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In this paper, we develop methods for statistical inferences in a partially identified
nonparametric panel data model with endogeneity and interactive fixed effects.
Under some normalization rules, we can concentrate out the large-dimensional
parameter vector of factor loadings and specify a set of conditional moment restric-
tions that are involved with only the finite-dimensional factor parameters along with
the infinite-dimensional nonparametric component. For a conjectured restriction on
the parameter, we consider testing the null hypothesis that the restriction is satisfied
by at least one element in the identified set and propose a test statistic based on a novel
martingale difference divergence measure for the distance between a conditional
expectation object and zero. We derive a tight asymptotic distributional upper bound
for the resultant test statistic under the null and show that it is divergent at rate-N
under the global alternative. To obtain the critical values for our test, we propose
a version of multiplier bootstrap and establish its asymptotic validity. Simulations
demonstrate the finite sample properties of our inference procedure. We apply our
method to study Engel curves for major nondurable expenditures in China by using
a panel dataset from the China Family Panel Studies.

1. INTRODUCTION

Recently there has been growing interest in panel data models with interactive fixed
effects (IFEs). Under a linear specification of the regression relationship, these
models have been extensively studied in the literature (see Coakley, Fuertes, and
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Smith, 2002; Phillips and Sul, 2003, 2007; Pesaran, 2006; Kapetanios and Pesaran,
2007; Pesaran and Tosetti, 2007; Greenaway-McGrevy, Han, and Sul, 2008; Bai
(2009); Moon and Weidner, 2015, 2017; Lu and Su, 2016, among others). More
recently, in an effort to relax the linear specification, much attention has been
turned to the study of nonparametric panel data models with interactive effects (see,
e.g., Su and Jin, 2012; Su, Jin, and Zhang, 2015; Freyberger, 2018; Su and Zhang,
2018; Dong, Gao, and Peng, 2020 for an overview). In particular, Freyberger
(2018) studies a very general nonparametric and nonseparable panel model with
IFEs. Nevertheless, all of these papers restrict the covariates to be either strictly or
weakly exogenous and assume that the model parameters are point-identified.

In this paper, we consider the following nonparametric panel data regression
model:

yit = g0(xit)+λ0′
i F0

t +uit, (1.1)

where i = 1, . . . ,N, t = 1, . . . ,T , xit is a dx× 1 vector of general regressors with
support X , yit is a scalar output variable with support Y , F0

t and λ0
i are R× 1

vectors of unobserved factors and factor loadings, respectively, uit is a zero mean
error term, and the functional form of g0 (·) is unknown. We allow xit and uit to be
correlated, and are interested in the inference of g0 (·) by assuming the presence of
a dz×1 vector of weakly exogenous instruments zit with support Z , such that

E(uit|zi1, . . . ,zit)= 0 almost surely (a.s.). (1.2)

Throughout the paper, we assume that T and R are fixed with T ≥ R+1, and the
asymptotic theory is established by passing N to infinity.

When g0(xit) is linear in xit so that g0 (xit) = β0′xit for some β0 ∈ R
dx, xit is

strictly exogenous, and R = 1, Ahn, Lee, and Schmidt (2001) follow the lead of
Holz-Eakin, Newey, and Rosen (1988) to study the asymptotic properties of the
GMM estimator of β0 based on the quasi-differencing of the equation in (1.1).
Ahn, Lee, and Schmidt (2013, ALS hereafter) consider the GMM estimation of
β when xit is either strictly or weakly exogenous and R ≥ 1. Su and Jin (2012)
study the asymptotic properties of the sieve estimator of g0 in (1.1) when xit is
strictly exogenous. Su and Zhang (2018) consider the sieve estimation of g0 when
xit is weakly exogenous. Freyberger (2018) considers the point-identification and
estimation of a model that is more general than that in (1.1), but still restricts xit to
be either strictly or weakly exogenous.

The nonparametric IV (NPIV) model for cross-sectional data (i.e., yi = g0 (xi)+
ui with E(ui|zi) = 0 a.s.) has been widely studied in the literature. NPIV is
encompassed by our model as a special case where T = 1 and R = 0. Point-
identification of g0 (·) in NPIV relies heavily on a completeness assumption
regarding the joint distribution of xi and zi, as formalized by Newey and Powell
(2003). Nevertheless, Santos (2012) shows that g0 (·) in the NPIV model is only
partially identified in general. The partial identification nature still exists in Model
(1.1) without imposing strong ad hoc assumptions when we treat the IFEs as fixed
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parameters. Therefore, we aim at developing an effective inference method for
g0 (·) in the potential absence of point-identification in this paper.

For a conjectured restriction on g(·), we develop a consistent procedure for
testing the hypothesis that the restriction is satisfied by at least one element in
the identified set of g(·).1 A broad group of restrictions can be tested in this
way, making the procedure applicable to various inference tasks, including testing
model specification and constructing a confidence set for g0 (·) at any given point.
We derive a tight asymptotic distributional upper bound for our test statistic under
the null and show that it is divergent at rate-N under the global alternative based
on the U-process theory. To make asymptotically valid inferences, we propose a
version of multiplier bootstrap and justify its use to obtain conservative bootstrap
critical values.We conduct Monte Carlo simulations to demonstrate the finite
sample properties of our inference procedure.

Our test statistic is based on a novel martingale difference divergence (MDD)
measure for the distance between a conditional expectation object and zero. This
way of constructing a statistic for testing conditional moment specification is
rather different from the widely adopted method, dating back to Bierens (1982),
that involves transforming conditional moments into infinitely many unconditional
ones via a family of instrument functions and then constructing Kolmogorov
Smirnov (KS) or Cramér-von Mises (CvM) type statistic over the instrument
function family. As shown in the paper, under partial identification, our MDD-
based statistic has one main advantage over Bierens-type statistics: Computing
our MDD-based statistic is relatively simple regardless of the dimension of the
conditioning variables (i.e., zit ≡ (z′i1, . . . ,z

′
it)
′) so that it does not suffer from

high computational cost even if the dimension of the conditioning variables is
moderately large.

The main technical challenges of our analysis arise largely because our test
statistic is associated with a second-order U-process that is asymptotically degen-
erate under the null and nondegenerate under the alternative. First, our test statistic
can be written as a minimizer of an MDD-based process indexed by θ = (

φ′,g
)′

,
where φ is a finite-dimensional vector associated with the unobserved factor
F = (F1, . . . ,FT)

′ and g is the infinite-dimensional parameter of interest. The
MDD-based process is a third-order U-process that can be decomposed into
the summation of a bias term, a second-order canonical U-process and a third-
order canonical U -process via standard Hoeffding decompositions. To study
these canonical U -process components, we find helpful insights from de la Peña
and Giné (1999) who state some weak convergence results for canonical U-
processes with kernel functions belonging to the VC-subgraph class. Such results
are not directly applicable to our setting because the kernel functions of our U-
processes do not belong to the VC-subgraph class due to the presence of the

1As shown in the paper, the proposed procedure actually allows for testing restrictions on the joint parameter θ =(
φ′,g(·))′, where φ is a (T −R)R-dimensional vector of unrestricted parameters from F = (F1,F2, . . . ,FT )

′ to be
formally introduced in Section 2.1.
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infinite-dimensional parameter g(·). Fortunately, we can verify some primitive
conditions in Arcones and Giné (1993) to show that the second-order canonical
U-process in our Hoeffding decomposition converges weakly to a Gaussian chaos
process and the third-order term asymptotically vanishes. To the best of our
knowledge, such results are the first ones for degenerate U-processes indexed by
a non-VC-subgraph class, which complements the literature in both econometrics
and statistics.

Second, to derive the asymptotic null distribution for our statistic, we borrow
ideas from the growing literature on nonparametric partial identification (see
Santos, 2012; Andrews and Shi, 2014; Hong, 2017; Chernozhukov, Newey, and
Santos, 2023, among others). Our study complements this literature and is closely
related to Santos (2012) and Hong (2017). The main difference is that Santos
(2012) and Hong (2017) establish their limiting distributions based on standard
empirical process theory while we establish our asymptotic results based on the
U-process theory. As a first step, we manage to show that any minimizer θ̂N of
our MDD-based process lies in the op(N−1/4)-neighborhood of the identified set
under the L2-norm. Then we show that our test statistic converges to the minimum
of a well-defined (noncentered) Gaussian chaos process except for a usual drift
term that also appears in Santos (2012) and Hong (2017). Santos (2012) employs
an additional sieve approximation to mimic the corresponding drifting term in his
bootstrap procedure so that the resulting test is exact. In comparison, Hong (2017)
sets the corresponding drifting term to zero in his bootstrap procedure, which saves
computational cost, but leads to potentially conservative tests. The characterization
of the drifting term is extremely hard in our setup. So we follow the lead of Hong
(2017) when implementing a multiplier bootstrap procedure, which makes our
test potentially conservative too. To show the asymptotic validity of the bootstrap
procedure, an essential step is the study of the unconditional central limit theorem
(CLT) for the underlying U-process of our bootstrap statistic, which is analogous to
the unconditional multiplier CLT for empirical processes studied in van der Vaart
and Wellner (1996) and Kororok (2008). It extends the unconditional multiplier
CLT for degenerate second-order U-statistics in Leucht and Neumann (2013) to
degenerate second-order U-processes.

As an empirical illustration, we apply our method to study Engel curves for four
major nondurable expenditures in China by using a panel dataset from the China
Family Panel Studies (CFPS). One of our interesting findings is that, even with
a nonparametric specification on g(·), the model is not sufficient to adequately
describe the Engel curve for food consumption among urban households in China
when setting the number R of factors to be 0 or 1. Our test fails to reject the log-
linear specification for the Engel curves among rural households when setting
R = 1. Our empirical study suggests a difference in the degree of heterogeneity
in consumption patterns between the urban population and rural population in
China. It also suggests that, even a nonparametric specification on g(·), as general
as it is, might still be insufficient to compensate for an inadequate handling of
heterogeneity to make the corresponding Engel curve a correctly specified one.
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These results provide some new insights to the huge literature on empirical studies
of Engel curves.

The rest of the paper is organized as follows: In Section 2, we introduce the
model, the moment conditions, and the hypotheses. In Section 3, we construct
the MDD-based test statistic, derive its asymptotic behavior, and propose a
consistent multiplier bootstrap procedure to obtain the p -values. In Section 4, we
study the finite sample performance of our inference procedure by Monte Carlo
simulations. In Section 5, we apply our method to study Chinese households’ Engel
curves. Final remarks are contained in Section 6. The proofs of all theorems and
lemmas are delegated to the Appendix. Additional materials are provided in the
Appendixes B and C of the Supplementary Material.

NOTATION. For a vector or matrix A, we denote its transpose as A′ and
its Frobenius norm as |A| (≡ [tr

(
AA′

)
]1/2), where ≡ signifies a definitional

relationship. We use ‖·‖ to denote generic (pseudo) norm. For example, for
θ = (

φ′,g
)′

, where φ is a finite-dimensional vector to be specified later on and
g is the infinite-dimensional parameter, we define ‖θ‖ ≡ |φ| + ‖g‖ to denote a
generic (pseudo) norm for θ = (

φ′,g
)′

, and one popular choice for ‖·‖ is the L2

norm, yielding ‖θ‖L2 = |φ| + ‖g‖L2 . The true value of θ = (
φ′,g

)′
is denoted as

θ0= (
φ0′,g0

)′
. The operator

p−→,
L−→, and�⇒ denote convergence in probability,

convergence in law and weak convergence in the sense of Chapter 1.3 in van der
Vaart and Wellner (1996), respectively.

2. THE MODEL AND HYPOTHESES

Let Xi = (xi1, . . . ,xiT)
′ , Yi = (yi1, . . . ,yiT)

′ , Zi = (zi1, . . . ,ziT)
′ , g0(Xi) =(

g0(xi1), . . . ,g0(xiT)
)′
, F0 = (

F0
1, . . . ,F

0
T

)′
, and Ui = (ui1, . . . ,uiT)

′ . We can rewrite
Model (1.1) with Condition (1.2) in vector form:

Yi = g0(Xi)+F0λ0
i +Ui with E

(
uit|zit

)= 0 a.s., (2.1)

where zit ≡ (z′i1, . . . ,z
′
it)
′.

2.1. The Moment Condition

To proceed, we show that Model (2.1) is equivalent to a number of conditional
moment equations. Note that F0λ0

i = F0D−1Dλ0
i = F∗λ∗i for any nonsingular

matrix D, where F∗ = F0D−1 and λ∗i = Dλ0
i . So as a first step, to rule out such

trivial non-identification, we make the normalization assumption that the T ×R
matrix F takes a form similar to ALS and Freyberger (2018), as follows:

F =
(

�

−IR

)
, (2.2)
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where � is a (T−R)× R matrix of unrestricted parameters, and (2.2) imposes
R2 restrictions by requiring the last R rows of F to be −IR. Let φ =vec

(
�′) ≡

(φ′1, . . . ,φ
′
T−R)

′, where φt denotes the tth column of �′ for t = 1, . . . ,T−R.
Then we define the T× (T−R) matrix:

H (φ)≡
(

IT−R

�′

)
≡ [H1 (φ1), . . . ,HT−R (φT−R)] . (2.3)

Note that

H
(
φ0
)′

F0 = (
IT−R,�

0
)( �0

−IR

)
= 0(T−R)×R, (2.4)

where φ0 =vec
(
�0′)= (φ0′

1 , . . . ,φ0′
T−R)

′ denotes the true value of φ. Consequently,

premultiplying both sides of (2.1) by H
(
φ0
)′

helps to eliminate the incidental
parameters

{
λ0

i

}
from the equation:

H
(
φ0
)′

Yi = H
(
φ0
)′

g0(Xi)+H
(
φ0
)′

Ui, (2.5)

where

H (φ)′Ui =

⎛⎜⎜⎜⎝
H1 (φ1)

′Ui

H2 (φ2)
′Ui

...
HT−R (φT−R)

′Ui

⎞⎟⎟⎟⎠=
⎛⎜⎜⎜⎝

ui1+φ′1U̇i

ui2+φ′2U̇i
...

ui,T−R+φ′T−RU̇i

⎞⎟⎟⎟⎠
and U̇i =

(
ui,T−R+1,ui,T−R+2, . . . ,ui,T

)′
. Let

m(Yi,φ,g(Xi))≡ H (φ)′ [Yi−g(Xi)]

=

⎛⎜⎜⎜⎝
H1 (φ1)

′ [Yi−g(Xi)]
H2 (φ2)

′ [Yi−g(Xi)]
...

HT−R
(
φT−R

)′ [Yi−g(Xi)]

⎞⎟⎟⎟⎠≡
⎛⎜⎜⎜⎝

m1(Yi,φ1,g(Xi))

m2(Yi,φ2,g(Xi))
...

mT−R(Yi,φT−R,g(Xi))

⎞⎟⎟⎟⎠ .

(2.6)

Then under the condition that the instrument zit is weakly exogenous, we can easily
see that

E
[
ms(Yi,φ

0
s ,g

0(Xi))|zis

]= 0 a.s. for s= 1, . . . ,T−R. (2.7)

When φ0 and g0 are point-identified, various methods have been proposed to study
the estimation of φ and g in the above model (see Ai and Chen, 2003; Chen and
Pouzo, 2012, among others).

2.2. The Parameter Space �

The parameter space � for θ = (φ′,g)′ is specified as �=�×G as in Hong (2017),
where � is a compact subset of R(T−R)R and G is a bounded subset of the following
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Sobolev space:

W s (X )≡ {
g : X → R | g is d-times differentiable and ‖g‖s ≤∞

}
with ‖·‖s being a commonly used norm for weighted Sobolev spaces, defined as

‖g‖2
s ≡

∑
〈λ〉≤d

∫
X

∣∣Dλg(x)
∣∣2 (1+ x′x

)ζ0 dx,

where λ ∈N
dx+ , 〈λ〉 ≡∑dx

j=1 λj, Dλg(x)≡ ∂ 〈λ〉g(x)/
∏dx

j=1 ∂x
λj
j , d ∈N+ measures the

degree of smoothness, and ζ0 ≥ 0. Define another norm ‖·‖c as follows:

‖g‖c ≡ max
〈λ〉≤ d

2

[
sup
x∈X

∣∣Dλg(x)
∣∣ (1+ x′x

)ζ/2
]

with ζ = 0 for bounded X , and
( dx

2 � d
2�
)
/
(� d

2�− dx
2

)
< ζ < ζ0 for unbounded X .

Here, �a� represents the largest integer that is not larger than a.
To be precise, we specify the parameter space �=�×G as follows.

Assumption 2.1. (i) � ⊂ R
(T−R)R is compact; (ii) G = {g ∈ W s (X ) :

‖g‖s ≤ Cg} for some Cg < ∞ and d ≥ dx + 2. ζ0 = 0 for bounded X , and

ζ0 >
( dx

2 ·� d
2�
)
/
(� d

2�− dx
2

)
for unbounded X ; (iii) ν < 1, with ν defined as follows:

ν ≡
{

(d−�d/2�+ ζ )dx/{ζ(d−�d/2�)}, if X is unbounded,
dx/(d−�d/2�), if X is bounded; (2.8)

(iv) X satisfies a uniform cone condition.

