(i) B; —t. This is a Lévy process with exponent ¢ (¢) = o — A(1 — B()),
ie. forRea > 0,

Ee~oX®) _ otp(@)

Note that ¢ («) is strictly convex and continuous on [0, oo) and tends to infinity as « — co. In
particular, ¢ (@) is strictly increasing on the interval [@*, 0o), where o«* = inf{a: ¢ (o) > 0}.
If p < 1thena* =0andif p > 1then a* > 0 since, in the first case, ¢’'(0) = 1 — p > 0 and,
in the second case, ¢’(0) < 0, where a prime denotes differentiation. Since ¢ is continuous
and strictly increasing on [, 00), it has an inverse, which we denote by k(¢), ¢ > 0, when
viewed as a function from [a*, 00) to [0, 00).

The service discipline is assumed to be symmetric. Recall (see Section 3.3 of [11]) that a
symmetric queueing discipline is defined as follows. For each n, let p}, ..., p; be nonnegative
and sum to 1. If there are n — 1 customers in the system in positions 1, ...,n — 1 upon the
arrival of the kth customer, k > n, then this customer is put in position i with probability p'.
The customers who were in positions 1, ..., i — 1 remain in their positions and the customers
who were in positions i, ...,n — 1 move to positions i + 1, ..., n respectively. After this
repositioning, the customer in position j is allocated a service rate of p?. Special cases of this
discipline are the preemptive-resume LIFO discipline (for which p} = 1) and the PS discipline
(for which p = 1/n,i =1, ..., n). The M/G/1 queue length process for these two disciplines
is studied in the next two sections.

Throughout this paper, {L(¢),¢ > 0} denotes the queue length process (the number of
customers in the system). When we want to distinguish between the queue length process of
the LIFO and PS disciplines we will use the notation Ly ro(¢) and Lps(¢), respectively, but not
otherwise.
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3. The LIFO queue length

In this section, we investigate the queue length process of the M/G/1 queue operating under
the (preemptive-resume) LIFO discipline.

The first main step of our analysis is to observe that the queue length process {L(#), r > 0}
can be expressed, in terms of the net input process {X (¢), ¢ > 0}, as follows, where X (s—) =
lim,4s X (). Henceforth, f{s: S(s)} denotes the number of s values for which statement S(s)
holds.

Lemma 1. Foranyt > 0, we have
L(t) = ti{s e[0,1]: X(s—) = inf X(r)}.
rels,t]

This relation is explicitly stated in [13], where it is applied to derive a diffusion approximation
for {L(¢),t > 0}. Itis also implicit in [17] and [18]. Furthermore, there is a close connection
between LIFO queues and Galton—Watson processes: the process {L(¢), t > 0} can be seen as
an encoding of a Galton—Watson tree. Such a connection also holds when the paths of X (¢)
are almost surely of infinite variation. Then, a local-time analogue of L (), called the height
process, can be used to encode the genealogy of a continuous-state branching process. We refer
the reader to [7] for a recent study and the state of the art in this area.

We now give the main result of this section.

Theorem 1. Let T = 1(q) be an independent, exponentially distributed random variable with
rate ¢ > 0. Then,

q " q

Proof. We apply Lemma 1, as follows. Let X;(s) = X (#) — X ((t — s)—). Straightforward
manipulations then show that

L(t):ji[se[O,t]:X,(s): sup X,(r)}.
rel0,s]

Since X (¢) is reversible, we obtain

L(:)%ﬁ{se [0,1]: X(s) = sup X(r)
rel0,s]

for every t > 0, where ‘2’ denotes equality in distribution. From this, it follows that

Lz(@) 2 e{s € 10.7@)): X(5) = sup X}
rel0,s]

Let 7;,i > 1, denote the successive ladder epochs of the Lévy process { X (¢), t > 0}. It is well
known that {7;, i > 1} is a (possibly terminating) renewal process. It is clear that the number of
renewals up to 7(g) (and, hence, also L(7(g)) must have a geometric distribution. Indeed, if r;
denote the renewal intervals, with R, = Zle ri, and if K (¢) denotes the number of renewals
in [0, ], then

