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ABSTRACT. Thwaites Glacier, Antarctica, is experiencing rapid change and its mass could, if disgorged
into the ocean, lead to ~1m of global sea-level rise. Efforts to model flow for Thwaites Glacier are
strongly dependent on an accurate model of bed topography. Airborne radar data collected in 2004/05
provide 35000 line km of bed topography measurements sampled every 20 m along track. At ~15km
track spacing, this extensive dataset nevertheless misses considerable important detail, particularly:
(1) resolution of mesoscale channelized morphology that can guide glacier flow; and (2) resolution of
small-scale roughness between the track lines that is critical for determining topographic resistance to
flow. Both issues are addressed using a conditional simulation that merges a stochastic realization (an
unconditional simulation) with a deterministic surface. A conditional simulation is a non-unique
interpolation that reproduces observed statistical behavior without affecting data values. Channels are
resolved in the deterministic surface using an interpolation algorithm designed for sinuous channels.
Small-scale roughness is resolved using a statistical analysis that accounts for heterogeneity, including
an abrupt transition between ‘lowland’ and ‘highland’ morphology. Multiple realizations of the
unconditional simulation can be generated to sample the probability space and allow error
characterization in flow modeling.
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1. INTRODUCTION

Thwaites Glacier dominates the mass balance of the
Amundsen Sea Embayment of the West Antarctic ice sheet
(WAIS; Fig. 1) (Rignot and others, 2008). The bounding
ice shelf of Thwaites Glacier is disintegrating (MacGregor
and others, 2012; Pritchard and others, 2012), allowing
the glacier’s grounded fast-flowing main trunk to lower and
expand rapidly (Rignot and others, 2008; Pritchard and
others, 2009), losing a net 360 Gt of ice between 1992
and 2011 (Shepherd and others, 2012). The bedrock
geometry underlying Thwaites Glacier has been hypothe-
sized, if such a retreat continues, to induce a significant self-
reinforcing retreat through the marine ice-sheet instability.
Therefore, the collapse of Thwaites could contribute to
the collapse of much of the WAIS (Holt and others, 2006;
Schoof, 2007), raising sea levels by up to 3 m (Bamber and
others, 2009).

To provide a framework for understanding the evolution
of Thwaites Glacier, the Airborne Geophysical Survey of the
Amundsen Sea Embayment, Antarctica (AGASEA) project
conducted the first comprehensive areogeophysical survey
of the entire glacier catchment (Fig. 1), using ice-penetrating
radar (Holt and others, 2006), laser altimetry (Young and
others, 2008) and gravity measurements (Diehl and others,
2008). The remote nature of Thwaites Glacier restricted the
line spacing for this survey to a minimum of 15km. The
survey revealed that Thwaites Glacier lies in a well-defined
subglacial basin, with complex topography consisting of
highlands, lowlands and channelized morphology.
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Grounding line retreat interacts with underlying topog-
raphy in a number of ways now captured by high-order ice-
sheet models (Parizek and others, 2013). Longitudinal
stresses transmitted both from the grounding line and basal
relief contribute to the force balance driving sliding ice flow
(Joughin and others, 2009). Grounding line retreat is
sensitive to short length scales. In addition, subglacial relief
at all scales can play a critical role in routing and focusing
subglacial water, which lubricates the base of the ice sheet
(Carter and others, 2009; Joughin and others, 2009;
Schroeder and others, 2013).

To accurately model the flow of ice across bedrock
topography, we require a digital rendering of the topography
at a scale that is much smaller than the typical cross-line
resolution of an aerogeophysical radar survey. For example,
the Thwaites Glacier survey collected data along track lines
spaced 15km apart. In contrast, a sensitivity analysis by
Durand and others (2011) indicated that a digital elevation
model (DEM) resolution of 1km or better is required for
accurate glacier modeling, particularly nearer to the coast.
Logistical and financial hurdles typically preclude obtaining
such high-resolution radar data. An alternative, however, is
to interpolate the data in a manner that replicates the small-
scale roughness observed in the available data. This form of
interpolation is termed a ‘conditional simulation’, perhaps
most notably used in the hydrocarbon literature for the
purpose of reservoir modeling and in mining literature for
mapping of ore deposits (e.g. Journel and Huijbregts, 1978;
Christakos, 1992; Deutsch and Journel, 1992). Although a
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Fig. 1. AGASEA bed elevation data (colored lines) in the context of
the West Antarctic ice sheet, with surface elevation contours
(Fretwell and others, 2013) (m) and ice velocities (Rignot and
others, 2011) in grayscale. Boxed area shows location of Figure 3.
Inset shows location within Antarctica.

conditional simulation is non-unique, it provides a modeling
surface that is realistically rough rather than unrealistically
smooth. Furthermore, the non-uniqueness allows the gen-
eration of multiple realizations that effectively sample the
probability space of the surface given the data available (i.e.
the ‘conditions’ for the simulation), allowing modelers to
investigate uncertainty in their results.