Assumption 2.1(i) is standard and Assumption 2.1(ii)-(iii) parallels Assumption
2.1(i) in Santos (2012). Assumption 2.1(ii) specifies G to be a bounded ball under
‖·‖s with radius Cg in W s (X ). Such a specification enjoys two benefits. First, as
Santos (2012) notes, G is compact under the norm ‖·‖c. Consequently, �=�×G
is compact under ‖·‖c defined on R

(T−R)R×W s (X ) as

‖θ‖c ≡ |φ|+‖g‖c (2.9)

for θ = (
φ′,g

)′
. See Lemma A.3 in the Appendix. Second, G is also compact under

‖·‖L2 , which can be verified by following the arguments of Freyberger and Masten
(2019). As Hong (2017) remarks, the compactness of G under ‖·‖L2 makes the
results in Schumaker (2007) applicable to developing primitive conditions for the
required uniform rate (over �) of sieve approximation errors (to be specified by
Assumption 3.3 later in the paper). Assumption 2.1(iv) is the same as Assumption
2.1(ii) in Santos (2012) and Assumption 3.2(ii) in Hong (2017). It imposes a
weak regularity condition on the shape of X . As pointed out by Santos (2012),
heuristically, Assumption 2.1(iv) is satisfied if there exists some small finite cone
whose vertex can be placed in each point in the boundary of X in such a way that
the cone is contained in X . See Paragraph 4.8 in Adams and Fournier (2003) for
more details.
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2.3. Hypotheses and Notion of Test

Define

�I ≡ {θ = (φ′,g)′ ∈�×G : E
[
ms(Yi,φs,g(Xi))|zis

]= 0 a.s. for s= 1, . . . ,T−R}.
(2.10)

�I is referred to as the identified set in the literature. We say that θ = (φ′,g)′ is
partially identified by (2.7) if �I contains more than one element. The following
lemma implies that there is no loss of information by considering �I defined in
(2.10) instead of (1.1) and (1.2), that is, the original model.

Lemma 2.1 (No loss of information). �I , the identified set defined by (2.10),
is the same as the identified set characterized by (1.1) and (1.2). That is, �I is
equivalent to⎧⎪⎨⎪⎩θ = (φ′,g)′ ∈� :

For some R-dimensional vector λi, it holds

E
[
yit−g(xit)−λ′iφt|zit

]= 0 a.s. for t = 1, . . . ,T−R

E
[
yit−g(xit)−λ′i

(−ιt−(T−R)

) |zit

]= 0 a.s. for t = T−R+1, . . . ,T

⎫⎪⎬⎪⎭
where ιt represents the t’th column of the R×R identity matrix.

For hypothesis testing on a conjectured restriction on θ , in the generic form

L(θ)= l,

we consider testing whether such a restriction is satisfied by at least one ele-
ment of the identified set. Equivalently, defining the restricted set as �R ≡
{θ ∈� : L(θ)= l}, the null and alternative hypotheses under our consideration are

H0 : �I ∩�R �=∅ v.s. H1 : �I ∩�R =∅,

where∅ denotes an empty set. The notion of the above testing hypotheses is widely
adopted under partial identification. When θ0 = (φ0′,g0)′ is point-identified by
(2.7), the above null hypothesis H0 simply tests whether θ0 satisfies the specified
restriction in �R : L(θ0)= l.

We consider a group of restrictions that is otherwise identical to the one consid-
ered in Santos (2012) and Hong (2017), except for relaxing their requirement for
restrictions to be linear, as follows.

Assumption 2.2. For (L, ‖·‖L) a Banach space, L : (G, ‖·‖ c)→ (L, ‖·‖L) is a
bounded operator.

As discussed in Santos (2012), Assumption 2.2, even when strengthened by
requiring L(·) to be linear, encompasses a broad group of restrictions since one can
flexibly choose the Banach space (L, ‖·‖L). For example, we can test whether the
value of the function g0 at a point x0 is given by a value γ 0 by setting (L, ‖·‖L)=
(R, |·|), �R=

{
g ∈W s (X ) : g

(
x0
)= γ 0

}
, L (g)= g

(
x0
)
, and l= γ 0. For another

example, we can test whether g0 is an affine function by setting (L, ‖·‖L) =
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L2 (X), ‖·‖L2

)
, �R = {g ∈ Wc (X ) : g(x) = β0 + β ′1x for some

(
β0,β

′
1

)′ ∈
R

dx+1}, L (g) = g−PA (g), and l = 0. Here, L2 (X) = {b : X → R : E[b(X)2] <
∞}, ‖b‖L2 = {E[b(X)2]}1/2, and PA (g) denote the projection of g ∈ L2 (X) onto
A≡ {g ∈Wc (X ) : g(x) = β0+β ′1x for some

(
β0,β

′
1

)′ ∈ R
dx+1}. Moreover, since

we rely on the nonparametric sieve method for the estimation of the nonparametric
function g(·) and the derivative operator is a linear operator, our method works
directly for testing hypotheses on some functionals of the function g such as its
first derivatives. See Example 2.6 in Santos (2012) on the restriction of the price
elasticity of demand which is about the derivative of a nonparametric function.
Since we do not restrict the functional L to be linear here, higher-order derivatives
can also be tested in principle. For additional examples of restrictions that satisfy
Assumption 2.2, see Santos (2012). We also note that, although we do not exclude
nonlinear restrictions, they are in general computationally costly to incorporate
for constructing the corresponding test statistics (to be specified in Section 3.1). In
contrast, linear restrictions are computationally easy to incorporate, as we discuss
at the end of Section 3.1.

In the panel data model with IFEs, g(·), or its functional, is typically the
parameter of interest, in which case φ can be regarded as a nuisance parameter.
For this reason, we mainly consider hypotheses that impose restrictions on g(·)
alone, in which case the restriction to be tested takes the special form L(g) = l.
Then the restricted set becomes �R = {θ = (φ,g) ∈�×G : L(g)= l}.

3. THE TESTING PROCEDURE

3.1. Test Statistics

A popular method to handle hypothesis testing for conditional moment models
is to construct test statistics based on equivalent unconditional moments. This
method dates back to Bierens (1982) and has been adopted in many papers on
point-identification analysis (see, e.g., Stinchcombe and White, 1998; Dominguez
and Lobato, 2004), and in more recent papers on partial identification analysis such
as Santos (2012), Andrews and Shi (2013), and Hong (2017). To adopt this method
in our study, it requires the choice of a family of generically revealing functions
(ϕ1(t1,·),ϕ2(t2,·), . . . ϕT−R(tT−R,·)) indexed by t ≡ (

t′1,t
′
2, . . . ,t

′
T−R

)′ ∈∏T−R
s=1 Ts ≡

T that satisfies the following condition:

E
[
ms(Yi,φs,g(Xi))|zis

]= 0 a.s. iff E
[
ms(Yi,φs,g(Xi))ϕs(ts,zis)

]= 0 for all ts ∈ Ts,

where it is worth noting that the dimension of ts ∈ Ts is typically equal or
comparable to dzs

= s · dz, where recall that dz is the dimension of zit. Then we
can construct the following test statistic:

J̄N ≡ min
θ∈�N∩�R

max
t∈T

N · |JN (θ,t)|2 , (3.1)
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where

JN (θ,t)≡

⎛⎜⎜⎜⎜⎜⎝
1
N
∑N

i=1 mi1 (φ1,g)ϕ1(t1,zi1)

1
N
∑N

i=1 mi2 (φ2,g)ϕ2(t2,zi2)

...
1
N
∑N

i=1 mi,T−R
(
φT−R,g

)
ϕT−R(tT−R,zi,T−R)

⎞⎟⎟⎟⎟⎟⎠≡
⎛⎜⎜⎜⎝

JN1 (φ1,g,t1)
JN2 (φ2,g,t2)

...
JN,T−R

(
φT−R,g,tT−R

)
⎞⎟⎟⎟⎠,

with mis (φs,g)≡ ms (Yi,φs,g(Xi)) and �N is an approximating sieve space for �.
Hong (2017) shows under a general setting that statistics of the form (3.1)

weakly converge to a certain functional of a Gaussian process under the null, and
proposes a penalized bootstrap procedure for testing. These results are potentially
applicable to the statistic J̄N in our study. However, note that the dimension of zis
is given by sdz, and the dimension of the index t is typically equal or comparable

to
(∑T−R

s=1 s
)

dz, which can get relatively large for moderate sizes of T−R and dz.

As a result, the computation of J̄N can be rather expensive. For this reason, we opt
for a different test statistic based on the notion of MDD.

An MDD-based statistic for our study is motivated by two recent papers: Shao
and Zhang (2014) and Su and Zheng (2017). In its primitive form, Shao and Zhang
(2014) define for any real-valued variable V and vector-valued variable W,

MDDo (V|W)2 ≡
∫
R

dW

[
Cov

(
V,exp

(
is′W

))]2 ·q(s)ds, (3.2)

where i ≡ √−1, dW is the dimension of W, and q(·) is a nonnegative weight
function. As revealed by ( 3.2), MDDo (V|W)2 is constructed as a weighted
integration of

[
Cov

(
V,exp

(
is′W

))]2
over s ∈ R

dW and it is clearly motivated by a
known statistic result that

E(V|W)= E(V) if and only if Cov
(
V,exp

(
is′W

))= 0 for all s ∈ R
dW . (3.3)

When picking q(s) = 1/[c |s|(1+dZ )] with c ≡ π(1+dZ )/2/�(
1+dZ

2 ) and �(·) being
the complete gamma function �(z)≡ ∫∞

0 t(z−1)exp(−t)dt, Shao and Zhang (2014)
establish that

MDDo(V|W)2 ≡−E{[V−E(V)]
[
V†−E(V†)

] ∣∣W−W†
∣∣}, (3.4)

where (V†,W†) is an independent copy of (V,W). Then under some suitable
moment conditions (E(V2) <∞ and 0 <E(|W|2) <∞), one has MDDo (V|W)2 ≥
0 and

MDDo (V|W)2 = 0 iff E(V|W)= E(V) a.s. (3.5)

Based on the above properties, they propose a consistent test for conditional mean
independence condition of (3.5).

Su and Zheng (2017) propose a modified version of MDD, defined as

MDD(ε|W)2 ≡−E[εε†
∣∣W−W†

∣∣]+2E
[
ε
∣∣W−W†

∣∣]E[ε†], (3.6)
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where ε is the error term of a nonlinear regression model, W is the regressor, and(
ε†,W†

)
is an independent copy of (ε,W). Su and Zheng (2017) show that

MDD (ε|W)2 =MDDo (ε|W)2+ [E(ε)]2
E
[∣∣W−W†

∣∣]≥ 0 (3.7)

and

MDD (ε|W)2 = 0 iff E(ε|W)= 0 a.s., (3.8)

where MDDo (ε|W)2 refers to the one used in (3.4). Then they propose a novel and
effective test for correct (parametric) specification of the regression function based
on the above properties of MDD. Notably, in their setting, the regression function is
correctly specified if and only if the conditional mean zero condition of (3.8) holds.
Simulation results in Su and Zheng (2017) indicate that a test statistic based on the
MDD significantly outperforms many popular specification tests in the literature,
and that it performs well even when the dimension of W is moderately large.

Following the insights from Su and Zheng (2017), it can be shown, under our
setting of � and �R, that �I ∩�R �=∅ if and only if

min
θ∈�∩�R

{
T−R∑
s=1

MDD
[
ms (Y,φs,g(X)) |zs

]2

}
= 0. (3.9)

Then the construction of the test statistic for

H0 : �I ∩�R �=∅ v.s. H1 : �I ∩�R =∅ (3.10)

proceeds in two steps as follows:

I. Fix θ ∈ � and derive a test statistic SN (θ) for the null hypothesis H0 :
E
[
ms (Y,φs,g(X)) |zs

] = 0 a.s. for all s = 1, . . . ,T − R, or equivalently, H0 :∑T−R
s=1 MDD

[
ms (Y,φs,g(X)) |zs

]2 = 0 for all s= 1, . . . ,T−R.
II. Let �N be a sieve approximating space for �. Then, following (3.9), test H0 :

�I ∩�R �=∅ by using the statistic ŜN = min
θ∈�N∩�R

SN (θ).

For Step I, we propose the following statistic:

SN (θ)≡
T−R∑
s=1

SNs (θ), (3.11)

where SNs (θ) is constructed in a way similar to Su and Zheng (2017):

SNs (θ)=− 1

N

∑
1≤i�=j≤N

mis (θ)mjs (θ)κij,s+ 2

N

∑
1≤i�=j≤N

mis (θ)κij,s
1

N

N∑
k=1

mks (θ)

(3.12)

with mis (θ)≡ ms (Yi,φs,g(Xi)) and κij,s =
∣∣∣zis− zjs

∣∣∣ for s= 1, . . . ,T−R.
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For Step II, we define the test statistic accordingly as

ŜN = min
θ∈�N∩�R

SN (θ), (3.13)

where �N =�×GN is an approximating space for �=�×G, with

GN =
{
g ∈ G : g(·)= pkN (·)′β for some β ∈ R

kN
}

being an approximating space for G by using a kN-vector of basis functions
pkN (·)= (

p1 (·), . . . ,pkN (·))′ defined on X . Computation-wise, it is helpful to note

that the minimization over θ = (
φ′,g(·))′ ∈�N ∩�R, involved in the computation

of ŜN , is equivalent to a minimization over

(
φ′,β ′

)′ ∈ {(φ′,β ′)′ ∈ R
T−R×R

kN : pkN (·)′ β ∈ GN and L

((
φ′,pkN (·)′ β

)′)= l

}
⊂ R

(T−R)+kN ,

where L (θ)= l is the restriction being tested. A case of major interest is where: (i)
the tested restriction takes the form L (g)= l (i.e., it only concerns g(·), and puts no

restriction on φ), and (ii) L(·) is linear. In this case, L
((

pkN (·)′β)′) = l becomes

a linear restriction on β ∈ R
kN : ϒ ′

Nβ = l with ϒN ≡
(
L
(
p1 (·)), . . . ,L(pkN (·)))′,

which is easy to incorporate to the involved minimization.

3.2. Definitions and Notations

For θ0 = (
φ0′,g0

)′ ∈�I ∩�R, let

�Nθ
0 ≡

(
φ0

�GN g0

)
(3.14)

be the projection of θ0 onto �N ∩�R.

Definition 3.1 (Weak pseudo-metric). Let ms (Y,X,θ) ≡ ms (Y,φs,g(X)) .
Define the following pseudo-metric dw (·,·) on �:

dw (θ1,θ2) ≡
{

T−R∑
s=1

MDD
[
(ms (Y,X,θ1)−ms (Y,X,θ2)) |zs

]2

}1/2

for any θ1, θ2 ∈�.

Note that �I forms an equivalence class under dw (·,·), that is, for any θ0
1 ∈�I

and θ0
2 ∈�I , dw

(
θ0

1 ,θ
0
2

)= 0, which is made clear by Lemma A.1 in the Appendix.
It also follows from Lemma A.1 that for any given θ ∈� and θ0 ∈�I ,

dw
(
θ,θ0

)= {
T−R∑
s=1

MDD
[
ms (Y,X,θ) |zs

]2

}1/2

.
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Also note that dw (·,·) is weaker than the L2-metric and satisfies a triangle-like
inequality, as stated in the following lemma.

Lemma 3.1. Let Assumptions 2.1 hold. Suppose that E[|Y|2] <∞ and E|Z| <
∞. (i) There exists a finite constant c > 0 s.t. dw (θ1,θ2)≤ c‖θ1− θ2‖L2 for any θ1,
θ2 ∈�; (ii) It holds that

dw (θ1,θ2) ≤ 2
√

2[dw (θ1,θ3)+dw (θ2,θ3)]

for any θ1, θ2, θ3 ∈�.

For a given point θ ∈� and a given subset A⊆�, denote by

d‖·‖L2 (θ,A)≡ inf
θ̃∈A

∥∥∥θ − θ̃

∥∥∥
L2

and dw (θ,A)≡ inf
θ̃∈A

dw(θ,θ̃ ),

that is, the distances between point θ and set A under ‖·‖L2 and dw (·,·), respec-
tively. As formalized in Lemma A.6(i) in the Appendix, under mild conditions
(Assumptions 2.1, 2.2, and 3.1–3.3(i) to be specified in the next subsection),
any minimizer θ̂N of SN (θ) over �N would lie in a op(1) -neighborhood of the
identified set �I under the L2-norm. Given this consistency result, we can restrict
our attention on a shrinking L2 sieve neighborhood around �I , defined as

�oN ≡
{
θ ∈�N : d‖·‖L2 (θ,�I)≤ ςN

}
for some positive ςN ↓ 0. And we define the following measure of local ill-
posedness.

Definition 3.2 (Sieve measure of local ill-posedness). Define the following
sieve measure of local ill-posedness:

�N ≡ sup
θ∈�oN :θ /∈�N�I

d‖·‖L2 (θ,�N�I)

dw (θ,�N�I)
.

�N provides a local upper bound of relative distance between θ and �N�I

under L2 to that under our pseudo metric dw (·,·). We note that our definition of
�N is otherwise identical to the sieve measure of local ill-posedness defined by
Hong (2017), except for that our pseudo metric (in the involved denominator of
�N) differs from that of Hong (2017). Under point-identification where �I is just

the singleton
{
θ0
}
, �N becomes �N = supθ∈�oN :θ /∈�Nθ0

d‖·‖
L2

(
θ,�Nθ0

)
dw(θ,�Nθ0)

, the form of

which is conventional for sieve measures of local ill-posedness defined in the point-
identification literature (see, for example, Ai and Chen, 2003; Chen and Pouzo,
2012, among others).

In our analysis, we allow for moderate ill-posedness in the sense that �N ↑ ∞
but at a slow rate. �N provides a link between dw (·,·) and the L2 distance. So once
we establish the rate of convergence under dw (·,·), a certain rate of convergence

https://doi.org/10.1017/S0266466623000403 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000403


14 SHENGJIE HONG ET AL.

under the L2 distance can be established via �N . Note that �N is defined in a way
similar to Hong (2017) with the main difference that our pseudo metric is different
from that of Hong (2017).

3.3. Asymptotic Theory

In this section, we study the asymptotic properties of SN (θ) and ŜN , defined in
(3.11) and (3.13), respectively. To establish the asymptotic behavior of SN (θ), we
impose the following assumption.

Assumption 3.1. (i) {Xi,Yi,Zi}Ni=1 are i.i.d. with support X T ×YT ×ZT such
that all marginal and joint density functions of Xi,Yi and Zi are bounded.

(ii) E[(|Yi|2+1)(|Zi|2+1)] <∞.