P[K (t(q)) > n]l =P[R, < t(q)] = Ee 9Fn = (Ee™9)". )
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To compute the probability of success for this geometric distribution, note that
P[L(z(q)) = 0] = P[t1 > 7(g)].
Let §(¢) = supg.,., X (s) and note that
P[t; > 7(¢)] = P[S(z(¢)) = O].
The LST of S(z(g)) is well known; see, e.g. Equation (3) on p. 192 of [2]: it is given by
Ee-oSt@) _ _4K@ —o)
k(q)(g — ¢(a))

Since ¢ (v)/a — 1 as ¢ — 0o, we obtain

PIS(r(g)) = 0] = lim Ee @) = T 3

K(q)
Equations (2) and (3) imply (1).

Remark 1. We note that P[L(z(g)) = 0 | L(0) = 0] is equivalent to the conditional probabil-
ity that the workload is zero at time 7 (g), starting from an empty system. Thus, this probability
is g /k (g) for any work-conserving discipline and, in particular, for any symmetric discipline.
An alternative derivation of this probability may be found on p. 260 of [6].

4. The PS queue length

Our starting point is the following formula, which is Equation (2.6) of [12]:

1
g+ (1 =2r0-7(q)

Here, 0 < z < 1 and 7 (q) is the LST of the length of an M/G/1 busy period, i.e. w(q) is
the smallest root of the equation 7 (¢) = B(g + A — An(q)). However, we prefer to use the
expression w(g) = B(k(g)), which is easy to verify and can be found, for example, in [16].
From (4), observing that x (¢) = g + A(1 — 7 (q)), we obtain

“

o0
/ e " EF0dr =
0

E L@@ _ 49
g+ (=21 —7(q))
. q
T k(q) — 2 (1 — 7 (q))
q/x(q)

T 1—z(1—q/k@)

This is the generating function of the right-hand side of (1), that is, of a geometric random
variable with probability of success g/« (q). Thus, we arrive at the following interesting result.

Theorem 2. Let Ly ro(0) = Lps(0) = 0. Then,

Luiro(t(q)) = Lps(t(q)) forallg >0 ®)

and
Liro(t) £ Lps(t) forallt > 0. )
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Proof. Equation (5) follows from Theorem 1 and the computations made above, and (6)
follows from (5) by the uniqueness property of Laplace transforms, as sampling at an exponential
time is equivalent to making a Laplace transform with respect to time.

Remark 2. Although, starting from an empty system, the queue length distribution at an
exponential time is geometric for the LIFO and PS disciplines, the probability of success
depends on the entire service time distribution. This is in contrast to the steady-state case, in
which the distribution is also geometric but the probability of success is 1 — p whenever p < 1,
thus depending only on the mean.

5. An insensitivity property of random permutations

In the remainder of the paper, we focus on Dy, which is the time until a first departure occurs
from an M/G/1 queue with an arbitrary symmetric service discipline. Our main results are
given in the next two sections. In the present section, we derive a preliminary result, which
could be of independent interest.

Lemma?2. LetU = (Uy,...,Uy) and V = (Vy, ..., V,,) be random variables and let T1 =
(Iy, ..., Iy) be a random permutation, such that the pair (I1, V) and U are independent and
Ui, ..., U, are exchangeable. Then,

PlUI > Vi, ..., U, >V, =PlU > Vi,..., U, > V,].
When, in addition, Uy, ..., U, are independent and Vi, ..., V, are independent, identically
distributed random variables, we have, in particular,
P[U; > Vn,,..., U, > Vi1 = P[U; > Vi]". 7)
Proof. For any fixed permutation & = (7q, ..., 7,),
PlU > Vn,,...,.Upn>Vn, | H=nr]l=PlU| > Vy,..., Uy > Vg, | I =]
=PlUz > Vg, ..., Ug, > Vp, | I =m]

=PlU1 >V,....U, >V, | D =mx].