The aim of this paper is to present a method for
conditional simulation applied to the bed of Thwaites
Glacier, and which could readily find application to other
glacier beds. The Thwaites Glacier bed presents four
challenges for interpolation/conditional simulation, which
we demonstrate in subsequent sections, that guided the
development of our methodology:

1. The Thwaites Glacier bed is dichotomous, with what we
term a ‘lowland” and ‘highland” morphology that is often
separated by a sharp boundary. Abrupt transitions are
problematic for any method of statistical characteriza-
tion, which requires finite quantities of data. Statistical
analysis that incorporates data from both sides of the
transition will result in a characterization that is in some
way an average of the two regions, and truly represen-
tative of neither. Here we develop a new method for
‘provincing’ the data in order to separate the statistical
analyses of lowlands and highlands.

2. The Thwaites Glacier bed exhibits channelized morph-
ology, sinuous to a significant degree and present in
various orientations. Such channels may be very import-
ant for modeling glacier flow, and we seek to generate a
modeling surface that maintains their continuity. Stand-
ard interpolation techniques invariably fail to maintain
the continuity of channelized morphology unless the
data track spacing is small relative to the width of the
channel. To address this issue, we update and apply a
methodology developed by Goff and Nordfjord (2004)
for interpolation of buried river channels discerned in
reflection seismic data.
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3. The Thwaites Glacier bed is strongly heterogeneous in its
statistical character, within each province as well as
between them. This represents a significant complication
for algorithms that generate the random component of
the conditional simulation (the ‘unconditional’ simu-
lation), which typically assume a constant statistical
model over the area being simulated. Here we in-
corporate a convolution method for simulation designed
by Goff and Arbic (2010) for the purpose of global
realization of abyssal hill morphology. Though compu-
tationally inefficient, particularly compared to the
equivalent Fourier method, the convolution method
nevertheless allows statistical parameters to be fully
specified as a function of location.

4. The onus of conditional simulation of any glacier bed
will be to match the observed small-scale roughness, i.e.
the roughness at scales near the resolution limit of the
simulation grid. This is a critical factor for determining
basal drag and the primary factor that more typical
interpolation techniques get most wrong. Statistical
models constrain small-scale roughness using a fractal
dimension, which specifies small-scale spectral ampli-
tudes in relation to larger-scale spectral amplitudes. The
challenge here is that direct estimation of the fractal
dimension requires a large quantity of data, and thus
provides a poor measure for constraining small-scale
roughness amplitude where it varies on short distance
scale (e.g. between the floor of a channel and the
flanking terrain just a few kilometers away). In this paper,
we develop a new methodology for inferring the fractal
dimension: an iterative algorithm that, with the large-
scale height and distance parameters determined
through established means, adjusts the fractal dimension
so that the small-scale roughness of a simulated surface
matches the small-scale roughness measured in the data.

Our final objective is a complete conditional simulation of
the Thwaites Glacier bed, which will be available for
download through the lead author of this paper. For
guidance through the various steps of the methodology, a
flow chart is provided in Figure 2.

2. RADAR SOUNDING DATA

The radar sounding data (Fig. 3) were selected to have
similar processing parameters. We used chirped 60 MHz
High-Capability Radar Sounder (HiCARS) coherent radar
data (Peters and others, 2005) with a bandwidth of 15 MHz,
providing a theoretical range resolution in ice of 6m. All
data were processed with one-dimensional (1-D) focusing
(Peters and others, 2007; Blankenship and Young, 2012),
where echoes were located within the along-track pulse-
limited footprint of the radar, and echoes fore and aft of the
footprint were discarded. These data were down-sampled to
~17 m along track. The limiting nadir along-track resolution
is ~10m, and at the sampling used for this study we can
distinguish features ~35m in size.

Processed radar data were log-detected and semi-auto-
matically interpreted for surface and bed reflectors; the
range to these reflectors was then used to determine nadir
ice thickness. Cross-track clutter is the major source of
ambiguity. The cross-track antenna beam pattern on the ice
bed covers ~3 km; cross-track slopes of greater than ~25°
will tend to map echoes closer in range than the nadir bed.
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Fig. 2. Flow chart outlining the conditional simulation methodology
applied to the bed of Thwaites Glacier. Numbers above upper left
corner of each box indicate text section numbers where those steps
are described.

As this phenomenon does not affect along-track echoes in
the focused data, orthogonal crossovers in rough areas can
produce large differences. Over mountainous regions west
and south of the survey area, maximum crossover differ-
ences are ~150 m, whereas over the central catchment they
are ~33 m. These differences are largely averaged out by
binning in the conversion from track line to gridded
representations.

2.1. Provincing and channel identification

The Thwaites Glacier radar bed topography data exhibit two
significant morphological characteristics that will present
important challenges for the formulation of a model surface:
provinces and channels.