Assumption 3.1(i) is commonly imposed for panel data analyses with individual
fixed effects or IFEs. Note that it does not rule out dynamic panels as long as we
treat the unobserved factors F0

t ’s as nonrandom.2 In the case where F0
t ’s are ran-

dom, the independence assumption can be replaced by conditional independence:
the lagged dependent variables (e.g., Yi,t−1) can be independent across i given
the minimal sigma-field generated by the common factors. Assumption 3.1(ii)
specifies some moment conditions on Yi and Zi.

Let ξi =
(
Y ′i,X

′
i,Z

′
i

)′
and m̃is (θ)=ms (Yi,Xi,θ)−E

[
ms (Yi,Xi,θ) |zis

]
. Define the

second-order U-process indexed by θ as follows:

UNs (θ)=
(

N

2

)−1 ∑
1≤i<j≤N

hs
(
ξi,ξj;θ

)
,

where hs
(
ξi,ξj;θ

)= m̃is (θ) m̃js (θ) [Ej(κij,s)+Ei(κij,s)−κij,s], and Ej(κij,s) denotes

the expectation with respect to (w.r.t.) the variable zjs alone in κij,s =
∣∣∣zis− zjs

∣∣∣ .
Denote by < ·,· > the usual inner product on L2 (P), for P a generic probability
measure (or a generic marginal one) on X T × YT × ZT . For f ∈ L2

(
P2
) ≡

L2 (P⊗P), define a Hilbert–Schmidt operator Hf on L2 (P) by
(
Hf g

)
(ξ) =

Pf (ξ,·)g(·) . Also, define a process C on F by

C(f )=
∞∑

α=1

< Hf wα,wα >
(
W2

α−1
)
,

2For simplicity, we consider a simple parametric model yit = ρ0yi,t−1 +λ0′
i F0

t + uit, where ρ0 �= 0 and
∣∣ρ0

∣∣ < 1,
and we assume yi0’s are observed. By the continuous backward substitutions, we have

yit = ρtyi,0+
t−1∑
j=0

ρj(λ0′
i F0

t−j+ui,t−j).

If F0
t ’s are nonrandom, the randomness of yit is mainly driven by that of λ0

i , yi0, and {uis}ts=1 . Then yit’s are cross-
sectionally independent provided λ0

i , yi0, and {uis}ts=1 are independent across i, and so are Yi ≡ (yi1, . . . ,yiT )
′ .

Similarly, if λ0
i , yi0, and {uis}Ts=1 share the same distributions across i, Yi would be identically distributed. So a

dynamic model could meet the i.i.d. requirement in Assumption 3.1(i) where xit = yi,t−1.
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where {wα} denotes the eigenfunctions of the operator Hf , and {Wα} is a sequence
of independent N (0,1) random variables.

The following theorem studies the asymptotic properties of the process {SN (θ)} .

Theorem 3.1. Let Assumptions 2.1, 2.2, and 3.1 hold. Then:
(i) For each s= 1, . . . ,T−R, SNs (θ)= 2E

[
m2

s (Y,φs,g(X))
∣∣zs− z†

s

∣∣]+UNs (θ)+
Op(N−1/2) �⇒ Bs (θ)+Cs (θ) in L∞ (�I), where Bs (θ) = 2E[m2

s (Y,φs,g(X))

|zs− z†
s |] and Cs (θ) = C(hs (·, · ;θ)) is a Gaussian chaos process on L∞ (�I) .3

SN (θ)�⇒∑T−R
s=1 [Bs (θ)+ Cs (θ)] on L∞ (�I).

(ii) 1
N SN (θ) = ∑T−R

s=1 MDD
[
ms (Y,X,θ) |zs

]2 + Op(N−1/2) uniformly in θ ∈
�\�I .

Theorem 3.1(i) indicates that SNs (θ), after being recentered around Bs (θ), is
essentially a degenerate second-order U-process on �I that converges weakly
to a Gaussian chaos process {Cs (θ)} . Theorem 3.1(ii) indicates that for θ ∈
�\�I, SN (θ) is dominated by its deterministic component that is associated with
the MDD measure.

To establish the asymptotic behavior of ŜN , we need to impose some further
assumptions.

Assumption 3.2. The eigenvalues of E

[
pkN (xt)pk′N (xt)

]
for t = 1, . . . ,T are

uniformly bounded and uniformly bounded away from zero.

Assumption 3.3. �N is a closed subset of �, and there exists �N θ ∈ �N for
each θ ∈ � such that: (i) δs,N ≡ sup

θ∈�∩�R

∥∥�N θ − θ
∥∥

L2 = o
(
N−1/2

)
; (ii) δw,N ≡

sup
θ∈�I∩�R

dw
(
�N θ,θ

)= o
(
N−1/2

)
.

Assumption 3.4. �N = O
(
N(1−ε)/(4(2−ε))

)
for some arbitrarily small ε > 0.

Assumption 3.2 is identical to Assumption 3.3(i) in Santos (2012) and is com-
monly assumed in the literature on sieve estimation. Assumption 3.3(i) requires a
uniform sieve approximation error rate under ‖·‖L2 over �∩�R. As discussed pre-
viously, the compactness of � under ‖·‖L2 makes the results in Schumaker (2007)
applicable to developing a primitive condition for Assumption 3.3(i). Specifi-
cally, according to Theorem 6.25 in Schumaker (2007), supθ∈� ‖�Nθ − θ‖L2 =
O(k−(d−1)

N ) for B-splines with simple knots. Therefore, Assumption 3.3(i) is
satisfied by picking kN →∞ fast enough such that 1/kN = o

(
N−1/2(d−1)

)
. Since

dw
(
�N θ,θ

)
is controlled from above by ‖�Nθ − θ‖L2 as shown by Lemma 3.1,

Assumption 3.3(ii) can be verified by using results for ‖·‖L2 . Assumption 3.4
allows �N →∞, but restricts its divergence rate to be slow enough. Essentially,

3Let D(b) be a generic stochastic process indexed by b ∈B. D(b) is said to be a process on L∞ (B) if D(·) (treated
as a random function with domain B) has almost sure bounded paths (i.e., realizations) on B.
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this requires kN to grow sufficiently slow. Similar assumptions are required in
semi/nonparametric analyses for regularization of ill-posed problems (see, e.g.,
Blundell, Chen, and Kristensen, 2007; Chen and Pouzo, 2012; Hong, 2017). As
acknowledged in Hong (2017), Assumption 3.4 is generally hard to verify because
the nature of the dependence of �N on kN has not been well studied. In the
special case of R = 0 (i.e., no IFEs) and point-identification, Assumption 3.2 is
sufficient to guarantee dw

(
θ,θ0

)� ∥∥θ − θ0
∥∥

L2 asymptotically for any θ0 ∈�I and∥∥θ − θ0
∥∥

L2 = o(1), which implies that �N = O(1). Then Assumption 3.4 holds
trivially. In the Appendix C of the Supplementary Material, we clarify this claim
for the case where R= 0 and also provide some further discussions on the sufficient
conditions for Assumption 3.4 when R≥ 1.

With the above additional assumptions, we can state the next main result in this
paper.

Theorem 3.2 (Convergence of θ̂N). Let Assumptions 2.1, 2.2, and 3.1–3.4 hold.
For any θ̂N ∈ argmin

θ∈�N∩�R

SN (θ), when �I ∩�R �=�, it holds that

dw

(
θ̂N,�I ∩�R

)
= Op(min(N−1/4,�NN−1/2))= op(N

− 1
2+ ε

4 �1−ε
N ). (3.15)

A close examination of the proof of Theorem 3.2 suggests that we can first
show that dw(θ̂N,�I ∩ �R)=Op(N−1/4) under Assumptions 2.1, 2.2, and 3.1–3.3.

Such a rate can be improved to op(N−
1
2+ ε

4 �1−ε
N ) by using the link between dw and

d‖·‖L2 through the sieve measure of ill-posedness and some iterative arguments.
By Assumptions 3.3–3.4 and Lemma A.6 in the Appendix, we can show that

d‖·‖L2 (θ̂N,�I ∩�R) = op(�
2−ε
N N−

1
2+ ε

4 ) = op(N−1/4), which will be used in the
proof of the next main result.

Theorem 3.3 (Asymptotic distribution under H0). Let Assumption 2.1, 2.2, and
3.1–3.3 hold. Under H0 : �I ∩�R �=∅, we have

ŜN ≤ inf
θ0∈�I∩�R

SN
(
θ0
)+op (1)

L−→ inf
θ∈�I∩�R

T−R∑
s=1

[Bs (θ)+Cs (θ)] . (3.16)

Given the non-negativity of ŜN by construction,4 Theorem 3.3 establishes a
stochastic upper bound, viz., infθ0∈�I∩�R

SN
(
θ0
)
, of ŜN under the null hypothesis,

which weakly converges to a tight distribution.5 Apparently, the asymptotic
distribution in (3.16) is not asymptotically pivotal and we will provide a bootstrap

4To see why ŜN is nonnegative, note that SNs (θ) can be viewed as MDD
(
ms (Y,φs,g(X)) |zs

)2 for random variables
{X,Y,Z} that follow the empirical distribution generated by the i.i.d. sample {Xi,Yi,Zi}Ni=1. It follows from the non-

negativity of MDD(·|·)2 in general that SNs (θ) is nonnegative, which in turn implies ŜN =minθ∈�N∩�R

∑T−R
s=1 SNs (θ)

(as specified in (3.11)–(3.13)) to be nonnegative.
5As shown in the Appendix, ŜN = infθ0∈�I∩�R

SN
(
θ0
)− cN +op (1), where 0≤ cN ≤ c̄N is defined in (A.56).
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method in the next subsection to obtain a potentially conservative bootstrap p-value
for the purpose of inference.

Theorem 3.4 (Asymptotic behavior under H1). Let Assumptions 2.1, 2.2, and
3.1–3.3 hold. Under H1 : �I ∩�R =∅, we have

N−1ŜN
p−→ min

θ∈�∩�R

T−R∑
s=1

MDD
[
ms (Y,X,θ) |zs

]2
> 0.

Theorem 3.4 studies the asymptotic behavior of ŜN under the alternative. It
indicates that ŜN diverges to infinity in probability at rate−N, which gives the
power of the MDD-based test.

Note that we do not provide the analysis on the asymptotic local power property
of our test. In the case of point-identification, it is well known that an MDD-based
test can detect the local alternatives converging to the null at the usual parametric
rate despite the dimension of the conditioning variable as long as it is fixed.
Nevertheless, like any other nonparametric nonsmoothing test, the MDD test still
suffers from the notorious curse of dimensionality in the nonparametric literature.
To appreciate this, we can focus on the general MMD measure considered in
(3.6) in Section 3.1. Let W = (

W1, . . . ,WdW

)′
and W† = (W†

1, . . . ,W
†
dW

)′. Note that∣∣W−W†
∣∣ enters MDD(ε|W)2 in ( 3.6) explicitly. It is important to understand its

behavior as dW increases. For clarity, suppose the dependence among W1, . . . ,WdW

is weak with sufficiently high-order moments so that

1

dW

∣∣W−W†
∣∣2 ≡ 1

dW

dW∑
l=1

(
Wl−W†

l

)2 p→ lim
dW→∞

1

dW

dW∑
l=1

E

[(
Wl−W†

l

)2
]
≡ μW .

Intuitively, when a law of large numbers applies to {W2
l }dW

l=1 as dW →∞, 1√
dW∣∣W−W†

∣∣ converges in probability to a constant
√
μW . Then the information

inside
∣∣W−W†

∣∣ vanishes asymptotically. In this case, we can approximate the
MDD(ε|W)2 in (3.7) as follows:

MDD (ε|W)2 ≈−√dWμW
{
E
[
εε†]+2E [ε]E

[
ε†]},

where the right-hand side becomes 0 provided E [ε] = 0 by noting the
independence between ε and ε†. Since it is possible to have E [ε] = 0 and
Pr (E [ε|W]= 0) < 1, this means MDD(ε|W)2 will lose power to test deviations
from E [ε|W]= 0 in such a situation. In other words, the large dimension dW of W
may have an adverse effect on the asymptotic power of a MDD-based test, which
is surely the curse of dimensionality problem.
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3.4. A Multiplier Bootstrap

The asymptotic distribution specified in Theorem 3.3, as an asymptotic distribu-
tional upper bound for ŜN under the null hypothesis, is nonstandard and unfamiliar.
Here, we propose a bootstrap procedure to obtain the bootstrap p-values despite
its conservative nature. To ensure the consistency of the bootstrap procedure, we
need to find appropriate ways: (i) to mimic the limiting law of the stochastic upper
bound infθ0∈�I∩�R

SN
(
θ0
)

for ŜN that is associated with a Gaussian chaos process
C(θ) = (C1 (θ), . . . ,CT−R (θ))′ on L∞ (�I) under the null, and (ii) to ensure the
bootstrap statistic is well behaved or divergent to infinity at a slower rate than ŜN

under the global alternative.
Let {vi}Ni=1 be an i.i.d. sequence that has mean zero and variance one and that is

independent of the sample {(Yi,Xi,Zi)}Ni=1 . Two popular choices of distributions for
{vi}Ni=1 are given by the standard normal distribution (N (0,1)) and the two-point
distribution:

vi =
⎧⎨⎩−

(√
5−1

)
/2 with prob.

(√
5+1

)
/
(

2
√

5
)
,(√

5+1
)
/2 with prob.

(√
5−1

)
/
(

2
√

5
)

.
(3.17)

Let m∗is (θ) ≡ ms (Yi,φs,g(Xi))vi. Motivated by the idea of multiplier bootstrap
that is widely used for statistical tests involved with empirical processes or
nondegenerate U-processes, we consider the following process:

S∗N (θ)≡
T−R∑
s=1

S∗Ns (θ), (3.18)

where

S∗Ns (θ)≡−
1

N

∑
1≤i�=j≤N

m∗is (θ)m∗js (θ)κij,s+ 2

N

∑
1≤i�=j≤N

m∗is (θ)κij,s
1

N

N∑
k=1

m∗ks (θ) .

(3.19)

Let P∗ and E
∗ denote, respectively, the probability law and expectation associated

with (Yi,Xi,Zi,vi) in the bootstrap world. We make two remarks on the construction
of S∗N (θ) . First, note that we perturb ms (Yi,φs,g(Xi)) through the multiplication by
the random variable vi that ensures E∗

[
m∗is (θ)

]= 0. This ensures that the dominant
random component in the process

{
S∗Ns (θ)

}
is given by a degenerate second-order

U -process that converges to a Gaussian chaos process. More importantly, we can
show that the limiting law of

{
S∗Ns (θ)

}
coincides with that of {SNs (θ)} on �I .

Second,
{
S∗Ns (θ)

}
is also well behaved for θ ∈ �\�I (i.e., it is not divergent on

�\�I), and if we were to define the bootstrap statistic as minθ∈�N∩�R S∗N (θ),

there is no way to ensure that the minimum is achieved at some value in �I ∩�R

asymptotically. In order to obtain the same limiting law for the bootstrap test
statistic as the stochastic upper bound infθ0∈�I∩�R

SN
(
θ0
)

under the null, we must
ensure that the minimum is achieved in the bootstrap world for some θ ∈�I ∩�R
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when the null hypothesis holds true. Fortunately, this can be achieved by adding
a suitable penalty term to the bootstrap minimization objective function, yielding
the following bootstrap test statistic:

Ŝ∗N = min
θ∈�N∩�R

[
S∗N (θ)+μN

SN (θ)

N

]
, (3.20)

where PN (θ) ≡ 1
N SN (θ) is a penalty term that ensures the minimum is achieved

asymptotically for θ ∈�I ∩�R under the null, and μN is a tuning parameter that
diverges to infinity at a suitable rate (see Assumption 3.5). As a result, Ŝ∗N shares
the same limiting distribution as infθ0∈�I∩�R

SN
(
θ0
)

under the null. This ensures
the first goal mentioned previously.

To ensure the good power properties of the bootstrap test, we require
that Ŝ∗N be well behaved under the alternative. When μN diverges to infin-

ity at a rate slower than N/ log(log(N)), we will show that μ−1
N Ŝ∗N

p−→
minθ∈�∩�R

∑T−R
s=1 E

[{
MDD

[
ms (Y,X,θ) |zs

]}2
]

under H1 : �I ∩�R = ∅. That

is, Ŝ∗N diverges to infinity at rate μN, which is slower than the rate N at which
ŜN diverges to infinity under the alternative. This implies that ŜN � Ŝ∗N with
probability approaching one (w.p.a.1) under the alternative, ensuring the second
aforementioned goal. As we show in the simulation study, setting μ = N1/4 or
N1/3 provides reasonably good size control and satisfactory power performance at
a moderate sample size (N = 500). This suggests that, in practice, one may want
to pick μN to be noticeably slower than N/ log (log(N)).

To proceed, we add the following assumption on {vi}Ni=1 and the tuning parameter
μN .

Assumption 3.5. (i) {vi}Ni=1 is i.i.d. with mean zero and variance one, and is
independent of {(Yi,Xi,Zi)}Ni=1.

(ii) As N →∞, μN →∞ and μN = o(N/ log(log(N))).

The following theorem states the asymptotic properties of Ŝ∗N when the null
hypothesis holds true or is violated.