The second equality follows from the fact that U is independent of (IT, V') and because its
components are exchangeable. Multiplying the left- and right-most expressions by P[IT = ]
and summing over all possible permutations gives the result.

6. Insensitivity of the first departure time

Consider an M/G/1 queue with a symmetric queueing discipline, as described in Section 2.
Let {Y,, n > 1} denote the interarrival times and recall that {B,,, n > 0} are the service times.
For the moment, we assume that customers arrive according to some Poisson process with rate
1 and never leave. The rate 1 is chosen without loss of generality and will later be replaced
with another parameter. Thus, for now, Y,, ~ Exp(1l) forn > 1.

We would like to show that the joint distribution of the times allocated to the first n customers
up to the (n+1)th arrival epochis identical to thatof Yry,, . . ., Y1, for some random permutation
I, which is a functional of Y. If this can be achieved then, once we introduce the service times,
(IT, Y) and B are independent and, thus, it follows from Lemma 2 that the probability that none
of the first n arriving customers has departed by the (n + 1)th arrival epoch is given by

P[B; > Yri,,..., B, > Yr,] = P[B; > Y]".
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This will allow us to study the distribution of the first departure time in a symmetric queue
(see Theorems 3 and 4, below). For what follows, we define

X:oo and O0xoo=0 fory>0.

0
This helps in avoiding the nuisance of separately considering those indices for which p! is
positive and those for which it is 0.
From Yq, ..., Y,, we will construct X1, ..., X,, I1y, ..., I1,, where X1, ..., X,, are inde-
pendent of each other and of I1y, ..., I1,, and are Exp(1) distributed; and where

n
P =71,... Ty =l = [ ]
k=1

for a unique choice of iy, ..., i, that is compatible with the symmetric queueing discipline.
Moreover, if Iy, ..., I, are the (unique) random indices that result in Ty, ..., I1,, then
Yn, = Pk Xe + - + Pl X, (8)

where the right-hand side has the same distribution as the amount of work received by the kth
arriving customer, provided that no one leaves.
We perform this construction recursively, starting with X, and IT,,. Let
Y‘

. Yi . i
Xy, = min — and [I, =arg min —.
I<i<n p; I<i<n p!

In particular, due to our definition of y/0, only the indices for which p! is positive are
participating in this minimum. Since Y;/p! ~ Exp(p!), it immediately follows that X, ~
Exp(p] + --- + p;;) = Exp(1), that P[IT,, = i] = p{, and that X,, and I1,, are independent.
The random variables IT, and X,, have the following interpretation: II,, is the position at which
the nth arriving customer is inserted and p’ﬁan is the amount of service received by that
customer up to the next arrival epoch.

To construct X,,_1 and Il,,_;, now consider

Y; Y;
. ph — ' 2L _ min =%
Yj—piXn pf(p;? Jmin. P,n)
and denote by J;' - J:__ll the indices (in increasing order) for which J;! ~! £ 1,,. That
is,if I1,, =i for some 1 < i < n, then

G =i i+ 1 )

if [, =nthen (J/ ', ..., 0"y =(l,....,n — );andif [T, = 1 then (J7 1, ..., 0"~ ) =
(2,...,n). Itis easy to check that

n n
Y‘Infl _pj,l,an,...,an—l —p]n,IXn,Xn,l_[n
1 1 n—1

n—1

are independent, with YJ]:,_| - pz,HX,, ~ Exp(1).
k
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. n—1 __ o
Next, we write ij —YJ]::—I plk” 1 Xn,
Xp—1 = min (Y" /P ),
1<i<n—1 i
and

1<i<n—1

I, = arg min (Y;,,__l,/p?_l).

We set I1,_1 = J'i:ll and observe that X,_1, X,, and (I1,,_1, I1,) are independent, with
Xy—1 ~ Exp(1).