We use the term ‘provinces’ to indicate terrains that are
separated by an abrupt transition. We do not imply that the
statistical characteristics of the topography within each
province are uniform. Indeed, we expect heterogeneity
within each province, but with gradual, rather than abrupt,
transitions in character. An abrupt transition is illustrated in
Figure 4a, which plots the topographic data derived from a
radar track through the central basin of Thwaites Glacier.
From the mouth of the glacier to the left, the topography
deepens gradually with approximately similar roughness
properties. However, at ~380 km from the start of the profile,
the topography rises by ~1 km over a span of ~5km, a clear
departure from the behavior of the profile to the left of this
transition. In addition, the vertical variability is noticeably
increased to the right of the transition, while the lateral scale
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Fig. 3. Thwaites Glacier bed topography derived from radar
sounding data (Holt and others, 2006; Young and others, 2008).
Location shown in Figure 1. Cross-hatched regions represent our
identification of a ‘lowland’ province. Unstippled regions are
identified as ‘highlands’. Lines drawn indicate our interpretation of
channel center line (solid) and edges (dashed).
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Fig. 4. (a) Bed topography data profile through the overdeepened
center of Thwaites Glacier, displaying an abrupt transition between
lowland and highland morphology at ~380km track distance.
(b) Radargram displaying candidate channels (bars). Locations
shown in Figure 3.
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of variability appears to have decreased. We identify the
terrain to the left of the transition as ‘lowlands’ and to the
right as ‘highlands’. This may appear a slight misnomer, as
some of the lowland terrain at the far left of the image is
roughly the same topographic height as the highlands to the
right. However, this terminology is primarily intended to
reflect the nature of the transition between the two terrains.

For the purposes of statistical characterization described
in Section 5.1, we have separated the Thwaites Glacier bed
topography data into lowland and highland provinces based
on our identification of an abrupt transition in topographic
height (cross-hatched region in Fig. 3, which also incorpor-
ates channel features as described below). Some of the
boundary is not nearly as abrupt as the example shown in
Figure 4a, but was necessary to choose in order to maintain
continuity of the province identification.

Channels can often be identified in cross sections on the
radar reflection images (Fig. 4b). Adapting and modifying
methods described in Goff and Nordfjord (2004), we map
channels by first identifying ‘candidate” channel segments
in radargram cross section (deep ‘U’- or ‘V’-shaped
features), and then transfer those interpreted locations to
map view along with their color-coded topographic values
in an ArcGIS™ application. Channel identification is an
iterative process where the map view helps to identify
locations where channels are likely, or expected based on
trends, so that the profiles can be examined with greater
scrutiny. The course of a channel can confidently be
identified where candidate channels line up well on
successive tracks. Candidate channel segments that could
not be associated in this way with other candidate channels
were not utilized in the final interpretation. Using ArcGIS™
utilities, we trace the edges of each identified channel,
which may have variable width, along with an approximate
center line (Fig. 3); these lines are used to guide the channel
interpolation algorithm described in Section 4. Channel
features are generally contiguous with the lowland areas
and are therefore treated here as a subset of the
lowland province.

The channel interpretation is, of course, a subjective
product; different interpreters may not produce identical
results. We also cannot know a priori that proximal ‘U’- or
‘V'-shaped morphological features are connected through
areas that are not covered by data, although that is certainly
a reasonable assumption given what we know about
subglacial topography. While we can assert that including
the channels represents a more accurate representation of
the interpolated surface than not including the channels, the
procedure nevertheless introduces an uncertainty factor that
is difficult to quantify.

3. CONDITIONAL SIMULATION ALGORITHM

There are two general classes of conditional simulation
algorithms. One is known as sequential Gaussian simulation
(sGs), with a variety of derivative forms (Deutsch and
Journel, 1992). Such algorithms work by sequentially
choosing an unsampled grid location at random, and then
determining the Gaussian probability density function at that
location given the conditions determined by proximal data
values and previously simulated values; the distribution is
determined by a statistical model for the surface that
specifies both the local mean and semivariogram properties.
A random value is then chosen from that distribution, it
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becomes a new condition, and the operation is repeated
until all unsampled locations are simulated in this manner.

The second class of conditional simulation algorithms
separately formulate (1) a deterministic surface by some
form of smooth interpolation of the data (typically by
kriging), and (2) an unconditional simulation by random
realization of a statistical model (typically by inverse fast
Fourier transform). The conditional simulation is then
generated by ‘draping’ the unconditional simulation over
the deterministic surface in such a way as to leave data
values unaltered. More formally, the algorithm can be
expressed as follows (Journel and Huijbregts, 1978; Fouquet,
1994; Goff and Jennings, 1999). Let Z(x) be a topographic
field of interest that has data samples at locations

~

Z(x;),i€1,2..,N

Step 1: Compute a deterministic interpolation of data
points, Zi(x)

Step 2: Compute an unconditional simulation, Z,(x),
from a stochastic model for Z(x).

Step 3: Sample Zy(x) at data locations x;, (i€ 1,2, ...,
N), and compute a deterministic interpolation, Zy(x),
from these values in the same manner as in step 1.