Theorem 3.5 (Consistency of the multiplier bootstrap). Let Assumption 2.1, 2.2,
and 3.1–3.5 hold. If H0 : �I ∩�R �=∅ holds true, then

Ŝ∗N
L−→ inf

θ∈�I∩�R

T−R∑
s=1

[Bs (θ)+Cs (θ)] . (3.21)

And if H1 : �I ∩�R =∅ holds true, then

μ−1
N Ŝ∗N

p−→ min
θ∈�∩�R

T−R∑
s=1

MDD
[
ms (Y,X,θ) |zs

]2
. (3.22)
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Theorem 3.5 shows that, with a properly chosen sequence of {μN}, Ŝ∗N converges
weakly to the same asymptotic distribution as the stochastic upper bound of the
original test statistic ŜN does under the null hypothesis. This ensures the asymptotic
level of the multiplier-bootstrap-based test despite its conservative nature. Now,
we explain the intuition. Since S∗N (θ) is properly centered on the entire �, it can
be shown that S∗N (θ) �⇒∑T−R

s=1 [Bs (θ)+ Cs (θ)] on L∞ (�). With the help of
the weighted penalty term μN

SN (θ)

N in (3.20), which asymptotically ensures the
involved minimization to be focused on �I ∩�R, we have the result in (3.21).
It is helpful to note that a counterpart of the term cN in ŜN (shown in Theorem
3.3) does not appear in Ŝ∗N , for the following reasons: (i) Asymptotically, cN

accounts for the local deviations of SN (θ) from
∑T−R

s=1 [Bs (θ)+Cs (θ)] on L∞ (�I)

for θ /∈ �I ∩�R (but still within a shrinking neighborhood of �I ∩�R). (ii) The
deviations described in (i) occur due to the fact that SN (θ) is not properly centered
on �\�I . (iii) Unlike SN (θ), S∗N (θ) is properly centered on not only �I but also
�\�I , and there is no asymptotic deviation of S∗N (θ) from

∑T−R
s=1 [Bs (θ)+ Cs (θ)]

for θ /∈ �I ∩�R. Consequently, a counterpart of cN does not appear in Ŝ∗N . This
explains why, under the null, Ŝ∗N asymptotically mimics the distributional upper
bound, rather than the exact distribution, of ŜN .

Theorem 3.5 also shows that, under any fixed alternative, Ŝ∗N diverges to infinity
at rate-μN, which is slower than rate-N at which ŜN diverges to infinity.6 Therefore,
the proposed bootstrap procedure has asymptotic power one against any fixed
alternative.

An essential step in the proof of Theorem 3.5 is the study of the unconditional
central limit theorem (CLT) of S∗N (θ) by applying the results of Arcones and
Giné (1993), which is analogous to the unconditional multiplier CLT for empirical
processes studied in van der Vaart and Wellner (1996, pp. 177–181) and Kororok
(2008, pp. 181–183). It extends the unconditional multiplier CLT for degenerate
second-order U-statistics in Leucht and Neumann (2013) to degenerate second-
order U-processes. It is worth mentioning that bootstrap consistency is usually
validated by the weak convergence of conditional laws given the data. Specifically,
a bootstrap scheme can be considered consistent if an appropriate distance between
the conditional distribution of bootstrap replicate of a statistic SNT given the data
and the unconditional distribution of SNT is shown to converge to zero in proba-
bility. But as Bücher and Kojadinovic (2009) notice, the conditional distribution
may not be easy to establish and it is useful to consider an equivalent formula-
tion. In particular, they show that under minimal conditions, the aforementioned
convergence of the conditional laws is actually equivalent to the unconditional
weak convergence of SNT with two bootstrap replicates to independent copies of
the same limit. A close examination of the proof of Theorem 3.5 suggests that
Ŝ∗N is asymptotically independent of ŜN under the null and different Ŝ∗N’s based

6Recall that if H1 : �I ∩�R =∅ holds true, then minθ∈�∩�R

∑T−R
s=1

[
ms (Y,X,θ) |zs

]2
> 0, which has been established

in Theorem 3.4.
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on different independent sequences {vi}Ni=1 are also asymptotically independent
of each other. Lemma 4.2 in Bücher and Kojadinovic (2009) further ensures the
asymptotic validity to use the conditional quantiles of the empirical distribution of
a sample of bootstrap replicates based on the equivalent unconditional formulation.
This suggests that in practice, we can draw {vi}Ni=1 B times independently from
suitable distributions to construct B bootstrap test statistics {Ŝ∗(b)N }Bb=1. Then we can
calculate the bootstrap p-value for our test statistic ŜN as p∗ = 1

B

∑B
b=1 1{ŜN ≤ Ŝ∗(b)N }

with 1{·} being the usual indicator function, and reject the null hypothesis when
p∗ is smaller than the prescribed level of significance.

4. MONTE CARLO SIMULATIONS

In this section, we conduct Monte Carlo simulations to evaluate the finite sample
performance of our proposed inference method.

4.1. Design 1

We first consider testing for linearity. We test the null hypothesis

H0,L : �I ∩�RL �=∅, �RL ≡
{
θ ∈� : g(x)= a+bx for some (a,b) ∈ R

2
}

.
(4.1)

We adopt a series of DGPs, indexed by γ , with T = 3 and R= 2 as follows:

yit = xit+γ x2
it+λ′iFt+uit, (4.2)

xit = 0.25λ′iFt+0.8z∗it+0.8uit+ ε∗it, (4.3)

zit = z∗it, (4.4)

with⎛⎝z∗it
ε∗it
uit

⎞⎠∼ N

⎛⎝0,

⎡⎣1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.5

⎤⎦⎞⎠, F =
⎛⎝0.7 0.2
−1 0

0 −1

⎞⎠, and λi ∼ N

(
0,

[
0.5 0.0
0.0 0.5

])
,

where λi is independent of
(
z∗it,ε

∗
it,uit

)′
.

For a given γ , we label the above DGP as DGP(γ ). Under DGP(γ ), the null in
(4.1) is true or false, depending on the value of γ . The null is true under DGP(0),
and is false under DGP(γ ) at any given γ �= 0. And γ can be viewed as a measure
of how far the DGP is away from a linear specification. We conduct 500 bootstrap
evaluations to calculate the bootstrap p-values. The Monte Carlo study consists
of 500 replications. In Table 1, we report the simulated probabilities of rejecting
the null in (4.1) under a nominal size of 0.05 for DGP(γ ) with γ = 0, ±0.5, and
±1, and for N = 500 and 1,000. Note that rows with γ = 0 show size, while all
other rows show power. From Table 1, we have the following observations: (i) The
choice μN = 0 (i.e., no penalty in the bootstraps) leads to severe size distortions,
as expected from our theory, and is considered to illustrate the extreme case of
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Table 1. Size and power performance for Design 1, nominal size = 0.05.

N = 500 N = 1,000

γ μN 2-pt Norm 2-pt Norm

0 0 0.066 0.062 0.078 0.076

0 N1/4 0.042 0.040 0.052 0.048

0 N1/3 0.034 0.036 0.046 0.044

0 N1/2 0.024 0.028 0.034 0.036

0.5 N1/4 0.334 0.346 0.778 0.778

0.5 N1/3 0.308 0.312 0.762 0.760

0.5 N1/2 0.278 0.280 0.720 0.704

−0.5 N1/4 0.436 0.476 0.834 0.826

−0.5 N1/3 0.402 0.434 0.806 0.808

−0.5 N1/2 0.366 0.406 0.784 0.790

1.0 N1/4 0.570 0.582 0.962 0.966

1.0 N1/3 0.518 0.506 0.938 0.940

1.0 N1/2 0.468 0.468 0.914 0.908

−1.0 N1/4 0.604 0.612 0.968 0.966

−1.0 N1/3 0.592 0.598 0.946 0.948

−1.0 N1/2 0.552 0.562 0.898 0.908

Note: Rows with γ = 0 show size and all other rows show power; “2-pt” and “Norm” refer to
two-point and standard normal distributions, respectively.

selecting too small a penalty weight. (ii) The size is not sensitive to the choice of
disturbance distribution. (iii) The size is somewhat sensitive to the choice of μN .
Overall, choices of μN =N1/4 and N1/3 provide good size control under the current
design. (iv) The rejection probabilities increase noticeably as γ deviates away from
zero for all choices of μN , and as the sample size increases. This indicates good
power performance.

4.2. Design 2

Previously in Design 1, we allow the IFEs to correlate with the covariates xit. Here,
we modify Design 1 to allow the IFEs to correlate with the instruments zit as well,
to which case our proposed method is applicable. Specifically, instead of (4.4),
we now generate zit = z∗it + 0.25λ′iFt, while keeping everything else unchanged
from the previous design. We still consider the null hypothesis specified in (4.1).
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Table 2. Size and power performance for Design 2, nominal size = 0.05

N = 500 N = 1,000

γ μN 2-pt Norm 2-pt Norm

0 0 0.070 0.066 0.086 0.090

0 N1/4 0.042 0.042 0.050 0.054

0 N1/3 0.038 0.036 0.046 0.048

0 N1/2 0.026 0.024 0.038 0.036

0.5 N1/4 0.406 0.390 0.756 0.768

0.5 N1/3 0.368 0.354 0.738 0.752

0.5 N1/2 0.304 0.302 0.708 0.716

−0.5 N1/4 0.494 0.498 0.794 0.806

−0.5 N1/3 0.470 0.468 0.770 0.784

−0.5 N1/2 0.412 0.406 0.738 0.752

1.0 N1/4 0.616 0.602 0.948 0.960

1.0 N1/3 0.592 0.570 0.908 0.922

1.0 N1/2 0.528 0.516 0.886 0.902

−1.0 N1/4 0.628 0.620 0.956 0.958

−1.0 N1/3 0.606 0.604 0.938 0.944

−1.0 N1/2 0.564 0.566 0.902 0.896

Note: Rows with γ = 0 show size and all other rows show power; “2-pt” and “Norm” refer to
two-point and standard normal distributions, respectively.

As in Design 1, we conduct 500 bootstrap evaluations to calculate the bootstrap
p-values. The Monte Carlo study consists of 500 replications. In Table 2, we
report the simulated probabilities of rejecting the null in (4.1) under a nominal
size of 0.05, with γ = 0, ±0.5, and ±1, and for N = 500 and 1,000 to show finite
sample size (γ = 0) and power (γ �= 0) performance. From these results, we obtain
observations very similar to those from Table 1.

4.3. Design 3

Now, we consider testing for a quadratic specification. We test the null hypothesis

H0,Q : �I ∩�RL �=∅, �RQ ≡
{
θ ∈� : g(x)= a+bx+ cx2 for some (a,b,c) ∈ R

3
}

.

(4.5)
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Table 3. Size and power performance for Design 3, nominal size = 0.05

N = 500 N = 1,000

γ μN 2-pt Norm 2-pt Norm

0 0 0.054 0.048 0.060 0.058

0 N1/4 0.034 0.032 0.046 0.048

0 N1/3 0.028 0.028 0.042 0.042

0 N1/2 0.020 0.018 0.034 0.032

1 N1/4 0.276 0.286 0.656 0.658

1 N1/3 0.246 0.252 0.630 0.632

1 N1/2 0.188 0.206 0.596 0.590

−1 N1/4 0.352 0.356 0.734 0.736

−1 N1/3 0.324 0.326 0.712 0.718

−1 N1/2 0.278 0.284 0.694 0.698

2 N1/4 0.494 0.502 0.902 0.904

2 N1/3 0.456 0.460 0.876 0.880

2 N1/2 0.420 0.426 0.846 0.854

−2 N1/4 0.526 0.534 0.922 0.926

−2 N1/3 0.508 0.512 0.896 0.904

−2 N1/2 0.478 0.482 0.864 0.876

Note: Rows with γ = 0 show size and all other rows show power; “2-pt” and “Norm” refer to
two-point and standard normal distributions, respectively.

The DGPs we adopt here are modified from those in Design 2. Specifically, we
replace (4.2) by

yit = xit+ x2
it+γ h(xit)+λ′iFt+uit,

where h(x) = exp
(−2x2

)
/
√

0.02π , while keeping everything else unchanged
from Design 2. (Consequently, the IFEs are correlated with both xit and zit, like
in Design 2.) In Table 3, we report the simulated probabilities of rejecting the null
in (4.5) under a nominal size of 0.05, for γ = 0, ±1, and ±2. From Table 3, we
have the following observations: (i) A sample size of 500 seems to be somewhat too
small for this design, as indicated by the simulated sizes being noticeably below the
targeted size of 0.05 at N = 500. (ii) As we increase the sample size to N = 1,000,
the simulated sizes become reasonably close to 0.05 with μN = N1/4 and N1/3.
(iii) The rejection probabilities increase noticeably as γ deviates away from zero,
for all choices of μN and both N = 500 and 1,000. This indicates good power
performance. (iv) Similar to what we observe in the previous designs, μN = N1/2
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seems to be a bit too large for the penalty weight, which leads to severe undersizing
even at N = 1,000 for the current design. Nevertheless, μN = N1/2 still provides
good power performance.

5. EMPIRICAL APPLICATION

In this section, we apply our method to study Engel curves for major nondurable
expenditures in China, using data from the CFPS for the period 2010 to 2014. The
CFPS is similar to the U.K. Family Expenditure Survey (UKFES), but is conducted
every other year. Specifically, the CFPS data are collected in 2010, 2012, and
2014, which produces a three-period (T = 3) balanced panel data set of 6,627
households.

According to the panel data from CFPS and its consumption categorization,
on average, food (including dining) expenditures take the largest share of total
nondurable expenditures (averaging at 41.54%), which is followed by medical
and health care expenditures (averaging at 12.01%), expenditures on commuting
and communication (averaging at 9.99%), and grocery expenditures (averaging at
9.63%). We study the Engel curves for these four major categories of consumption.

For household i at period t, let yf,it, ym,it, yc,it, yg,it be the share of its total
nondurable expenditures spent on food including dining (FD), medical and health
care (MH), commuting and communication (CC), grocery (GY), respectively. Let
xit be the log of total annual nondurable expenditures, and let zit be total household
annual income. The Engel curves are assumed to take the following additive form:

yj,it = gj (xit)+λ′j,iFj,t+uj,it, (5.1)

for t ∈ {1,2,3} and j ∈ {f,m,c,g}. Fj,t, λj,i, and uj,it are unobservable terms, repre-
senting the vector of factors, the vector of factor loadings, and other heterogeneity,
respectively. Some observations are dropped because they have key variables out
of reasonable range.7 For studying Engel curves for FD and MH, we also condition
on households who exhibited positive consumption of both categories. These
restrictions yield a three-period panel of 3,811 cross-sectional observations for
FD and MH (consisting of 1,787 urban households and 2,024 rural households).
Similarly, for studying Engel curves for CC and GY, we condition on households
who exhibited positive consumption of both categories, which yields a three-period
panel of 4,584 cross-sectional observations for CC and GY (consisting of 2,287
urban households and 2,297 rural households).

We set the support for xit as X = [7,14], which includes all observations for
all four categories of consumption. Since X is compact, we set ζ0 = 0 (i.e., no
tail control needed). For nonparametric inferences, we employ B-spline of order
3 on [7,14], with 2 interior knots which are the 33.3th percentile and the 66.7th

7We drop observations with extremely low total annual expenditures (≤2,188 CNY, which corresponds to the
0.01 quantile of total expenditures distribution) or extremely low total household annual income (≤3,000 CNY,
which equals the poverty line per capita set by the State Council Leading Group Office of Poverty Alleviation and
Development of China in 2015)
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percentile of the corresponding xit sample. Finally, we conduct hypothesis tests
with μN = N1/4 and μN = N1/3 for constructing the corresponding bootstrap
statistics as suggested by our Monte Carlo simulations.

5.1. Testing for Log-Linearity

Since the seminal work of Deaton and Muellbauer (1980), a log-linear specifica-
tion (i.e., linear in the log of total nondurable expenditures) has been commonly
adopted to parameterize Engel curves in the literature. The use of log-linear
Engel curves to estimate and correct bias in directly measured macroeconomic
indicators is very prevalent in empirical studies. For instance, a popular way to
construct an alternative measure of household income or expenditure relies on
the log-linear Engel curves as a key assumption to infer incomes or expenditures
(see Pissarides and Weber, 1989; Browning and Crossly, 2009; Aguiar and Bils,
2015; Hurst, Li, and Pugsley (2014), among others). Besides, there are papers
focusing on estimating CPI bias based on the log-linear form of Engel curves
(see Hamilton, 2001; Nakamura, Steinsson, and Liu, 2016, among others). On the
other hand, there are also papers advocating advantages of building nonparametric
Engel curves over the parametric ones for studies of demand (see, e.g., Blundell,
Browning, and Crawford, 2003; Blundell, Chen, and Kristensen, 2007).

In our empirical study, we first examine whether the log-linear relationship
could adequately describe the Engel curves for major nondurable expenditures in
China. Under a potential lack of point-identification, the linear specification can
be tested through the hypothesis specified in (4.1) that we previously studied in
our Monte Carlo simulations, that is,

H0 : �I ∩�RL �=∅, �RL ≡
{
θ ∈� : g(x)= a+bx for some (a,b) ∈ R

2
}

.
(5.2)

To account for potential differences in consumption pattern/habit between urban
and rural households, we conduct tests of the above hypotheses using the whole
sample, the urban subsample, and the rural subsample, respectively. To take into
account the issue of multiple hypotheses testing, we also consider the method
of Benjamini and Hochberg (1995, BH hereafter) to control the false discovery
rate (FDR). Suppose that we consider testing m hypotheses, and we order the
individual p-values from the smallest to the largest as p(1) ≤ p(2) ≤ ·· · ≤ p(m) with
their corresponding null hypotheses labeled accordingly as H0(1),H0(2), . . . ,H0(n).
The BH-adjusted p -values for testing H0(k) is then given by min(p(k)

m
k ,1).

In Table 4, we report the usual bootstrap p-values of corresponding test statistics,
based on 1,000 bootstrap repetitions, for each of the four consumption categories
(FD, MH, CC, and GY), and for specifying the number of factors as R = 1 or 2.
Each of these p-values is computed based on a separate test of (5.2) regarding a
specific Engel curve (of FD, MH, CC, or GY) under a specific (sub)sample (i.e.,
all, urban, or rural). To control the FDR, we also report the BH-adjusted p-values
by taking into account the multiple testing issue for testing the four consumption

https://doi.org/10.1017/S0266466623000403 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000403


INFERENCE IN PARTIALLY IDENTIFIED PANEL DATA MODELS 27

Table 4. Bootstrap p-values for testing the log-linear null for the Engel
curves.