It is important to note that we associate p!'~" with the index Ji”_l. If we were not careful to
do this, we would get an ordering that is incompatible with the symmetric queueing discipline.
For example, between the (n — 1)th and nth arrival epochs, it is not possible for a customer
to be in any position other than i — 1 or i (depending on whether the newly arriving customer
is placed in a position from i to n or from 1 to i — 1, respectively) if he is to be in position i
between the nth and (n + 1)th arrival epochs The above construction preserves this.

As before, we now let J. 1" _2, R A 2 be the indices (in increasing order) that exclude IT,,
and IT,_. It is again evident that

1

n—1 n—1 n—1 n—1
Y, o —p Xt Y 5 =D 0 Xn—1, Xn—t, Xu, (1, TTy)
‘Il ‘I ‘In72 ‘In 2

are independent, where
D pj ifi < j,
pl-_1 P ifi > j,

and the other variables are Exp(1) distributed.
Letting Y”_2 Y;’,, R p;n "L X,_1 and associating pf_Z with Y}’i_z, this process can be

repeated, and eventually we obtain

Xl»-uanlev-uanv

where X1, ..., X, are independent of each other, of Iy, ..., I,, and are Exp(1) distributed;
and where
P[ITy =7y, ..., I, = 7] lek 9

for an appropriate choice of i1, . . ., i, thatis compatible w1th the symmetric queueing discipline,
as required. Here it should be noted that, for every permutation 7y, ..., ,, there is a unique
choice of iy, ..., i, such that the right-hand side of (9) is equal to the left-hand side. Observe
that ix is the position at which the kth arriving customer is inserted.

With this construction, it can be checked that (8) holds, where 11, ..., I, are the unique
insertion locations that result in ITy, ..., I1,. Since I = (Iy,...,1I,) is a functional of
Iy, ..., I,, we have that X1, ..., X, and I are independent and, thus,

P Xe+ -+ p) Xak=1,....n}

have as their joint distribution that of the amount of service allocated to the arriving customers
until the (n 4 1)th arrival epoch. Thus, (Yr,, ..., Y1,) also has this distribution and we are
done.
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Remark 3. We note that, in the special case of the PS discipline, p!' = 1/n and our construction
implies that Yry,, ..., Y1y, are the order statistics, that is, they are a reordering of Y7, ..., Y, in
decreasing order. For the special case of the LIFO discipline, I1; =i and, so, Il = (1, ..., n)
with probability 1.

We now return to the original M/G/1 queue, that is, with a Poisson arrival process N =
{N(t),t > 0} with rate A, and independent, identically distributed service times By, By, ...,
that are independent of the arrival process. Let D(t) = N (t) — L(¢) be the number of departures
by time 7 and let D1 = inf{s: D(¢) = 1} be the time until the first departure.

Theorem 3. Let t(q) ~ Exp(q) be independent of (N, By, B2, ...) and assume that, at time
0, the system is empty. Then, for any symmetric queueing discipline,

P[D(t(q)) =0 | N(t(q)) =n] = (1 — Ee” *T05y", (10)
Consequently,
PID((@) =01 = —— o (11
and, hence,
pe-ap - _ME TN (12)

q+ABe Gta)Bi”

Proof. 1t is well known that the number of arrivals until time 7 (g) has a geometric distribu-
tion. That is,

A \" ¢
P[N(t =n]= (—) _ 13
(z(q)) Py Ry (13)
Moreover, it is also well known and easy to check that if Sy, ..., S, are the first n arrival
epochs of the Poisson process N, then the conditional distribution of Sy, S — S, ..., Sy —

Sn—1, 7(g) — Sy, given that N(t(g)) = n, is that of n + 1 independent random variables that
are Exp(q + A) distributed. From (7) and the derivation that follows it, we have

P[D(z(q)) =0 | N(z(q)) = n] =P[B1 > Yi(qg + M)]I",
where Y1(q + 1) ~ Exp(g + A) and is independent of B;. Since
P[B) < Yi(q + )] =Ee @81

we then obtain (10).
By multiplying (10) by (13), summing, and simplifying, we obtain the right-hand side of
(11). Finally, we note that

P[D(t(q)) =01 =P[D; > 1(¢9)] =1 —P[D| < 1(q)] = 1 —Ee 9",
which gives (12).