Step 4: Compute a conditional simulation:
Zc(x) = Z(x) + Zu(x) = Zui(x) (1)

For the purposes of the work presented here, the primary
advantage of this ‘draping’ algorithm over sGs is that it
allows great flexibility in how the deterministic interpolation
surface is formulated. In sGs algorithms, deterministic (i.e.
the mean) and stochastic components of the simulation are
integrated into a single formulation. Normally this would be
seen as advantageous, due to the greater mathematical rigor
and prospects for quantification of uncertainty. However, the
complexity of the Thwaites Glacier bed, particularly the
channelized morphology, which requires very specialized
interpolation techniques, as well as the abrupt changes in
mean altitude described in the previous section, make
application of sGs algorithms very challenging. We therefore
utilize the draping algorithm. Sections 4 and 5 address,
respectively, the formulation of the deterministic inter-
polation and the stochastic unconditional simulation com-
ponents of the conditional simulation for the Thwaites
Glacier bed.

The approach taken here for generating a deterministic
interpolation is strictly geometrical, which provides an
entirely independent surface model for use in flow models.
An alternative, physics-based approach is the ‘mass-con-
serving bed’ algorithm (Morlighem and others, 2011;
McNabb and others, 2012), which estimates ice thickness
based on measurements of ice flux. It works by combining
surface velocities, surface mass-balance estimates and ice
thickness observations in a solution of the mass conservation
equation. There are two important disadvantages to this
approach: (1) bed elevation estimates are not independent of
the ice flow measurements, which can lead to circular
reasoning in application of flow models, and (2) the spatial
resolution of the bed elevation estimates has not been
defined. On the other hand, the mass-conserving bed
approach may be of great assistance in better defining
channelized bed topography. Further investigation of this
approach will be reserved for future study.
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4. DETERMINISTIC INTERPOLATION

In this section, we describe the methodology used to
generate a deterministic interpolation of the Thwaites
Glacier bed topography (Fig. 2, deterministic path). The
primary steps include: (1) interpolation of channels within a
channel-centric coordinate system, and then (2) merging the
channel interpolation with an interpolation of all available
data in geographic coordinates.

4.1. Channel interpolation algorithm

Within a channelized surface, channel orientations can vary
widely (e.g. in a dendritic system), and individual channels
can be sinuous and thus subject to large changes in orienta-
tion along their course. Channel orientations are therefore
highly unpredictable. Unless data-track spacing is smaller
than the width of the channel, any interpolation technique
applied to the channelized surface as a whole will invariably
fail to maintain the essential morphology of the channel,
which is the continuity of the channel along its course. This
difficulty is illustrated in Figure 5a, a spline-in-tension inter-
polation (Smith and Wessel, 1990) applied to the Thwaites
Glacier bed topography data shown in Figure 3. The con-
tinuity of all of the thinner channels (i.e. widths less than the
~15 km track spacing) that were identified in Figure 3 has not
been preserved in interpolation, which has instead errantly
rendered them as a series of basins along their course.

The Goff and Nordfjord (2004) algorithm for channel
interpolation (Fig. 2) works by forcing the channel orientation
to be predictable rather than unpredictable. This is done
through a coordinate transformation that moves the data
points from geographic coordinates into a coordinate system
specified by distance along the channel for the x-axis, and
distance across the channel for the y-axis. In this channel-
centric coordinate system, the channel is straight and
oriented along the x-axis. Coordinate transformation must
be done individually for each channel but, once accom-
plished, it is straightforward to interpolate a channel oriented
along the x-axis such that the continuity of the channel is
maintained along its length. Retransformation can then bring
the channel interpolation back into geographic coordinates.

This approach is demonstrated in Figure 6 for the channel
identified by arrows in Figures 3 and 5. The initial coordinate
transformation of data (Fig. 6a) is guided by the center line
traced for the channel (Fig. 3), as described by Goff and
Nordfjord (2004). The continuity of the channel is main-
tained by interpolating in three steps: (1) data are inter-
polated along the center line and along the edges (Fig. 6b),
both of which are defined by the traces shown in Figure 3;
(2) additional interior lines are traced between the edges and
the center line (Fig. 6¢); and then (3) remaining locations are
filled in using a spline-in-tension algorithm, and areas
outside the edges of the channel are clipped (Fig 6d).

The channel interpolation was conducted over a suffi-
ciently fine resolution that, when the grid values are
transformed into geographic coordinates and placed within
the geographic grid, there are no gaps caused by the
inevitable stretching associated with channel curvature. This
is a critical factor because merging different channels onto
the same geographic grid is accomplished by selecting the
lowest topographic value that falls within a gridcell. In this
way, the flanks of a trunk channel do not become a barrier of
a tributary channel where the latter enters the former. If there
were gaps in one or the other of the merging channels, spike
artifacts would result.
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Fig. 5. (a) Interpolation of Thwaites Glacier bed topography data
using a spline-in-tension algorithm (Smith and Wessel, 1990).
Topography from several mountain tops that breach the glacier
surface were incorporated from high-slope (>0.25°) portions of the
400 m Antarctic DEM (Liu and others, 1999). (b) Same as (a) with
the addition of channel interpolation points.