No. of factors R= 1 No. of factors R= 2

Cat. μN All Urban Rural All Urban Rural

p BH-p p BH-p p BH-p p BH-p p BH-p p BH-p

FD N1/4 0.002 0.003 0.001 0.004 0.887 0.887 0.530 0.707 0.456 0.912 0.930 0.930

MH N1/4 0.009 0.009 0.639 0.639 0.158 0.211 0.261 0.522 0.741 0.988 0.255 0.510

CC N1/4 0.000 0.000 0.003 0.006 0.000 0.000 0.065 0.260 0.421 1 0.185 0.740

GY N1/4 0.000 0.000 0.016 0.021 0.009 0.018 0.784 0.784 0.855 0.855 0.810 1

FD N1/3 0.005 0.007 0.001 0.004 0.890 0.890 0.635 0.847 0.490 0.980 0.960 0.960

MH N1/3 0.010 0.010 0.741 0.741 0.163 0.217 0.273 0.546 0.796 1 0.400 0.800

CC N1/3 0.000 0.000 0.006 0.012 0.002 0.008 0.077 0.308 0.465 1 0.230 0.920

GY N1/3 0.002 0.004 0.028 0.037 0.012 0.024 0.808 0.808 0.872 0.872 0.790 1

Note: FD, MH, CC, and GY abbreviate food, medical and heath care, commuting and communi-
cation, and grocery, respectively. p and BH-p denote the usual p-value and BH-adjusted p-value,
respectively.

categories. According to Table 4, when setting R= 1 and applying the conventional
5% significance level, we obtain the following testing results: (i) For FD, our tests
reject the null except for the rural subsample. (ii) For MH, interestingly, our tests
fail to reject the null when conditioning on either urban or rural households, yet
are able to reject the null for the whole sample (i.e., without conditioning on urban
or rural households). (iii) For both CC and GY, our tests reject the null regardless
of whether we condition on urban households, rural households, or not. (iv) When
the multiple testing issue is accounted for, the findings in (i)–(iii) are also true.
We obtain the same testing results regardless of whether μN = N1/4 or N1/3, and
the p-values seem to be insensitive to these two choices of μN . In short, these
results suggest nonlinearity for some Engel curves and noticeable difference in
consumption pattern/habit on FD and MH between urban and rural households.

Also according to Table 4, when setting R= 2, however, we fail to reject the null
of log-linear specification for the Engel curves for all cases under our investigation,
regardless of whether one controls the FDR or not. A possible explanation is that
the IFE terms encompass unobserved heterogeneity of more flexible forms under
R = 2 than that under R = 1; and consequently, under R = 2, the log-linear rela-
tionship might suffice to adequately describe the Engel curves, with heterogeneity
being more flexibly taken care of by the IFEs. As noted by Santos (2012), failing
to reject the null that there are log-linear Engel curves in the identified set does
not necessarily justify adopting such a parametric specification. If the model is
partially identified, then even when log-linear specifications are indeed in �I , there
is no guarantee that the true model is one of them. Therefore, confidence intervals
constructed under the log-linear assumption may asymptotically exclude the true
parameter of interest.
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5.2. Confidence Interval for g(x̄)

Next, we examine the robustness of our testing results regarding the log-linear
specification by comparing 95% confidence intervals for food Engel curves at the
sample average (across both N and T) x̄ with and without assuming log-linearity
and by setting R= 1 or 2 and μN = N1/3. Define

�Rγ ≡ {θ ∈� : g(x̄)= γ } . (5.3)

We obtain the confidence intervals for g(x̄) under the log-linear specification by
inverting tests of a series of null hypotheses, indexed by γ , defined as follows:

H0,γ : �I ∩
(
�RL ∩�Rγ

) �=∅, (5.4)

where �RL is defined in (5.2). We also obtain the nonparametric confidence
intervals g(x̄) by inverting tests of the following null hypotheses:

H0,γ : �I ∩�Rγ �=∅, (5.5)

where �Rγ is defined by (5.3). For a given γ ∈ [0,1], test of either (5.4) or
(5.5) is conducted with 200 bootstrap repetitions.8 To test for the nonparametric
null hypothesis in (5.5), we need to set Cg. We find our results insensitive to its
value as long as it is not too small. Here, we report the results under Cg = 15.
For comparison purpose, we also construct confidence intervals using the method
developed by Santos (2012), as well as standard IV confidence intervals. To make
Santos’ (2012) method applicable here, we pool the panel into a large cross-section
data set, ignoring any potential fixed effects (which effectively turns into a situation
with T = 1 and R= 0). Standard IV confidence intervals are constructed based on
the pooled data set, too. To make a direct comparison between our method and
Santos’ (2012), we also construct confidence intervals based on the pooled data
set using our method. All these confidence intervals are reported in Table 5. Here,
we mainly focus on results from the urban subsample for a detailed discussion.
According to Table 5, for food consumption by urban households, while the log-
linear confidence interval based on Santos (2012) is somewhat larger than the
standard IV one, we end up with an empty set constructing log-linear confidence
interval based on the pooled data set using our method. Moreover, based on
the original panel data set, when setting R < 2, we obtain empty confidence
intervals even under the nonparametric specification. Conducting further tests (to
be discussed in the next subsection) on specifications using our method confirms
our finding of these empty sets: for food consumption by urban households,
based on the pooled data set, our test rejects the null of a log-linear specification;
based on the original panel data set, our test rejects both the null of a log-linear
specification and that of a nonparametric specification when setting R < 2.9 In the

8Note that the construction of each confidence interval requires constructing a series of tests over a grid of γ ∈ [0,1],
which can be computationally heavy, especially under the nonparametric specification. So we pick a relative moderate
number of bootstrap repetitions here to avoid overly high computational cost.
9When R= 0, one can continue to implement our testing procedure in the absence of the nuisance parameter φ.
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Table 5. 95% confidence intervals of g(x̄) for the food Engel curves.

All Urban Rural

R= 2, nonparametric [0.000,1.000] [0.000,1.000] [0.000,1.000]

R= 2, log-linear [0.000,1.000] [0.110,0.890] [0.000,1.000]

R= 1, nonparametric Empty Empty [0.308,0.633]

R= 1, log-linear Empty Empty [0.390,0.585]

R= 0, nonparametric Empty Empty Empty

R= 0, log-linear Empty Empty Empty

Pooled, nonparametric [0.325,0.530] [0.387,0.550] [0.258,0.511]

Pooled, log-linear [0.406,0.412] Empty [0.400,0.410]

Pooled, nonpara., Santos [0.119,0.810] [0.252,0.712] [0.000,0.791]

Pooled, log-linear, Santos [0.378,0.440] [0.366,0.533] [0.377,0423]

Pooled, standard IV [0.411,0.418] [0.419,0.429] [0.401,0.411]

Note: Given R, a log-linear CI for g(x̄) is empty if the null H0,γ : �I ∩�RL �= ∅ is rejected at 5% level.
Similarly, a nonparametric CI for g(x̄) is empty if the null H0,γ : �I ∩�R �= ∅ is rejected at 5% level.

next subsection, we focus on the joint specification of functional forms and the
number of factors.

Interestingly, several confidence intervals are given by [0,1] in Table 5 under
R= 2. This suggests that the inference does not provide any informative/powerful
results regarding g(x̄) when we allow for both a very flexible heterogeneity spec-
ification (R= 2) and a lack of point-identification. Overall, Table 5, in particular,
its first six rows, can be interpreted as results from a sensitivity analysis which
demonstrates how the degree of informativeness/powerfulness of our inference
procedure varies in response to changes in the strength of the model assumptions.
These results pretty much reflect the law of decreasing credibility as coined by
Manski (2003). Stronger assumptions yield inferences that may be more powerful
but less credible, which is a dilemma faced by empirical researchers as they
decide what assumption to maintain. Here, we also take Manski’s (2003) view that
statistical theory cannot resolve the dilemma but can clarify its nature. That being
said, Table 5 suggests our inference procedure still provides informative results
under the already quite general setting of R = 1, nonparametric g(·) and partial
identification.

5.3. Further Investigation on Heterogeneity and Specification

We further investigate the specification of the functional form of g(·) and the
number of factors (R), again focusing on food consumption. Ignoring the index
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j for different expenditure categories, we can rewrite the Engel curves in (5.1) as

yit = git (xit)+uit, (5.6)

git (xit)= g(xit)+λ′iFt, (5.7)

where t = 1,2,3, the subscripts on git (·) capture potential heterogeneity cross
individual and time, while (5.7) assumes the heterogeneity to take a special form
of a common part g(·) augmented with an additive IFE term. A specification under
the (5.6) and (5.7) framework is characterized by the combination of two specifica-
tions: (i) the functional form specification on g(·), and (ii) the specification on the
number of factors R. The less restrictive a functional form specification on g(·), the
more flexible/general the model is w.r.t. the common part relationship. The larger
the number of factors, the more flexible/general the model is w.r.t. unobserved
heterogeneity. It is easy to see that, within the (5.6) and (5.7) framework, the model
achieves its maximum flexibility/generality when g(·) is treated nonparametrically
and R is set to 2.10 We use our method to test the specification of a variety of these
combinations, based on 500 bootstrap replications.11

Both the usual p-values and BH-adjusted p-values obtained from these tests are
reported in Table 6. For the BH-adjusted p-values, we consider six hypotheses for
the proposed method, two hypotheses for the standard IV method for the pooled
data, and two hypotheses for the Santos’ (2012) method for the pooled data. As
suggested by Table 6, even with a nonparametric specification on g(·), the model
does not suffice to adequately describe the Engel curve for food consumption
among urban households in China when setting R < 2, no matter whether one
controls the FDR or not.12 Interestingly, in comparison, our test fails to reject a log-
linear specification on Engel curves among rural households when setting R= 1.
(Note that our test still rejects a nonparametric specification for the rural population
when setting R= 0.) In contrast, Banks, Blundell, and Lewbel (1997) pool a panel
data set into a cross-sectional one and their study suggests that a log-quadratic
specification suffices to adequately describe most Engel curves. Admittedly, such
a comparison is only indirect because Banks, Blundell, and Lewbel (1997) use
a different data set, one obtained from the UKFES, for their study. Our findings
suggest: (i) There is a greater degree of heterogeneity in food consumption patterns
among urban households in China. (ii) There is a lesser degree of heterogeneity
in food consumption patterns among rural households, compared with that among
urban households in China. (iii) Even a nonparametric specification on g(·), as

10Recall that the maximum number of factors allowed is T−1 for our method to work.
11In other words, here, we view these tests as jointly testing for the specification on R and the specification on the
functional form of g(·). While for obtaining CI for g(x̄), we take a narrow view and interpret corresponding tests as
only testing for the specification on the functional form of g(·), assuming any given specification on R to be true.
12As mentioned earlier in this section, we employ a specific B-spline (i.e., of order 3 on [7,14] with two interior
knots) to approximate g(·) for corresponding tests where g(·) is supposed to be treated nonparametrically. This
practice shares the same spirit with many existing nonparametric testing procedures. In an utterly strict sense, what is
really tested here is where the specific cubic B-spline with two interior knots is adequate to describe the Engel curve
for the given finite sample.
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Table 6. p-Values for testing joint specification on g (·) and R

All Urban Rural

p BH-p p BH-p p BH-p

R= 2, nonparametric 0.756 0.756 0.956 0.956 0.982 0.982

R= 2, log-linear 0.636 0.763 0.494 0.593 0.958 1

R= 1, nonparametric 0.020 0.030 0.006 0.012 0.620 1

R= 1, log-linear 0.004 0.008 0.002 0.004 0.886 1

R= 0, nonparametric 0.000 0.000 0.000 0.000 0.000 0.000

R= 0, log-linear 0.000 0.000 0.000 0.000 0.000 0.000

Pooled, nonparametric 0.874 0.874 0.988 0.988 0.902 0.902

Pooled, log-linear 0.286 0.572 0.004 0.008 0.384 0.768

Pooled, nonpara., Santos 0.756 0.756 0.930 0.930 0.220 0.220

Pooled, log-linear, Santos 0.068 0.136 0.834 1 0.192 0.384

Note: p and BH-p denote the usual p-value and BH-adjusted p-value, respectively.

general as it is, might still be insufficient to compensate for an inadequate handling
of heterogeneity to make the whole model a correctly specified one, in the case of
which a larger R for the additive IFEs, or even nonseparable heterogeneity (in the
form of one-way/two-way/interactive effects), may be required to make the model
correctly specified. (iv) When a panel data set is available, using methods that
fully extract information from the panel structure, such as ours, could potentially
provide more informative results than those obtained based on cross-sectional data
sets, or based on panel data sets but treated as pooled cross-sectional ones.

6. CONCLUSION

In this paper, we propose a statistical inference procedure for partially identified
nonparametric panel data models with endogeneity and IFEs. Even though the
original identified set is specified through a set of conditional moment restrictions
under the weak exogeneity assumption, we are able to translate it into an equivalent
set of unconditional moment restrictions by using the novel MDD measure for the
distance between a conditional mean object and zero. We construct the test statistic
based on such a measure which is associated with a second-order U-process in the
limit that is degenerate under the null and nondegenerate under the alternative.
We establish a tight asymptotic distributional upper bound for the resultant test
statistic under the null and show that it is divergent at rate-N under the global
alternative. To obtain the critical values for our test, we also propose a version
of multiplier bootstrap and establish its asymptotic validity. Simulations show that
our test behaves well in finite samples. We apply our method to study Engel curves
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for several major nondurable expenditures in China by using a panel dataset from
CFPS.

The paper can be extended in various directions. First, our panel data model
is of a nonparametric nature in the presence of IFEs and we have a single
nonparametric object of interest. It is also interesting to consider more general
nonparametric panel data models with more than one nonparametric project (e.g.,
additive models) or semiparametric panel data models with both nonparametric
and parametric components that are of interest. Second, it remains unclear how
to determine the number of factors in our framework. Difficulty arises because
one cannot apply existing methods (e.g., Bai and Ng, 2002; Onatski, 2010; Ahn
and Horenstein, 2013; Jin, Miao, and Su, 2021) that are developed under the
large N and large T setup to our framework with large N and fixed T . Further
complication is due to the partial identification nature of nonparametric panels.
Third, it is possible to extend the current theoretical framework to conditional
moment inequality models through the introduction of some slackness parameter.
This will greatly broaden the scope of the current paper. We leave the extensions
for future research.

APPENDIX

The appendix contains the proofs of the main results in the paper. In proving these results,
we make use of several lemmas whose proofs can be found in the Supplementary Material.

A. PROOFS OF THE MAIN RESULTS

Let MDD(ε|W) =
[
MDD(ε|W)2

]1/2
. To prove the main results, we make use of the

following lemmas.

Lemma A.1. Let Z be a real random vector s.t. E |Z|<∞. For any real-valued random
variables W1 and W2, if MDD(W1|Z)2= 0 a.s., then MDD(W2−W1|Z)2=MDD(W2|Z)2

and E[(W2−W1)(W
†
2 −W†

1 ) ×
∣∣∣Z−Z†

∣∣∣] = E

[
W2W†

2

∣∣∣Z−Z†
∣∣∣], where W†

1,W
†
2, and Z†

are independent copies of W1, W2, and Z, respectively.

Lemma A.2. Let Z be a real random vector s.t. E |Z|<∞. Let W be a set of real-valued

random variables with uniformly bounded second moment, that is, sup
W∈W

E

(
W2

)
< ∞.

Then there exists a finite constant b, s.t. for any W1,W2 ∈W , it holds that

∣∣∣MDD(W1|Z)2−MDD(W2|Z)2
∣∣∣≤ bMDD(W1−W2|Z)≤ 2b [MDD (W1|Z)+MDD(W2|Z)] .

Lemma A.3. The parameter space � is compact under the norm ‖·‖c as defined by

(2.9). Consequently, there exists a constant Bc <∞ s.t. for all g ∈ G, supx∈X
∣∣∣Dλg(x)

∣∣∣ ≤
Bc for any vector of nonnegative integers λ with 〈λ〉 ≤ d

2 . In particular, for all g ∈ G,
supx∈X |g(x)| ≤ Bc.
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Lemma A.4. Let Assumptions 2.1 and 3.1(i) hold. Define Q(θ) ≡∑T−R
s=1 MDD[ms(Y,

X,θ)|zs]2. Then Q(·) is Lipschitz continuous w.r.t. ‖·‖L2 in �.

Lemma A.5. Consider a generic econometric model Q(θ)= 0, the identified set of which
is characterized by �I ≡ {θ ∈� : Q(θ)= 0} . Suppose the following conditions hold: (i)
Q(·) ≥ 0 and � is compact under (pseudo-)metric d(·,·); (ii) �N ⊆� are closed and s.t.

∃ �Nθ for each θ ∈ � s.t. d(�Nθ,θ) = o(1) and σN ≡ supθ0∈�I
d
(
�Nθ0,θ0

)
= o(1);

(iii) sup
θ∈�N

|QN (θ)−Q(θ)| = Op (bN) for some bN = o(1); (iv) ∃ positive constants a1

and a2 s.t. a1d(θ,�I)
2 ≤ Q(θ)≤ a2d(θ,�I)

2. Then for θ̂N ∈ argmin
θ∈�N

QN (θ), it holds that

d(θ̂N,�I)= Op

(
max{σN,b1/2

N }
)

.

Lemma A.6. (i) Let Assumptions 2.1, 2.2, 3.1–3.3(i) hold. For any θ̂N ∈ argmin
θ∈�N∩�R

SN (θ),

it holds that d‖·‖L2

(
θ̂N,�I ∩�R

)
= op (1). (ii) If, in addition, Assumptions 3.3(ii) and 3.4

hold, then it holds that d‖·‖L2

(
θ̂N,�I ∩�R

)
= Op

(
�Ndw

(
θ̂N,�I ∩�R

)
+ δs,N

)
.