7. The distribution of the first departure time

Theorem 3 will allow us to determine the distribution of the time until the first departure
from the M/G/1 queue with symmetric service discipline. First, some notation. Recall from
Section 2 that B(-) denotes the service time distribution, with LST S(-). Let

—t

Bidn = ;(x)

B(dr)
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and N N
e MI—B@)dr ae M (1 — B()dr
Be,k(dt) - fOOO e_)‘”(l _ B(u))du - 1 — ,3()\.)

In particular, note that

! t B At
/ e_ku(l N B(u))du = E/ e—ku 1{B|>u} du = E/ e_kudu,
0 0 0

where a A b = min(a, b) and 1) denotes the indicator function of the event {-}. Thus,

1—E e*)\.(B] At)

Bealt) = ——=—55—
From these definitions, it is clear that
M_/“ BN = 14
B(L) - 0 € 2 (dr) =: Bi(q) (14)
and that (- B0 o |
_ +q +q _ 00 —at g (dp) = s
(1= BA)/A /0 e " B (A1) =t fe(@)- (15)

Also, it can be easily verified that
By(t) =P[By <1 | B < Y1(M)]

and that
Be (1) =P[Y1(A) <t | By > Y1(M)],

where Y7 (A) ~ Exp(A) and is independent of Bj.

With these definitions, we are now able to characterize the distribution of D1, starting from
an empty system. In what follows, by R ~ G(p) we mean that P[R = n] = p(1 — p)" for
n=>0.

Theorem 4. Let Y ~ Exp(A), X ~ By, I ~ G(B(L)), and Z; ~ Be, where Y, X, I, Z;,
Z», ...areindependent. Set Wy = 0and W,, = Z?:l Zi forn > 1. Then, under the conditions
of Theorem 3,

D ~Y+ X+ W (16)

Proof. From (12), (14), and (15), it is simple to verify that

S L MO+ q)
© Tt ABe OB T g — (- Bt q)
_ A B)BL)
g l—(1—B0NB(q)
)\' o0
— 1 — n n 1
- +q,3x(61)’§)( BOY)"BOIBL, (@), (17)

and the result follows.
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Remark 4. In the LIFO case, (16) has a simple interpretation. Indeed, D then consists of the
following three terms: (i) the first arrival interval Y'; (ii) a service time X conditioned on being
smaller than the next interarrival interval; and (iii) a number of service times (of newly arriving
customers, who are immediately being taken into service), all conditioned on being larger than
the next interarrival time — this is a G (8()))-distributed random variable.

We now recall that * = inf{a: ¢(«) > 0}, where ¢ (@) = a — A(1 — B(«)) fora > 0.

Corollary 1. Let
w* =supf{u:u <A, AB(A —u) >u}=xr—a".

Then, for each u < u*,
poni _ MO~ W

- MO —u)—u (18)

is finite. Moreover,
lim Ee*P! = 0.
utu*
Proof. Y, X, and Z; have finite moment-generating functions for u < XA. Thus, if we show
that

A
m—ﬁu»E&L=Xj70—ﬁ@—u» (19)

is strictly less than 1, then the form of Ee"”! follows from Theorem 4. The right-hand side
of (19) is less than 1 if and only if AB(A — u) — u is strictly positive, which is true because
u < u*. Ifu* = X then, since Ee"Y = /(A —u) — ooasu 4 A, this must also hold for Dy. If
u* < A then the denominator of (18) converges to 0 from above and, hence, E e*P! converges
to infinity.

Remark 5. We recall that * = 0 whenever p := AEB; < 1, and that «® > 0 whenever
o > 1. In either case, @™ < A since ¢p(1) = AB(L) > 0. Moreover, ¢(a) > 0 for ¢ > o*
and, in particular, for «* < « < A. This implies that if p < 1 then u* = A, if p > 1 then
0 <u* <X andthat AB(A —u) —u > 0for0 < u < u*.