4.2. Interpolation in geographic coordinates

The completed interpolation surface is generated by first
placing the channel interpolation values on the geographic
grid in the manner noted above, interpolating the remaining
values with a spline-in-tension algorithm and then masking
out regions that are outside the data coverage (Figs 2 and
5b). The before-and-after channel interpolation comparison
(Fig. 5) clearly demonstrates the success of the channel
interpolation algorithm in maintaining the continuity of the
channels as they were interpreted (Fig. 3). We caution,
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Fig. 6. Demonstration of the channel interpolation algorithm. (a) Transformation of data proximal to center line into channel coordinates.
(b) Interpolation along center line and edges. (c) Interpolation along interim lines. (d) Spline interpolation of the remainder, and clipping
outside of channel edges. Location of channel identified in Figures 3 and 5.

however, that the interpretation itself is partly subjective and
subject to uncertainties that are poorly defined. Never-
theless, it can be hypothesized that channelized morphology
is an important factor in modeling glacier flow, and we can
utilize the channel interpolation method for testing it.

The surface in Figure 5b thus constitutes our deterministic
interpolation component of the conditional simulation
algorithm (Fig. 2). Although we have employed a spline-
in-tension algorithm, both within the channel interpolation
and elsewhere, there are many possible algorithms that
could be utilized. It could be argued that the kriging
algorithm (Deutsch and Journel, 1992) is best because its
goal is to determine the expected value at any unsampled
location given the data that were sampled. Our objection to
this approach is that the kriging interpolation tends to drift
toward an a priori mean value, and this drift increases with
distance from data constraints. How the interpolation
performs will depend in large part on how the mean is
determined. A global mean, for example, would be
unsuitable for the Thwaites Glacier bed data: lowland areas
would tend to be interpolated towards higher values, and
highland areas would tend to be interpolated towards lower
values. A more complex mean surface would therefore be
required, but requires an arbitrary choice of the size of the
region used to define the mean. Furthermore, the often
abrupt boundary between highland and lowland provinces
(Fig. 3) will greatly complicate the determination of a mean
surface. We prefer the spline-in-tension methodology both
because it removes such a subjective component of the
interpolation and because it is not potentially compromised

by a reversion to an a priori mean.
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The grid spacing chosen for generating the deterministic
surface, and for all grids to follow, is 250 m. This is a user-
defined value, dependent on modeling applications. This
choice has no impact on the procedures to follow, aside
from computation times.

5. UNCONDITIONAL SIMULATION

An unconditional simulation (Fig. 2, stochastic path) is
derived from a statistical model, the parameters of which are
estimated from available data. In this section, we describe
the methodology for parameter estimation utilizing the von
Karman statistical model, which provides a characterization
of height scales, length scales and fractal dimension (e.g.
Goff and Jordan, 1988). Parameters are estimated using a
weighted least-squares inversion algorithm, separately for
highland and lowland provinces. These analyses result in
parameter grids, which specify the laterally varying value of
each parameter of the von Karman model across the region
of interest. The unconditional simulation is created using a
convolution algorithm, which is capable of generating
statistically heterogeneous fields. Additional procedures
are introduced for refining the fractal dimension, with the
goal of matching the variability in small-scale roughness
exhibited by the data.

5.1. Statistical parameter estimation

5.1.1. Provincing

The statistical characterization is derived from the available
data, which, as earlier noted, we separate by lowland and
highland provinces (Fig. 3). The separation is accomplished
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Fig. 7. Demonstration of provincing applied to a bed topography profile. A single profile is separated into lowland (shaded) and highland

profiles with gaps. Location shown in Figure 3.

using ArcGIS™ utilities by selecting data from profiles that
either intersect with the polygonal area defining the lowland
areas, and are thus defined as lowland data, or do not
intersect, and are therefore defined as highland data. Figure 7
illustrates the procedure for a profile that crosses the
lowland/highland boundary several times. The single profile
thus becomes two separate profiles, one for lowlands and
the other for highlands, each with gaps where the other is
present. We apply our statistical parameter estimation
technique (described below) separately to each.

5.1.2. The von Karmadn statistical model

Statistical characterization is accomplished using the von
Karman model (von Karman, 1948), which can be expressed
in spectral, covariance or semivariogram forms. Originally
developed to describe turbulence, the von Karman model
has found utility in a wide variety of settings because it
captures, with minimal parameterization, the essential
elements of a random field. It has been applied successfully
to such diverse fields as bathymetry (Goff and Jordan, 1988),
sea-ice drafts (Goff, 1995) and crustal heterogeneity (Goff
and Levander, 1996).

Equations specifying the von Kdrman model and the
inverse method for estimating its parameters from one- and
two-dimensional data are given in detail in Goff and Jordan
(1988, 1989a,b) and Goff (1995). For explanatory purposes,
we present a schematic representation of the 1-D von
Kdrmdn spectrum in Figure 8a. At high wavenumbers, the
model is represented by a power law which, when plotted in
log—log scale, is a sloping line. This is the well-known fractal
representation (Mandelbrot, 1982), where the fractal dimen-
sion is determined by the gradient of this line. However, the
von Kdrman spectrum is a bounded fractal model, in that the
variance does not continue to increase without end as
wavenumber decreases (or the horizontal scale increases).
Variance is limited by a corner wavenumber, below which
the spectrum is flat. This yields two important characteristics
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of the model: (1) it imposes a characteristic horizontal scale,
which is proportional to the inverse of the corner wavenum-
ber, and (2) it yields a bounded variance (or its square root,
the root-mean-square (rms) height) that is not dependent on
the length of the data considered provided that this length is
larger than the characteristic scale. The von Kdrman model in
one dimension is thus defined by these three parameters: the
rms height, H, the characteristics scale, Ay, and the fractal
dimension, D. These parameters describe, respectively, the
heights and widths of the largest topographic features, and
how smaller-scale features relate to the largest features.