Proof of Lemma 2.1. Recall from (2.10) that �I = {θ = (
φ′,g

)′ ∈ � × G :
E
[
ms (Yi,φs,g(Xi)) |zis

]= 0 a.s. for s= 1, . . . ,T−R}. Let

�̃I ≡
⎧⎨⎩θ = (φ′,g)′ ∈� :

For some R-dimensional random vector λi, it holds
E
[
yit−g(xit)−λ′iφt|zit

]= 0 a.s. for t = 1, . . . ,T−R
E
[
yit−g(xit)−λ′i

(−ιt−(T−R)

) |zit
]= 0 a.s. for t = T−R+1, . . . ,T

⎫⎬⎭,

(A.1)

where ιr is the rth column of the R×R identity matrix. We need to show that �I = �̃I .
For any given θ̃ = (φ̃′,g̃)′ ∈ �̃I , it holds that⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E

[
yi1− g̃(xi1)−λ′iφ̃1 |zi1

]
...

E

[
yi,T−R− g̃(xi,T−R)−λ′iφ̃T−R |zi,T−R

]
E

[
yi,T−R+1− g̃(xi,T−R+1)−λ′i (−ι1) |zi,T−R+1

]
...

E
[
yiT − g̃(xiT )−λ′i (−ιR) |ziT

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 a.s. (A.2)

By (2.6), multiplying both sides of (A.2) by the (T−R)×T matrix H(φ̃)′ ≡ (IT−R, �̃)yields⎛⎜⎜⎜⎝
E

[
m1

(
Yi,φ̃1,g̃(Xi)

)
|zi1

]
...

E

[
mT−R

(
Yi,φ̃T−R,g̃(Xi)

)
|zi,T−R

]
⎞⎟⎟⎟⎠= 0 a.s.,

which clearly implies that θ̃ ∈�I . Since this holds for any θ̃ ∈ �̃I , it holds that �̃I ⊆�I .
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Next, for any given θ0 =
(
φ0′,g0

)′ ∈�I , it holds that⎛⎜⎜⎜⎝
E

[
m1

(
Yi,φ

0
1,g

0(Xi)
)
|zi1

]
...

E

[
mT−R

(
Yi,φ

0
T−R,g

0(Xi)
)
|zi,T−R

]
⎞⎟⎟⎟⎠= 0 a.s.,

or, equivalently,⎛⎜⎜⎜⎝
E

{
yi1−g0 (xi1)+

∑R
r=1 φ

0
1r

[
yi,T−R+r−g0 (xi,T−R+r

)] |zi1

}
...

E

{
yi,T−R−g0 (xi,T−R

)+∑R
r=1 φ

0
T−R,r

[
yi,T−R+r−g0 (xi,T−R+r

)] |zi1

}
⎞⎟⎟⎟⎠= 0 a.s.

(A.3)

Let λ0
i ≡ (yi,T−R+1−g0 (xi,T−R+1

)
, . . . ,yi,T −g0 (xi,T

)
)′. Then by (A.3) and the fact that

λ0′
i (−ιr)= yi,T−R+r−g0 (xi,T−R+r

)
, it holds that⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E

[
yi1−g0(xi1)−λ0′

i φ0
1 |zi1

]
...

E

[
yi,T−R−g0(xi,T−R)−λ0′

i φ0
T−R |zi,T−R

]
E

[
yi,T−R+1−g0(xi,T−R+1)−λ0′

i (−ι1) |zi,T−R+1

]
...

E

[
yiT −g0(xiT )−λ0′

i (−ιR) |ziT

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 a.s., (A.4)

which clearly implies that θ0 ∈ �̃I . Since it holds for any θ0 ∈�I , it holds that �I ⊆ �̃I .
This completes the proof of the lemma. �

Proof of Lemma 3.1. Note that for any real-valued random variable W and real vector-
valued random variable Z,

MDD(W|Z)2 =MDDo (W|Z)2+ [E(W)]2
E

∣∣∣Z−Z†
∣∣∣,

which follows directly from the definitions of MDDo and MDD. By Definition 3.1, we have
that for any θ1 =

(
φ′1,g1

)′ ∈� and θ2 =
(
φ′2,g2

)′ ∈�,

dw (θ1,θ2)
2 =

T−R∑
s=1

MDD
[
ms (Y,X,θ1)−ms (Y,X,θ2) |zs

]2
=

T−R∑
s=1

MDDo
[
ms (Y,X,θ1)−ms (Y,X,θ2) |zs

]2
+

T−R∑
s=1

{E [ms (Y,X,θ1)−ms (Y,X,θ2)]}2E
∣∣∣zs− z†

s

∣∣∣ . (A.5)
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The rest of the proof is organized into three parts. In Part I, we show the existence of a
constant c1 <∞ s.t.

T−R∑
s=1

MDDo
[
ms (Y,X,θ1)−ms (Y,X,θ2) |zs

]2 ≤ c1 ‖θ1− θ2‖2
L2 .

In Part II, we show the existence of a constant c2 <∞ s.t.

T−R∑
s=1

{E [ms (Y,X,θ1)−ms (Y,X,θ2)]}2E
∣∣∣zs− z†

s

∣∣∣≤ c2 ‖θ1− θ2‖2
L2

which, together with the results from Part I, complete the proof Lemma 3.1(i). And in Part
III, we prove Lemma 3.1(ii).

Part I. The compactness of � according to Assumption 2.1(i) implies that B� ≡
supφ∈� |φ| <∞. By Lemma A.3, for all g ∈ G, it holds that supx∈X |g(x)| ≤ Bc < ∞.

Note that ms (Y,X,θ) = [ys−g(xs)]+∑R
r=1 φs,r

[
yT−R+r−g

(
xT−R+r

)]
. Then for any

θ1 =
(
φ′1,g1

)′ ∈� and θ2 =
(
φ′2,g2

)′ ∈�, we have

ms (Y,X,θ1)−ms (Y,X,θ2)=− [g1 (xs)−g2 (xs)]+
R∑

r=1

(φ1,s,r−φ2,s,r)[yT−R+r−g1
(
xT−R+r

)
]

−
R∑

r=1

φ2,s,r
[
g1

(
xT−R+r

)−g2
(
xT−R+r

)]
. (A.6)

Then by the triangle inequality, we have

|ms (Y,X,θ1)−ms (Y,X,θ2)|

≤ |g1 (xs)−g2 (xs)|+
R∑

r=1

∣∣φ1,s,r−φ2,s,r
∣∣ |yT−R+r−g1 (xT−R+r)|+

R∑
r=1

∣∣φ2,s,r
∣∣ |g1 (xT−R+r)−g2 (xT−R+r)|

≤ |g1 (xs)−g2 (xs)|+ (|Y|+Bc)

R∑
r=1

∣∣φ1,s,r−φ2,s,r
∣∣+B�

R∑
r=1

|g1 (xT−R+r)−g2 (xT−R+r)|

≤ |g1 (xs)−g2 (xs)|+ (|Y|+Bc)R |φ1−φ2|+B�

R∑
r=1

|g1 (xT−R+r)−g2 (xT−R+r)| .

It follows that for s= 1, . . . ,T−R,

[ms (Y,X,θ1)−ms (Y,X,θ2)]
2

≤ 3

⎧⎨⎩[g1 (xs)−g2 (xs)]
2+ (|Y|+Bc)

2R2 |φ1−φ2|2+ RB2
�

R∑
r=1

[
g1

(
xT−R+r

)−g2
(
xT−R+r

)]2⎫⎬⎭
≤ B1m

⎧⎨⎩[g1 (xs)−g2 (xs)]
2+

R∑
r=1

[
g1

(
xT−R+r

)−g2
(
xT−R+r

)]2⎫⎬⎭+3(|Y|+Bc)
2R2 |φ1−φ2|2 ,

(A.7)

where B1m = 3max
{

RB2
�,1

}
, and the first inequality follows from the Cauchy–Schwarz

inequality and Jensen inequality.
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Denote by ϕZ (s)≡ E
[
exp

(
is′Z

)]
the characteristic function of Z. It holds that∣∣Var

(
exp

(
is′Z

))∣∣= ∣∣∣E[exp
(
is′Z

)2
]
−E

[
exp

(
is′Z

)]2∣∣∣= ∣∣∣ϕZ (2s)− [ϕZ (s)]2
∣∣∣

≤ |ϕZ (2s)|+ |ϕZ (s)|2 ≤ 2, (A.8)

where the last inequality follows from the fact that |ϕZ (·)| ≤ 1. Now, by equation (2.4) in
Su and Zheng (2017),

MDDo
[
ms (Y,X,θ1)−ms (Y,X,θ2) |zs

]2

=
∫
R

dZ

[
Cov

(
ms (Y,X,θ1)−ms (Y,X,θ2),exp

(
is′Z

))]2
q(s)ds

≤ Var (ms (Y,X,θ1)−ms (Y,X,θ2))

∫
R

dZ

∣∣Var
(
exp

(
is′Z

))∣∣q(s)ds

≤ 2E
{

[ms (Y,X,θ1)−ms (Y,X,θ2)]
2
}∫

R
dZ

q(s)ds

≤ 2cq

[
B1mE

{
[g1 (xs)−g2 (xs)]

2+
R∑

r=1

[
g1 (xT−R+r)−g2 (xT−R+r)

]2

}
+3R2

E[(|Y|+Bc)
2] |φ1−φ2|2

]

≤ 2cq

[
B1mcm (R+1)‖g1−g2‖2

L2 +B2m |φ1−φ2|2
]

≤ Bm

{
‖g1−g2‖2

L2 +|φ1−φ2|2
}
= Bm ‖θ1− θ2‖2

L2 ,

where i ≡ √−1, q(s) ≡ 1/
[
c |s|(1+dZ)

]
, c ≡ π(1+dZ)/2/�

(
1+dZ

2

)
, �(·) is the com-

plete gamma function: �(z) ≡ ∫∞
0 t(z−1)exp(−t)dt, cq =

∫
R

dZ q(s)ds < ∞, B2m =
3R2

E[(|Y| + Bc)
2] < ∞, cm < ∞ is a constant that depends on the density of X, and

Bm = 2cq max {B1mcm (R+1),B2m} < ∞. In the derivation above, the first inequality
follows from Cauchy–Schwarz inequality, the second one holds by Jensen inequality and
(A.8), and the third one holds by (A.7), and the fourth one holds by the boundedness of
all density functions, according to Assumption 3.1(i). Consequently, we have that for any
θ1 ∈� and θ2 ∈�,

T−R∑
s=1

MDDo
[
ms (Y,X,θ1)−ms (Y,X,θ2) |zs

]2 ≤ c1 ‖θ1− θ2‖2
L2 , (A.9)

where c1 ≡ (T−R)Bm <∞.

Part II. For any θ1 ∈� and θ2 ∈�, we have

{E [ms (Y,X,θ1)−ms (Y,X,θ2)]}2 E
∣∣∣zs− z†

s

∣∣∣
≤ {E [ms (Y,X,θ1)−ms (Y,X,θ2)]}2 E

∣∣∣Z−Z†
∣∣∣≤ E

{
[ms (Y,X,θ1)−ms (Y,X,θ2)]

2
}
E

∣∣∣Z−Z†
∣∣∣

≤
[

B1mE

{
[g1 (xs)−g2 (xs)]

2+
R∑

r=1

[
g1 (xT−R+r)−g2 (xT−R+r)

]2

}
+3R2

E[(|Y|+Bc)
2] |φ1−φ2|2

]

×E

∣∣∣Z−Z†
∣∣∣

≤
[
B1mcm (R+1)‖g1−g2‖2

L2 +B2m |φ1−φ2|2
]
E

∣∣∣Z−Z†
∣∣∣

≤ B̃m ‖θ1− θ2‖2
L2 ,
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where B̃m = max {B1mcm (R+1),B2m}E
∣∣∣Z−Z†

∣∣∣ < ∞, the second inequality holds by

Jensen inequality, and the third one follows from (A.7). Consequently, we have that for any
θ1 ∈� and θ2 ∈�,

T−R∑
s=1

{E [ms (Y,X,θ1)−ms (Y,X,θ2)]}2E
∣∣∣zs− z†

s

∣∣∣≤ c2 ‖θ1− θ2‖2
L2 , (A.10)

where c2 ≡ (T−R) B̃m < ∞.
Combining (A.5), (A.9), and (A.10) yields that for any θ1 ∈� and θ2 ∈�, dw (θ1,θ2)

2 ≤
(c1+c2)‖θ1− θ2‖2

L2 = c2 ‖θ1− θ2‖2
L2 , where c≡√c1+ c2. This proves the first claim in

Lemma 3.1.

Part III. To prove Lemma 3.1(ii), for any θ1, θ2, θ3 ∈�, define

W1,s ≡ ms (X,Y,θ1)−ms (X,Y,θ3)andW2,s ≡ ms (X,Y,θ2)−ms (X,Y,θ3) .

It follows from the second inequality result of Lemma A.2 that

MDD
(
W1,s−W2,s|zs

)2 ≤ 4
[
MDD

(
W1,s|zs

)+MDD
(
W2,s|zs

)]2
≤ 8

[
MDD

(
W1,s|zs

)2+MDD
(
W2,s|zs

)2
]

. (A.11)

Noting that W1,s−W2,s=ms (X,Y,θ1)−ms (X,Y,θ2), it follows from (A.11) and Definition
3.1 of dw (·,·) that

[dw (θ1,θ2)]
2 =

T−R∑
s=1

MDD
(
W1,s−W2,s|zs

)2

≤ 8

⎡⎣T−R∑
s=1

MDD
(
W1,s|zs

)2+
T−R∑
s=1

MDD
(
W2,s|zs

)2

⎤⎦
= 8

[[
dw (θ1,θ3)

]2+ [
dw (θ2,θ3)

]2]
≤ 8

[
dw (θ1,θ3)+dw (θ2,θ3)

]2
, (A.12)

where the last inequality follows from the fact that the interaction term 2dw(θ1,θ3)

dw(θ2,θ3)≥ 0. Lemma 3.1(ii) follows immediately from (A.12). �

To prove Theorem 3.1, we introduce some notations adopted from Arcones and Giné
(1993) and de la Peña and Giné (1999, Chap. 5). Let (S,S,P) be a probability space, and
let {ξi}Ni=1be an i.i.d. sequence with probability law P. Let F be a class of measurable real
functions on Sm. The m th order U-process based on P and indexed by F is

Um
N (f )≡ Um

N (f ;P)≡ (N−m) !

N!

∑
im∈Im

N

f
(
ξi1, . . . ,ξim

)
, f ∈ F , (A.13)

where im ≡ (i1, . . . ,im), Im
N = {(i1, . . . ,im) : ij ∈N, 1≤ ij ≤N, and ij �= ik if j �= k}. We will

repeatedly use the Hoeffding’s decomposition of a U-statistic. The operator πk,m = πP
k,m

acts on Pm-integrable function f : Sm → R as follows:

πk,mf (ξ1, . . . ,ξk)=
(
δξ1 −P

) · · ·(δξk −P
)

Pm−kf, (A.14)
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where δξj is the Dirac measure at the observation ξj. Note that πk,mf is a P-canonical
function of k variables. Then we have the following Hoeffding’s decomposition

Um
N (f )=

m∑
k=0

(
m
k

)
Um

N (πk,m ◦Smf ), (A.15)

where Smf is a symmetric version of f : Smf (ξ1, . . . ,ξk) = (m!)−1∑ f
(
ξi1, . . . ,ξim

)
with

the sum extended over m! permutations (i1, . . . ,im) of {1, . . . ,m}.
Given a pseudometric space (F, e), the ε-covering number of (F, e) is

N (ε,F, e)≡min

{
n : ∃f1, . . . ,fn ∈ F s.t. sup

f∈F
min
i≤n

e(f,fi)≤ ε

}
.

We defineNN,p (ε,F)≡NN,p
(
ε,F,eN,p

)
as the random ε-covering numbers of (F,eN,p),

where eN,p (f,g)=
{
Um

N (|f −g|p)}1/p where p≥ 1. Note that eN,p denotes the Lp distance

corresponding to the random measure that assigns mass (N−m)!
N! to each of the points

(ξi1, . . . ,ξim) ∈ Sm, im ∈ Im
N . When F is a class of real symmetric measurable functions

on Sm, we define pseudo-distances eN,k,2 on F as follows:

e2
N,k,2 (f,g)≡

Nk(N
k
)Uk

N

(
πk,m (f −g)2

)
.

By the proof of Corollary 5.7 in Arcones and Giné (1993), there exist some positive finite
constants ck,r such that for all ε > 0,

NN,2
(
ε,πk,mF

)≤∏k
r=0N

(
ε

2(k+1)1/2 ck,2
,F, ‖·‖L2

(
Ur

N×Pm−r
)), (A.16)

where for r > 0, Ur
N ×Pm−r denotes the random probability measure

Ur
N ×Pm−r = (N− r)!

N!

∑
ir∈Ir

N

δ(ξi1,...,ξir
)×Pm−r

defined on
(
Sm,Sm) and for r= 0, U0

N×Pm just means Pm. Here L2 (Ur
N ×Pm−r) defines

the pseudometric on Sm :

‖f −g‖2
L2
(
Ur

N×Pm−r
) = Ur

N ×Pm−r (f −g)2 .

Note that

N

(
ε,F, ‖·‖L2

(
U0

N×Pm
))# 2PmF/ε if ε ≤ 2PmF and equals 1 otherwise. (A.17)

Proof of Theorem 3.1. Note that SNs (θ) = SNs,1 (θ)+ SNs,2 (θ), where SNs,1 (θ) =
− 1

N
∑

1≤i �=j≤N mis (θ) ×mjs (θ)κij,s and SNs,2 (θ) = 2
N
∑

1≤i �=j≤N mis (θ)κij,s
1
N
∑N

k=1
mks (θ) . Let m̄is (θ)= E

[
mis (θ) |zis

]
and m̃is (θ)= mis (θ)− m̄is (θ) . Then
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SNs,1 (θ) = − 1

N

∑
1≤i �=j≤N

[
m̃is (θ)+ m̄is (θ)

][
m̃js (θ)+ m̄js (θ)

]
κij,s

= − 1

N

∑
1≤i �=j≤N

m̃is (θ) m̃js (θ)κij,s− 1

N

∑
1≤i �=j≤N

m̄is (θ) m̄js (θ)κij,s− 2

N

∑
1≤i �=j≤N

m̃is (θ) m̄js (θ)κij,s,

and

SNs,2 (θ) = 2

N2

∑
1≤i �=j≤N

N∑
k=1

m̃is (θ) m̃ks (θ)κij,s+ 2

N2

∑
1≤i �=j≤N

N∑
k=1

m̄is (θ) m̄ks (θ)κij,s

+ 2

N2

∑
1≤i �=j≤N

N∑
k=1

[
m̃ism̄ks (θ)+ m̄is (θ) m̃ks (θ)

]
κij,s.