Remark 6. All moments of D; are finite, without the need for any moment conditions on
the service times. In particular, it is not necessary to assume that the traffic intensity is less
than 1 or even that the service time has a finite mean. This may seem surprising at first, as
it is definitely false for, e.g. the first-come-first-served discipline. However, considering the
preemptive-resume LIFO discipline, it becomes more plausible, since the first customer to
depart is the first one whose service time is less than the exponential interarrival time that
follows it.

We note that, with Y, X, I, and Z; as in Theorem 4,

1 B
EY = EX=-f0=-7
I—BR) , 1 B'(})
El=-—2" Ezi= g, 0)=-+ -2
B0 Per O =513

Since EDy =EY + E X 4+ E I E Z;, we can verify the following corollary.
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Corollary 2. Under the conditions of Theorem 3,

1
ABO)
However, we note that this result is an immediate consequence of (12), which is obtained

upon subtracting both sides of (12) from 1, dividing by ¢, and letting ¢ |, 0.
As for the variance, we observe that

E D,

var(W;y) = E I var(Z,) + var(I)(E Z;)?,

so that
var(Dp) = var(Y) + var(X) + E I var(Z;) + var({) (E 21)2.

Carrying out the computation, or directly from (12) via differentiation, we obtain a further
corollary.

Corollary 3. Under the conditions of Theorem 3,

1+228' (V)
AB2(A)?

Since the function f(x) = xe™  attains its maximum at x = 1,

var(Dy) =

—218'(A) =2EABe B <2¢7! <1,
meaning that the right-hand side of the formula for the variance is indeed positive.

8. The tail behavior of the first departure time

Here, we investigate the tail behavior of Dy, using Theorem 4. The logarithmic asymptotics
follow from Corollary 1. If p # 1, it is also possible to derive exact asymptotics. We use the
notation f(x) ~ g(x) to indicate that f(x) = g(x)(1 4+ o(1)) as x — oo. We first consider
the case p < 1.

Proposition 1. If p < 1 then

1
P[D; > x] ~ : e,

Proof. Proposition 5.1 of [14] implies the following. Let Y be exponential with rate A and
let A be such that Ee** < co. Then, P[Y + A > x] ~ Ee*A P[Y > x]. We apply this result
by choosing A = X + Wj as defined in Theorem 4. From (17), it can easily be shown that
Ee*X+WD = 1/(1 — p) < oo. This proves the assertion.

We now turn to the opposite case: p > 1. In this case, W; will dominate the asymptotics.
Recall the definition of u* given in Corollary 1.

Proposition 2. If p > 1 then

PID; = x| ~ (1= BONBO — u*) i
: w1 — B/ —u*) + (1 — BO — u)) /O — u*))
(I = BMA)B@*) e—()\—a*)x. (20)

T (i—an) (1 - Bl + (1 - pla) /)
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Proof. We first derive the tail behavior of P[W; > x], using a general result on the tail
behavior of geometric random sums. In particular, we use the version given as Theorem 2(ii)
of [9], to obtain

B) —u*x

—_———¢
u*E[Z1et"21]

The condition of that theorem is satisfied since E e*%! is finite for u < A and u* < A. Next,
observe that Ee*”Y = A /(A — u*) and Ee*' X = B, (—u*) are finite. Applying Proposition 5.1
of [14] again, we obtain

P[W; > x] ~

P[Di{ > x]=P[W;+Y + X > x]

A * 18()‘) —u*x
B e @1)
From (14),
Br(—u™) = TN
and, from (15),

A 1B O—u)+d—-BA—u")/(—u")
A —u* 1—-B80) '
Hence, the right-hand side of (20) is equal to the right-hand side of (21).

E[Zie" %] = —B, , (~u*) =

If p = 1 and the service times have an exponentially bounded tail, then one can show that
P[D; > x] ~ Cxe™** for some constant C > 0. We omit the details.
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