The von Kdrman model can also be expressed in a two-
dimensional form that accounts for anisotropy in the
characteristic scale (Goff and Jordan, 1988). Anisotropy
characterizes the extent to which features are lineated rather
than equant. However, the latticework of AGASEA track lines
over Thwaites Glacier is insufficient to adequately constrain
this functionality. We restrict consideration, therefore, to the
isotropic case, the parameters of which are identical to the
1-D model (with fractal dimension increased by 1). The gaps
in the data are not amenable to computation of the power
spectral density. Parameter estimation is therefore accom-
plished using the covariance function (Fig. 8b), which is the
Fourier transform of the power spectrum. In this functionality,
H is determined by the square root of the covariance at O lag,
which is simply the variance; Ay is a measure of the width of
the covariance; and D is determined by the curvature of the
covariance near the origin: convex curvature indicates
D< 1.5, and concave curvature indicates D >1.5. At fractal
dimension 1, the covariance intersects the origin with zero
slope; this indicates that the profile is differentiable and
therefore very smooth at small scales.

5.1.3. Weighted least-squares inversion

Prior to inversion, profiles are detrended using a low-order
polynomial fit, typically order 4. Detrending isolates the
random component of the field in order to estimate statistical
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Fig. 8. (a) Schematic representation of the von Karman statistical
model in the spectral domain. (b) Inversion of the von Karman
model parameters using the covariance function (the Fourier
transform of the power spectrum). Solid curve is covariance derived
from highland province profile shown in Figure 7. Dashed curve is
best-fit model using a weighted, least-squares inversion (Goff and
Jordan, 1988; Goff, 1995).

parameters. The profile covariance function is then com-
puted, and a 1-D form of the Goff and Jordan (1988)
estimation algorithm, a weighted, least-squares inversion, is
applied (Goff, 1995; Fig. 2). Figure 8b displays an example of
a best-fit von Karman covariance model, along with the three
parameters and their estimated uncertainties. Data from the
highlands profile in Figure 7 were utilized for this example.

Approximately 100-200 km-long profile lengths were
used for the inversion; shorter profile lengths typically result
in unacceptably high uncertainty values for Ao and D. Even
so, the inversion is often unstable with respect to D due in
part to the difficulty in inverting for curvature, and because
D is bounded to be greater than 1.0 and less than 2.0; the
inversion crashes when an iteration attempts to choose a
value outside these bounds. Fractal dimensions near 1.0 are
particularly difficult to estimate through this inversion. In
these cases it is necessary to fix the value of D in order to
obtain estimates of H and X,. For consistency in the
parameter estimation, D was fixed in the inversion of all
samples, to a value between 1.1 and 1.4, a ‘by eye’ fit to the
curvature near the origin, and H and Ao were then estimated
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through the iterative algorithm. Fixing D is justified in this
step because it is not strongly correlated to either H or .
Furthermore, the subjectively fixed values are not retained,
as we will more rigorously estimate the fractal dimension
below, using a different procedure described below.

5.1.4. Reparameterization of large-scale roughness
The rms height is a better-resolved parameter than the
characteristic scale, requiring fewer data to stably estimate.
Goff and Jordan (1989b) determined that rms heights can be
estimated to an error of 15% using data lengths as short as
3 times the characteristic length, whereas characteristic
lengths can only be estimated to an error of 25% using track
lengths of ~6 times the characteristic length. Furthermore, H
can be estimated without inversion (though without error
estimates) by computing the square root of the variance
calculated from detrended profiles. To maximize our reso-
lution of heterogeneity, we discard H values estimated
through the inversion procedure, which were obtained from
100-200 km-long sections of data, and compute the rms
height at each data location over a 50 km-long section of the
detrended profile centered on each data point. We refer to
this value as Hso. The choice of 50 km is justified by the fact
that our estimates of characteristic length for these data rarely
exceed 15 km, and so generally surpass the 3y benchmark
for estimating H suggested by Goff and Jordan (1989b).

5.1.5. Parameterization of small-scale roughness

The fractal dimension is important for the purpose of
conditional simulation because, as noted earlier, it defines
the scaling relationship between small and large features.
Through the fractal dimension we have a mechanism for
predicting the small-scale roughness at unsampled locations
based on observations of large-scale roughness, which is
characterized by the parameters Hso and Ag. The estimation
of D by inversion of the covariance is clearly unsatisfactory,
both because of the instability of the estimate noted above
and because the length of data required for the inversion
(100-200 km) greatly restricts the resolution of inhomogen-
eity. However, if Hso and Ao, which largely define the upper
termination of the fractal part of the spectrum (Fig. 8a), are
considered known, then we should be able to estimate the
fractal dimension if we can obtain an estimate of small-scale
roughness. This will provide a point on the fractal portion of
the spectrum at higher wavenumbers, and therefore deter-
mine the gradient of the spectrum. We use a measure of
small-scale roughness defined by the rms height calculated
from a 1km high-pass filter of the data profiles. The filter
value of 1km for this step was chosen to highlight features
with scales that are thought to be most critical for glacier
modeling (Durand and others, 2011). We refer to this value
as H,;, and in Section 5.2 we establish a new method for
estimating D from this measurement.