Then SNs (θ)= S̃Ns,1 (θ)+ S̃Ns,2 (θ)+ S̃Ns,3 (θ), where

S̃Ns,1 (θ) = − 1

N

∑
1≤i�=j≤N

m̃is (θ) m̃js (θ)κij,s+ 2

N2

∑
1≤i�=j≤N

N∑
k=1

m̃is (θ) m̃ks (θ)κij,s,

S̃Ns,2 (θ) = − 1

N

∑
1≤i�=j≤N

m̄is (θ) m̄js (θ)κij,s+ 2

N2

∑
1≤i�=j≤N

N∑
k=1

m̄is (θ) m̄ks (θ)κij,s,

S̃Ns,3 (θ) = − 2

N

∑
1≤i�=j≤N

m̃is (θ) m̄js (θ)κij,s+ 2

N2

∑
1≤i�=j≤N

N∑
k=1

[
m̃ism̄ks (θ)+ m̄is (θ) m̃ks (θ)

]
κij,s.

We prove parts (i) and (ii) of the theorem in turn.

Part I. Proof of part (i).
When θ ∈ �I, m̄is (θ) = 0 for all i = 1, . . . ,N and s = 1, . . . ,T −R. This implies that

S̃Ns,2 (θ)= S̃Ns,3 (θ)= 0. We are left to study S̃Ns,1 (θ) . For the second term in the definition
of S̃Ns,1 (θ), we have

2

N

∑
1≤i�=j≤N

N∑
k=1

m̃is (θ) m̃ks (θ)κij,s

= 2

N2

∑
1≤i�=j≤N

m̃is (θ)
2 κij,s+ 2

N2

∑
1≤i�=j≤N

m̃is (θ) m̃js (θ)κij,s+ 2

N2

∑
1≤i�=j�=k≤N

m̃is (θ) m̃ks (θ)κij,s

= 2

N2

∑
1≤i�=j≤N

m̃is (θ)
2 κij,s+ 2

N2

∑
1≤i�=j≤N

m̃is (θ) m̃js (θ)κij,s+ (N−1)(N−2)

N2
NU2Ns,

where U2Ns =
(N

3
)−1∑

1≤i<j≤k≤N ψs
(
ξi,ξj,ξk;θ

)
and ψs

(
ξi,ξj,ξk;θ

)= 1
3 [m̃is (θ) m̃ks (θ)

κij,s+ m̃is (θ) × m̃js (θ)κik,s + m̃js (θ) m̃ks (θ)κjk,s+ m̃js (θ) m̃is (θ)κjk,s+ m̃ks (θ) m̃is (θ)

κjk,s+ m̃ks (θ) m̃js (θ)κik,s] is a symmetrized version of ψ0s
(
ξi,ξj,ξk;θ

)≡ 2m̃is (θ) m̃ks (θ)

κij,s. Note that

E
[
ψs (ξ1,ξ2,ξ3;θ)

] = 0, E
[
ψ (ξ1,ξ2,ξ3;θ) |ξ1

]= 0 and

E
[
ψs (ξ1,ξ2,ξ3;θ) |ξ1,ξ2

] = 1

3
m̃1s (θ) m̃2s (θ) [E3(κ13,s)+E3(κ23,s)]≡ h(2)s (ξ1,ξ2;θ) .

Let h(3)s (ξ1,ξ2,ξ3;θ)=ψs (ξ1,ξ2,ξ3;θ)−[h(2)s (ξ1,ξ2;θ)+h(2)s (ξ1,ξ3;θ)+h(2)s (ξ2,ξ3;θ)].
By Hoeffding’s decomposition in (A.15) (see also Lee (1990, p. 26) and de la Peña and
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Giné (1999, p. 137)), we have U2Ns (θ)= 3H2Ns (θ)+H3Ns (θ), where

H2Ns (θ)=
(

N

2

)−1 ∑
1≤i<j≤N

h(2)s
(
ξi,ξj;θ

)
and H3Ns (θ)=

(
N

3

)−1 ∑
1≤i<j≤k≤N

h(3)s
(
ξi,ξj,ξk;θ

)
.

Similarly, we can write the first term in the definition of S̃Ns,1 (θ) as follows:

− 1
N
∑

1≤i �=j≤N m̃is (θ) m̃js (θ)κij,s = N−1
N NU1Ns (θ), where U1N (θ) = −

(
N
2

)−1

∑
1≤i �=j≤N m̃is (θ) m̃js (θ)κij,s. Then we have

S̃Ns,1 (θ) = N−1

N
NU1Ns (θ)+ (N−1)(N−2)

N2
NU2Ns+ 2

N2

∑
1≤i�=j≤N

m̃is (θ)
2 κij,s

+ 2

N2

∑
1≤i�=j≤N

m̃is (θ) m̃js (θ)κij,s

= NUNs (θ)+NH3Ns (θ)+ 2

N2

∑
1≤i�=j≤N

m̃is (θ)
2 κij,s− 3N−2

N
U1Ns (θ)− 3N−2

N
U2Ns,

where UNs (θ)= U1Ns (θ)+3H2Ns (θ)=
(N

2
)−1∑

1≤i<j≤N hs
(
ξi,ξj;θ

)
and hs

(
ξi,ξj;θ

)=
m̃is (θ) m̃js (θ) × [Ej(κij,s)+Ei(κij,s)−κij,s].

Let X and Zs denote the supports of xit and zis, respectively. Note that ms (Y,X;θ) =
Hs (φs)

′ [Y−g(X)] = [ys−g(xs)] + ∑R
r=1 φs,r

[
yT−R+r−g

(
xT−R+r

)]
and φs =

(φs,1, . . . ,φs,R)
′ for s= 1, . . . ,T−R. Let θs = (φ′s,g)′. Define

F1s ≡ {ms (·, · ;θs) : RT ×X T → R : ms (y,x;θs)= [ys−g(xs)]

+
R∑

r=1

φs,r
[
yT−R+r−g

(
xT−R+r

)]
for some θs =

(
φ′s,g

)′ ∈�s×G}, (A.18)

where �s ≡
{
φs ∈ R

R : ‖φs‖ ≤ cφ
}

for some constant cφ, and G ≡{g ∈ Ws (X ) : ‖g‖s ≤
Cg}. Similarly, let ξ = (y′,x′,z′)′ and S= R

T ×X T ×ZT . Define

Fc
1s ≡ {m̃s(·;θs) : S→ R : m̃s (ξ ;θs)= [ys−g(xs)]−E

[
(yis−g(xis))|zis = zs

]
+

R∑
r=1

φs,r{
[
yT−R+r−g

(
xT−R+r

)]−E
[
(yi,T−R+r−g

(
xi,T−R+r

)
)|zis = zs

]}
for some θs =

(
φ′s,g

)′ ∈�s×G}, (A.19)

F2s ≡ {fs(·, · ;θs) : S×S→ R : fs (ξ1,ξ2;θs)= m̃s (ξ1;θs) m̃s (ξ2;θs) κ̆12,s

for some θs =
(
φ′s,g

)′ ∈�s×G}, (A.20)

and

F3s ≡ {fs(·, ·, · ;θs) : S×S×S→ R : fs (ξ1,ξ2,ξ3;θs)= m̃s (ξ1;θs) m̃s (ξ2;θs) κ̆12,s

+m̃s (ξ1;θs) m̃s (ξ3;θs) κ̆13,s+ m̃s (ξ2;θs) m̃s (ξ3;θs) κ̆23,s

for some θs =
(
φ′s,g

)′ ∈�s×G},
(A.21)

https://doi.org/10.1017/S0266466623000403 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000403


INFERENCE IN PARTIALLY IDENTIFIED PANEL DATA MODELS 41

where, for example, zis =
(
z′i1, . . . ,z′is

)′ and κ̆ij,s = Ej(κij,s)+Ei(κij,s)− κij,s. The com-
pactness of � according to Assumption 2.1(i) implies that B� ≡ supφ∈� |φ| <∞. By
Lemma A.3, for all g ∈ G, it holds that supx∈X |g(x)| ≤ Bc <∞. Then for any θ ∈� and
s= 1, . . . ,T−R, we have

|ms (Y,X,θ)| ≤ [|ys|+ |g(xs)|]+
R∑

r=1

∣∣φs,r
∣∣ [∣∣yT−R+r

∣∣+ ∣∣g(xT−R+r
)∣∣]

≤ |Y|+Bc+B�R [|Y|+Bc]= (B�R+1) [|Y|+Bc]≤ K [|Y|+1]≡ F1 (Y),

(A.22)

where Y = (y1, . . . ,yT )
′ , X = (x1, . . . ,xT )

′ , φs,r denote the rth element in φs, and K is a
generic positive constant that may vary across lines. By (A.6),

|ms (Y,X,θ1)−ms (Y,X,θ2)| ≤ (|Y|+Bc)R |φ1−φ2|+ (RB�+1)‖g1−g2‖∞
≤ K(|Y|+1)

{|φ1−φ2|+‖g1−g2‖∞
}

.

It follows that the class F1s is Lipschitz in �s×G (w.r.t.) the norm |·| + ‖·‖∞ . Then by
Theorem 2.7.11 in van der Vaart and Wellner (1996), we have

N[]
(
ε‖F1‖,F1s, ‖·‖L2

)≤ N(ε/2, �s×G, |·|+‖·‖∞)≤ N(ε/4, �s, |·|)N(ε/4, G, ‖·‖∞)

≤ K

(
4

ε

)R

exp

[(
4

ε

)ν]
, (A.23)

where the first inequality follows from Theorem 2.7.11 in van der Vaart and Wellner
(1996) and the last one follows from Lemma A.3 in Santos (2012), which indicates that

N (ε,G, ‖·‖∞)≤ K exp
((

1
ε

)ν)
with ν being defined in (2.8). This also implies that

N[]
(
2ε ‖F‖, Fc

1s, ‖·‖L2
)≤ K

(
4

ε

)2R
exp

[
2

(
4

ε

)ν]
. (A.24)

Let F2 (ξ1,ξ2)=K(|y1|+1)(|y2|+1)(|z1|+ |z2|+1)with ξi= (y′i,x′i,z′i)′ ∈ S. By arguments
as used in the proof of Theorem 6 in Andrews (1994), there is a finite positive constant c0
such that

N[] (2c0ε ‖F2‖, F2s, ‖·‖)≤
[
N[] (2ε ‖F1‖, F2s, ‖·‖)

]2 ≤ K

(
4

ε

)4R
exp

[
4

(
4

ε

)ν]
.

(A.25)

We verify the conditions in Theorem 5.6 of Arcones and Giné (1993, AG hereafter). First,
by Assumption 3.1(i) and (ii),

E

(
[F2 (ξ1,ξ2)]

2
)
≤ 2K2E

{
[(|Y1|+1)(|Y2|+1) |Z1|]2+ [(|Y1|+1)(|Y2|+1) |Z2|]2

}
≤ 4K2

E

[
(|Y1|+1)2 |Z1|2

]
E

[
(|Y2|+1)2

]
≤∞.

This verifies Condition (a) in Theorem 5.6 of AG. Applying (A.16) with m= k = 2 yields

NN,2 (ε,F2s)= NN,2
(
ε,π2,2F2s

)≤∏2
r=0N

(
ε

2
√

3c2,r
,F2s, ‖·‖L2

(
Ur

N×P2−r
)) .
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By (A.17),
∫ δ

0 logN

(
ε

2
√

3c2,0
,F2s, ‖·‖L2

(
U0

N×P2
))dε % ∫ δ

0 log 1
ε dε. Note that

∫ δ

0
logN

(
ε

2
√

3c2,1
,F2s, ‖·‖L2

(
U1

N×P1
))dε

= 2
√

3c2,1

[
U1

N(P1F2
2)
]1/2

∫ δ/
[
2
√

3c2,1U1
N (P1F2)

]1/2

0

× logN

(
ε
[
U1

N(P1F̄2)
]1/2

,F2s, ‖·‖L2(U1
N×P1)

)
dε

%
[
U1

N(P1F2
2)
]1/2

∫ δ/
[
2
√

3c2,1U1
N (P1F2

2)
]1/2

0

[
log

(
4

ε

)
+
(

4

ε

)ν]
dε

%
[
U1

N(P1F2
2)
]1/2

∫ δ/
[
2
√

3c2,1U1
N (P1F2

2)
]1/2

0
ε−νdε

%
[
U1

N(P1F2
2)
]ν/2

δ1−ν,

where the first equality follows from the change of variables, the first inequality holds by
(A.25), and the second inequality follows from the fact that the integrand is dominated by the

term (ε/4)−ν in the neighborhood of 0, ν < 1 by Assumption 2.1(iii), and
∫ δ′

0 log(1/ε)dε <

∞ for any δ′ <∞. Similarly, we have

∫ δ

0
logN

(
ε

2
√

3c2,2
,F2s, ‖·‖L2

(
U2

N

)
)

dε

= 2
√

3c2,2

[
U2

N(F̄2)
]1/2

∫ δ/
[
2
√

3c2,2U2
N (F2)

]1/2

0
logN

(
ε
[
U2

N(F2)
]1/2

,F, ‖·‖L2(U2
N )

)
dε

%
[
U2

N(P2F2
2)
]1/2

∫ δ/
[
2
√

3c2,2U2
N (F2)

]1/2

0

[
log

(
4

ε

)
+
(

4

ε

)ν]
dε

%
[
U2

N(F2
2)
]1/2

∫ δ/
[
2
√

3c2,2U2
N (F2)

]1/2

0
ε−νdε %

[
U2

N(F2
2)
]ν/2

δ1−ν .

Then

lim
δ→0

limsup
N→∞

E
o

[∫ δ

0
logNN,2 (ε,F2s)dε

]

= lim
δ→0

limsup
N→∞

E
∗
⎡⎣∫ δ

0

2∑
r=0

logN

(
ε

2
√

3c2,r
,F2s, ‖·‖L2

(
Ur

N×P2−r
))dε

⎤⎦
% lim

δ→0
limsup
N→∞

[∫ δ

0
log

1

ε
dε+E

{[
U1

N(P1F2
2)
]ν/2+

[
U2

N(F2
2)
]ν/2

}
δ1−ν

]
= 0,
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where the last equality follows from the fact that E{
[
U2

N(F2
2)
]ν/2} ≤

{
E

[
U2

N(F2
2)
]}ν/2 =

{E([F2 (ξ1,ξ2)]
2}ν/2 <∞ by Jensen inequality and similarly E{

[
U1

N(P1F2
2)
]ν/2} <∞.

This verifies condition (c) in Theorem 5.6 of AG. Next, notice that

N

(
ε

2
√

3c2,r
,F2s, ‖·‖L2

(
Ur

N×P2−r
)) = 1 a.s. for r = 0,1,2 and for sufficiently large ε,

say, ε ≥ ε0, by the total boundedness of �×Gand the law of large numbers for U-statistics.
It follows that for some small ε > 0 and by the above calculations,

E
o
∣∣∣∣∫ ∞

0
logNN,2

(
ε,π2,2F2s

)
dε

∣∣∣∣1+ε

% E
o
∣∣∣∣∫ ε0

0
logNN,2

(
ε,π2,2F2s

)
dε

∣∣∣∣1+ε

%
∣∣∣∣∫ ε0

0
log

1

ε
dε

∣∣∣∣1+ε

+E

{[
U1

N(P1F2
2)
](1+ε)ν/2+

[
U2

N(F2
2)
](1+ε)ν/2

}
<∞,

where E
o denotes the outer-expectation associated with E, the last inequality holds by

choosing ε sufficiently small such that (1+ ε)ν/2 ≤ 1. This implies that the sequence{∫∞
0 logNN,2 (ε,F2s)dε

}∞
N=1 is uniformly integrable. That is, condition (b) in Theorem

5.6 of AG is verified. Then by Theorem 5.6 of AG, we have NUN (θ)�⇒Cs (θ) in L∞ (�).
Next, note that H3N (θ) is a third-order P− canonical U−process with the enve-

lope function for the kernel in the definition of H3N (θ) given by F3 (ξ1,ξ2,ξ3) =
K{(|y1| + 1)(|y2| + 1)(|z1| + |z2| + 1)+ (|y1| + 1)(|y3| + 1)(|z1| + |z3| + 1)+ (|y2| + 1)
(|y3| + 1)(|z2| + |z3| + 1)}. Following the analysis of UN (θ), it is easy to show that
E[F3 (ξ1,ξ2,ξ3)

2] <∞ under Assumption 3.1 (i) and (ii),

lim
δ→0

limsup
N→∞

E
o

[∫ δ

0

[
logNN,2 (ε,F3s)

]3/2 dε

]
= 0

and the sequence
{∫∞

0
[
logNN,2 (ε,F3s)

]3/2 dε
}∞

N=1
is uniformly integrable. Here, we use

the fact that 3
2 (1+ ε)ν/2 ≤ 1 for sufficiently small ε. As a result, N3/2

H3N (θ) converges

to a Gaussian chaos process and supθ∈� |NH3N (θ)| = OP

(
N−1/2

)
. Our condition is

sufficient to ensure the uniform law of large numbers to hold for the U-process with kernel

function associated with m̃is (θ)
2 κij,s. As a result, we have

2

N2

∑
1≤i�=j≤N

m̃is (θ)
2 κij,s=2E

[
m̃1s (θ)

2 κ12,s

]
+op(1)≡ Bs (θ)+op(1) uniformly in θ ∈�.