5.1.6. Parameter grids

Parameter grids (Fig. 2), which define how we statistically
characterize the field over the region of interest, and which
provide the inputs for the unconditional simulation algo-
rithm, are generated using the following steps:

1. A grid is designed for each parameter and, initially, for
each province (six grids in all). The cell size (250 m) and
easting and northing boundaries are the same as the
deterministic grid and eventual simulation grid.
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Fig. 9. Estimation of (a) Hso, (b) Ao and (c) H; over the simulation region.

2. Parameter values estimated from the above procedures
are placed in the gridcells in which they are located,
averaging values that fall within a single cell. For Xo, the
inverted value is assigned to every data location within
the profile section used for inversion.

3. A cosine taper filter is applied to the grid, both to smooth
out inconsistencies between x-oriented and y-oriented
profiles, and to fill in gaps between the track lines. A
50 km filter is used for Hsy and H;, and a 100 km filter is
used for Ag.

4. Lowland and highland masks are applied to the par-
ameter grids for each province, and the two are then
merged into a single grid for each parameter.

Parameter grids for Hso, Ao and H; over the Thwaites Glacier
bed data region are shown in Figure 9a, b and c, respect-
ively; the impact of provincing on the parameter estimations
is clearly evident, in that parameter estimates change
abruptly at province boundaries. These grids form the basis
for unconditional simulation described in Section 5.2.
Although we are replacing D with H; for characterizing
small-scale roughness, D will still need to be determined in
order to simulate a surface using the von Karman model.
This issue is addressed in the following subsection.

5.2. Unconditional simulation and iterative
determination of fractal dimension

5.2.1. Convolution algorithm for unconditional
simulation

The Fourier transform-based algorithm for generating an
unconditional simulation is conceptually straightforward
(Goff and Jordan, 1988, 1989a; Pardo-Iglizquiza and Chica-
Olmo, 1993): an amplitude spectrum model is multiplied by
a random phase spectrum uniformly distributed on [0,27),
and then a fast Fourier inverse transform is applied. This
yields a random, Gaussian-distributed surface correspond-
ing to the modeled spectral properties. This method is not
suitable, however, in circumstances where the statistical
properties are heterogeneous, because only one spectrum
representation is used to generate the surface. Goff and
Arbic (2010) resolved this issue by performing the equivalent
operation in the space domain; i.e. they convolve a filter,
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which is the Fourier transformation of the amplitude
spectrum, with a Gaussian-distributed white noise of unit
variance. Although computationally inefficient, this simple
algorithm allows us to specify model parameters as a
function of location on the simulation grid. There are no
limits on the degree of heterogeneity within the grid, and
continuity is assured by using the same random noise field
for every convolution computation.

5.2.2. lterative algorithm for estimation of fractal
dimension

We now seek to adjust the value of the fractal dimension
such that the small-scale roughness (H,) of the uncondi-
tional simulation matches that of the observed field (Fig. 9c).
This is a critical step to ensure that our simulated basal
topography provides realistic boundary conditions for
glacier flow simulations. To do so, we have developed the
following new iterative algorithm (Fig. 2):

1. Generate an unconditional simulation, Z[,(x), using
values for Hso(x) and Ag(x) displayed in Figure 9a and
b, respectively, and a fractal dimension D'(x), where i
refers to the iteration number. For the first iteration, D'(x)
is set to be a constant of 2.2

2. Performa 1 km high-pass filter on Z},(x), and compute the
rms height over T km x 1 km areas about each gridpoint to
estimate the small-scale roughness. Filter in the same
manner as the data-based estimates (50 km cosine filter)
for consistency; this grid is identified as Hj,(x)

3. Compute the difference grid AH](x) = Hj(x) — Hi(x)

4. Use AHi (x) to make adjustments to the fractal dimension
grid. Where AHj (x) is positive, the unconditional simu-
lation is too rough at small scales, and the fractal dimen-
sion needs to be reduced. The opposite is true where
AHi (x) is negative. Because this is an iterative procedure,
the form this adjustment takes does not need to be
precise; it just needs to move the fractal dimension in the
correct direction, but not too far, so that the iteration
converges. Through trial-and-error experimentation, we
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have found the following formulation works robustly:

1) —pi i AH;(x)

D'*1(x) =D'(x) — 0.004AH] — 25000 )
The two terms in the adjustment work in different ways:
the first term does better when the difference is positive
and the fractal dimension needs to be adjusted down-
ward, whereas the second, normalized term works better
when the difference is negative and the fractal dimension
needs to be increased. Values are also constrained to be
larger than 2 and less than 3. Application to other fields
will require adjustment of the scalar on the first adjust-
ment term (set to 0.004 in Eqn (2)). A good rule of thumb is
that an adjustment to the fractal dimension for any iter-
ation should not exceed ~0.1-0.2. The scalar can there-

fore be adjusted based on the maximum value of AH] (x)
5. Update the iteration and return to step 1.

Figure 10a—c display the results of this procedure after the
first iteration. A constant fractal dimension of 2.2 is used
(Fig. 10a), leading to the unconditional simulation shown in
Figure 10b. The difference in small-scale roughness, AH] (x),
is displayed in Figure 10c. We seek to have a difference map
that is close to 0, so the considerable structure evident in the
difference map means that the unconditional simulation is
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doing a poor job of emulating the observed regional
variations in small-scale roughness. However, after four
iterations of the adjustment algorithm, the picture has
changed significantly (Fig. 10d-f). The fractal dimension grid
(Fig. 10d) now displays considerable structure, whereas the
difference in small-scale roughness, AHj(x), is nearly
uniform at a value of 0 (Fig. 10f). Thus, the unconditional
simulation for this iteration (Fig. 10e) does an excellent job of
matching the observed small-scale roughness in addition to
satisfying the large-scale structure specified by Hso(x) and
Xo(x). This unconditional simulation therefore represents a
satisfactory input for the conditional simulation algorithm.

6. CONDITIONAL SIMULATION

Our final procedure for the conditional simulation is to
‘drape’ the unconditional simulation of Figure 10e atop the
deterministic surface shown in Figure 5b (Fig. 2). We use the
algorithm outlined in Section 3, and the result is displayed in
Figure 11. The conditional simulation looks realistic in
comparison to the ‘conventional’ smooth interpolation
(Fig. 5), but, more importantly, matches the statistical
characteristics derived from the data (Fig. 9) and does not
alter any of the data values. Yet, unlike the interpolation
surface (Fig. 5), the data track lines are not discernible in the
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image. This indicates a successful merging of deterministic
and stochastic components of the surface.

We also plot in Figure 11 the location of the ice-sheet
grounding line determined from image analysis (Bindschad-
ler and others, 2011). The basal topography to the left of this
line is therefore likely to be representative of the underside
of floating ice rather than bedrock topography. In any
modeling application of this simulation such regions must
be masked, but for our purposes this provides instructive
observations. Comparison with Figure 10d indicates some
very high fractal dimensions in the presumed ice shelf at the
Thwaites Glacier outlet, indicating an abnormally high ratio
of small-scale roughness to large-scale roughness in com-
parison to the rest of the field. Some of this type of
topography can also be observed in the leftmost ~50 km of
the profile in Figure 4a. The high fractal dimensions
estimated for this region are likely a natural consequence
of the highly crevassed, floating ice in this region, leading to
high roughness at short scales and comparatively little
roughness at large scales beneath the ice shelf.

7. CONCLUSIONS AND DISCUSSION

We have demonstrated a methodology for generating a
conditional simulation applied to the bed of Thwaites
Glacier, combining established techniques with new meth-
ods for provincing the data in order to estimate statistical
parameters, and using small-scale roughness in an iterative
technique to estimate the fractal dimension. The resulting
surface emulates the highly heterogeneous statistical proper-
ties of the data at both large and small scales, maintains
continuity of interpreted channel forms and does not alter
the conditions imposed by the data values. The methodology
is not specific to the bed of Thwaites Glacier; it will be useful
for any surface that is strongly heterogeneous in its statistical
characteristics, whether channeled or not.

The conditional simulation provides a more realistic basis
for conducting numerical modeling experiments of glacier
flow than does a straightforward interpolation of the data: it
has the correct ‘texture’ at small scales, which will help
determine basal drag, and it has continuous channels that
can guide ice streams. These are justification enough for the
effort involved. However, the conditional simulation can
also be used to examine uncertainty in ice flow models by
generating a suite of such simulations that effectively sample
the probability space for the field. This can be accom-
plished, in part, by generating multiple independent
realizations of the unconditional simulation, which can be
used to determine the importance of the details of the small-
scale features in the topography. We can also investigate
variations to the statistical characterization parameters
within the bounds of their error limits, which will allow us
to test the importance of the specific statistical model
properties of the topography in controlling glacier flow.
Additionally, the importance of channelized bed morph-
ology on glacier flow can be investigated by running flow
computations both with and without channel interpolation.

A fully realized simulation of this sort can also be used to
test the sensitivity of glacier flow models on data-sampling
geometry. Such an experiment would proceed by first
assuming the conditional simulation represented ‘reality’
and that the modeled flow over this surface was the true
flow. The surface could be sampled at a range of geometries
(e.g. different track line spacings), and these ‘synthetic data’
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Fig. 11. Conditional simulation formed by merging the determin-
istic surface of Figure 5b with the unconditional simulation of
Figure 10e. The solid line indicates the grounding line derived from
Bindschadler and others (2011). Regions to the left of this curve are
presumed to be floating glacier base rather than basal topography.

would then be interpolated in any desired manner (including
conditional simulation). Flow models could then run on the
interpolated surface for comparison with the ‘true’ flow.
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