Following the analysis of UNs (θ), we can also show that both NU1Ns (θ) and NU2Ns (θ)

converge to Gaussian chaos processes. Consequently, we have

S̃Ns,1 (θ)�⇒ Bs (θ)+Cs (θ) . (A.26)

When θ ∈�I, we also have SNs (θ)�⇒Bs (θ)+Cs (θ) given the fact that S̃Ns,� (θ)= 0 for
�= 2,3 in this case. As a result, we have SN (θ)�⇒ B(θ)+C (θ).
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Part II. Proof of part (ii).
When θ /∈ �I, (A.26) continues to hold. By the law of large numbers for U-processes

and the definition of MDD, we have

1

N
S̃Ns,2 (θ) = − 1

N2

∑
1≤i �=j≤N

m̄is (θ) m̄js (θ)κij,s+ 2

N3

∑
1≤i �=j≤N

N∑
k=1

m̄is (θ) m̄ks (θ)κij,s

= −E
[
m̄1s (θ) m̄2s (θ)κ12,s

]+2E
[
m̄1s (θ)κ12,s

]
E
[
m̄2s (θ)

]+oP (1)

=MDD
[
ms (Y,X,θ) |zs

]2+oP (1) uniformly in θ ∈�\�I .

In fact, applying Hoeffding decomposition to 1
N S̃Ns,2 (θ) and arguments as used in Part I,

we can strengthen oP (1) to OP

(
N−1/2

)
in the last claim.

Now, define U3N (θ) = (N−2)!
N!

∑
1≤i �=j≤N m̃is (θ) m̄js (θ)κij,s and U4N (θ) = (N−3)!

N!∑
1≤i �=j �=k≤N [m̃ism̄ks (θ) + m̄is (θ) m̃ks (θ)]κij,s. It is easy to see that U3N (θ) and U4N (θ)

are nondegenerate second- and third-order U processes, respectively. One can easily
apply symmetrization and similar calculations as above to verify the entropy condition in
Theorem 4.10 of AG holds to conclude both N1/2

U3N (θ) and N1/2
U4N (θ) converge to

Gaussian processes. This implies that

sup
θ∈�\�I

1

N1/2

∣∣∣S̃Ns,3 (θ)
∣∣∣

= sup
θ∈�\�I

∣∣∣∣∣∣− 2

N3/2

∑
1≤i �=j≤N

m̃is (θ) m̄js (θ)κij,s

+ 2

N5/2

∑
1≤i �=j≤N

N∑
k=1

[
m̃ism̄ks (θ)+ m̄is (θ) m̃ks (θ)

]
κij,s

∣∣∣∣∣∣
% sup

θ∈�\�I

∣∣∣N1/2
U3N (θ)

∣∣∣+ sup
θ∈�\�I

∣∣∣N1/2
U4N (θ)

∣∣∣= Op (1) .

Consequently, we have 1
N SN (θ) = ∑T−R

s=1
∑3

�=1
1
N S̃Ns,� (θ) =

∑T−R
s=1 MDD [ms(Y,X,

θ)|zs]2+OP(N
−1/2) uniformly in θ ∈�\�I . �

Proof of Theorem 3.2. In this proof Conditions (i)–(iv) listed in Lemma A.5 are referred

to as C(i)–C(iv), respectively. Let Q(θ) ≡∑T−R
s=1 MDD

[
ms (Y,X,θ) |zs

]2 and QN (θ) ≡
1
N SN (θ)=∑T−R

s=1
1
N SNs (θ). Our goal is to show that, over the restricted parameter space

�∩�R under dw (·,·), Q(·) and QN (·) as specified above satisfy C(i)–C(iv) in Lemma A.5.

We first prove that dw(θ̂N,�I)=Op

(
max{δw,N,N−1/4}

)
=Op

(
N−1/4

)
and then argue

that such a rate can be improved to Op(�NN−1/2) by iterative arguments.
Due to the non-negativity of MDD, Q(·)≥ 0. By Lemma A.3, � is compact under ‖·‖c

and hence is compact under dw (·,·), which is weaker than ‖·‖c. Since �R is closed due to
the continuity of L (·) under Assumption 2.2, �∩�R is also compact under dw (·,·). So C(i)

is satisfied. Assumption 3.3(i) and (ii) guarantee C(ii) to hold with σN = δw,N = o
(

N−1/2
)

.

C(iii) holds according to Theorem 3.1 with bN = N−1/2. Obviously, C(iv) holds with
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a1 = a2 = 1 by Lemma A.1 and the fact that MDD
[
ms

(
Y,X,θ0

)
|zs

]
= 0 for any θ0 ∈�I .

Then by Lemma A.5, we have

dw

(
θ̂N,�I

)
= Op

(
max

{
δw,N,N−1/4

})
= Op

(
N−1/4

)
.

This, in conjunction with Assumption 3.4 and Lemma A.6, implies that

d‖·‖L2 (θ̂N,�I)= Op(�Ndw(θ̂N,�I ∩�R)+ δs,N)= Op(�NN−1/4).

For any ε > 0, there exists a constant Kε > 0 such that Pr
(

d‖·‖L2 (θ̂N,�I) ≤
Kε�NN−1/4

)
≥ 1−ε. Let �̃N = {θ : d‖·‖L2 (θ,�I)≤ Kε�NN−1/4}. Now, we can consider

minimization of QN (θ) over θ ∈ �̃N . Using arguments as used in the proof of Theorem 3.1
and the expressions in (A.33)–(A.38) in the proof of Theorem 3.3, we can show that

sup
θ∈�̃N

|QN (θ)−Q(θ)| = N−1/2Op

(
�NN−1/4

)
= Op

(
�NN−3/4

)
(A.27)

by showing that sup
θ∈�̃N

∣∣∣ 1
N ρ�Ns

(
θ0,θ − θ0

)
−ρ�s

(
θ0,θ − θ0

)∣∣∣ = Op

(
�NN−3/4

)
for

�= 1,2,3 and supθ0∈�I

∣∣∣ 1
N SN

(
θ0
)∣∣∣=OP

(
N−1

)
. The last claim holds by Theorem 3.1(i).

Next, we argue that the first claim holds for �= 1 only as the other two cases can be studied
analogously. Note that with �= θ − θ0,

1

N
ρ1Ns

(
θ0,θ − θ0

)
−ρ1s

(
θ0,θ − θ0

)
=−

⎧⎨⎩ 1

N2

∑
1≤i �=j≤N

∂mis [�]∂mjs [�]κij,s−E

{
∂ms [�]∂m†

s [�]
∣∣∣zs− z†

s

∣∣∣}
⎫⎬⎭

+2

⎧⎨⎩ 1

N3

∑
1≤i �=j≤N

N∑
k=1

∂mis [�]κij,s∂mks [�]−E

{
∂ms [�]

∣∣∣zs− z†
s

∣∣∣}E[∂m†
s [�]

]⎫⎬⎭
≡−D1s (θ)+2D2s (θ),

where we suppress the dependence of D1s (θ) and D2s (θ) on θ0. Let �s
(
ξi,ξj;�

) =
∂mis [�]∂mjs [�]κij,s, cs (�) = EiEj[�s

(
ξi,ξj;�

)
], and �1s (ξi;�) = Ej[�s

(
ξi,ξj;�

)
]−

cs (�), where Ej denotes expectation w.r.t. ξj alone. Let �̃s
(
ξi,ξj;�

) = �s
(
ξi,ξj;�

)−
�1s (ξi;�)−�1s

(
ξj;�

)+ cs (�) . By Hoeffding decomposition, we have

D1s (θ)= 2

N (N−1)

∑
1≤i<j≤N

{
∂mis [�]∂mjs [�]κij,s−E

[
∂mis [�]∂mjs [�]κij,s

]}+Op

(
N−1

)

= 2

N

N∑
i=1

�1s (ξi;�)+ 2

N (N−1)

∑
1≤i<j≤N

�̃s
(
ξi,ξj;�

)+Op

(
N−1

)
, (A.28)

where Op

(
N−1

)
holds uniformly in θ (and θ0). Noting that the second term in (A.28) is a

degenerate second-order U-process, we can readily follow the proof of Theorem 3.1(i) and

show that it is OP

(
N−1

)
uniformly in � = θ − θ0 ∈�− θ0. For the first term in (A.28),
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we can apply the expression of
∂ms

(
Y,X,θ0

)
∂θ [�] in (A.33) and entropy calculations as used

in the proof of Theorem 3.1(i) to show that

sup
θ∈�̃N

∣∣∣∣∣∣ 1

N

N∑
i=1

�1s

(
ξi;θ − θ0

)∣∣∣∣∣∣
= sup

θ∈�̃N

∣∣∣∣∣∣ 1

N

N∑
i=1

{
Ej

[
∂mis

[
θ − θ0

]
∂mjs

[
θ − θ0

]
κij,s

]

− EiEj

[
∂mis

[
θ − θ0

]
∂mjs

[
θ − θ0

]
κij,s

]}∣∣∣∣∣∣
= N−1/2Op

(
�NN−1/4

)
= Op

(
�NN−3/4

)
.

Then sup
θ∈�̃N

|D1s (θ)| = Op

(
�NN−3/4

)
. Analogously, we can show that sup

θ∈�̃N
|D2s

(θ)| =Op

(
�NN−3/4

)
. It follows that sup

θ∈�̃N

∣∣∣ 1
N ρ1Ns

(
θ0,θ − θ0

)
−ρ1s

(
θ0,θ − θ0

)∣∣∣=
Op

(
�NN−3/4

)
and (A.27) holds. Then we can apply Lemma A.5 with bN = �NN−3/4 to

conclude

dw

(
θ̂N,�I

)
= Op

(
max

{
δw,N,�

1/2
N N−3/8

})
= Op(�

1/2
N N−3/8). (A.29)

Now, given the first iteration result in (A.29), we can focus on �̃
(1)
N = {θ : d‖·‖L2 (θ,�I)≤

Kε�N�
1/2
N N−3/8} and show that

sup
θ∈�̃(1)

N

|QN (θ)−Q(θ)| = N−1/2Op

(
�N�

1/2
N N−3/8

)
= Op

(
�

3/2
N N−7/8

)
which, in conjunction with Lemma A.5 implies that

dw

(
θ̂N,�I

)
= Op

(
max

{
δw,N,�

3/4
N N−7/16

})
= Op(�

3/4
N N−7/16). (A.30)

Repeating such an arguments for any finite m times, we can obtain

dw

(
θ̂N,�I

)
= N−1/4Op

((
N−1/4�N

)∑m
j=1

1
2j

)
.

By choosing m = m(ε) sufficiently large, we obtain dw(θ̂N,�I) = op(N
− 1

2+ ε
4 �1−ε

N ) for
any fixed small positive number ε > 0. �

Proof of Theorem 3.3. We organize this proof into three parts. In Part I, we establish
that, to calculate the test statistic, we only need to minimize over a neighborhood of�I∩�R;
in Part II, we establish a stochastic upper bound for the test statistic, which still takes the
form of a minimization over �I ∩�R; and in Part III, we derive the asymptotic distribution
(under the null) of the stochastic upper bound established in Part II to complete the proof.
Note that continuity and compactness imply that all minimums are indeed attained.
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Part I. Pick δN ↓ 0 such that

δN = o
(

N−1/4
)

and max
{
δs,N,N−1/2

}
= o(δN). (A.31)

Define BδN
N

(
θ0
)
≡
{
θ ∈�N ∩�R :

∥∥∥θ − θ0
∥∥∥

L2
≤ δN

}
. Then we have

min
θ∈�N∩�R

SN (θ)≤ inf
θ0∈�I∩�R

⎡⎣ min
θ∈B

δN
N

(
θ0
)SN (θ)

⎤⎦ (A.32)

by set inclusion, noting the facts that

inf
θ0∈�I∩�R

⎡⎣ min
θ∈B

δN
N

(
θ0
)SN (θ)

⎤⎦= min
θ∈ ∪

θ0∈�I∩�R

B
δN
N

(
θ0
)SN (θ),

and that

∪
θ0∈�I∩�R

BδN
N

(
θ0
)
⊆�N ∩�R.

To proceed, for the functions ms (Y,X,·) : � → R, s = 1, . . . ,T − R, we denote by
∂ms

(
Y,X,θ0

)
∂θ [�]≡ ∂ms

(
Y,X,θ0+τ�

)
∂τ

|τ=0, and
∂2ms

(
Y,X,θ0

)
∂θ2 [�,�]≡ ∂2ms

(
Y,X,θ0+τ�

)
∂τ 2 |τ=0

its first- and second-order pathwise derivatives at θ0 in the direction of �, respectively.
And straightforward pathwise derivative calculations reveal the following facts, which we
are going to utilize to complete Part I of the proof:

∂ms

(
Y,X,θ0

)
∂θ

[�] =
R∑

t=1

(
φs,t−φ0

s,t

)[
yT−R+t−g0 (xT−R+t

)]−[
g(xs)−g0 (xs)

]

−
R∑

t=1

φ0
s,t

[
g
(
xT−R+t

)−g0 (xT−R+t
)]

,

∂2ms

(
Y,X,θ0

)
∂θ2

[�,�] = −2
R∑

t=1

(
φs,t−φ0

s,t

)[
g
(
xT−R+t

)−g0 (xT−R+t
)]

,

ms (Y,X,θ) = ms

(
Y,X,θ0

)
+

∂ms

(
Y,X,θ0

)
∂θ

[�]+ 1

2

∂2ms

(
Y,X,θ0

)
∂θ2 [�,�],

(A.33)

for �= θ − θ0.
Continuing with (A.32),

min
θ∈�N∩�R

SN (θ)

≤ inf
θ0∈�I∩�R

⎡⎣ min
θ∈B

δN
N

(
θ0
)

T−R∑
s=1

SNs (θ)

⎤⎦
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= inf
θ0∈�I∩�R

⎡⎣ min
θ∈B

δN
N

(
θ0
)

T−R∑
s=1

[
SNs

(
θ0
)
+ρ1Ns

(
θ0,�

)
+ρ2Ns

(
θ0,�

)

+ρ3Ns

(
θ0,�

)
+ρ4Ns

(
θ0,�

)]⎤⎦+op (1), (A.34)

where �= θ − θ0,

ρ1Ns

(
θ0,�

)
≡ − 1

N

∑
1≤i�=j≤N

∂mis [�]∂mjs [�]κij,s+ 2

N2

∑
1≤i�=j≤N

N∑
k=1

∂mis [�]κij,s∂mks [�]

− 1

2N

∑
1≤i�=j≤N

[
mis∂

2mjs [�]+ ∂2mis [�]mjs

]
κij,s

+ 1

N2

∑
1≤i�=j≤N

N∑
k=1

[
mis∂

2mks [�]+ ∂2mis [�]mks

]
κij,s, (A.35)

ρ2Ns

(
θ0,�

)
≡ − 1

2N

∑
1≤i�=j≤N

∂mis [�]∂2mjs [�]κij,s− 1

2N

∑
1≤i�=j≤N

∂2mis [�]∂mjs [�]κij,s

+ 1

N2

∑
1≤i�=j≤N

N∑
k=1

[
∂mis [�]∂2mks [�]+ ∂2mis [�]∂mks [�]

]
κij,s,

(A.36)

ρ3Ns

(
θ0,�

)
≡ − 1

4N

∑
1≤i�=j≤N

∂2mis [�]∂2mjs [�]κij,s

+ 1

2N2

∑
1≤i�=j≤N

N∑
k=1

∂2mis [�]κij,s∂
2mks [�], (A.37)

ρ4Ns

(
θ0,�

)
≡ − 1

N

∑
1≤i�=j≤N

[
mis∂mjs [�]+ ∂mis [�]mjs

]
κij,s

+ 2

N2

∑
1≤i�=j≤N

N∑
k=1

[mis∂mks [�]+ ∂mis [�]mks]κij,s, (A.38)

with mis ≡ mis

(
θ0
)
≡ ms

(
Yi,Xi,θ

0
)

, ∂mis [�] ≡ ∂ms
(
Yi,Xi,θ

0
)

∂θ [�], and ∂2mis [�] ≡
∂2ms

(
Yi,Xi,θ

0
)

∂θ2 [�,�] . Note that the last equality in (A.34) is obtained by plugging the third

equation in ( A.33) (with �= θ − θ0) into

SNs (θ)= 1

N

∑
1≤i�=j≤N

ms (Yi,Xi,θ)ms
(
Yj,Xj,θ

)
κij,s+ 2

N2

∑
1≤i�=j≤N

ms (Yi,Xi,θ)κij,s

N∑
k=1

ms (Yk,Xk,θ) .

Let ms≡ms

(
Y,X,θ0

)
, ∂ms [�]≡ ∂ms

(
Y,X,θ0

)
∂θ [�], and ∂2ms [�]≡ ∂2ms

(
Y,X,θ0

)
∂θ2 [�,�] .

Define m†
s , ∂m†

s [�], and ∂2m†
s [�] analogously with (Y,X) replaced by their independent
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copy (Y†,X†). The population analogues of N−1ρ�Ns

(
θ0,�

)
, � = 1,2,3,4, are

respectively given by

ρ1s

(
θ0,�

)
≡ −E

{
∂ms [�]∂m†

s [�]
∣∣∣zs− z†

s

∣∣∣}+2E
{
∂ms [�]

∣∣∣zs− z†
s

∣∣∣}E[∂m†
s [�]

]
− 1

2
E

{[
ms∂

2m†
s [�]+ ∂2ms [�]m†

s

]∣∣∣zs− z†
s

∣∣∣}
+E

{
ms

∣∣∣zs− z†
s

∣∣∣}E{∂2m†
s [�]

}
+E

{
∂2ms [�]

∣∣∣zs− z†
s

∣∣∣}E[m†
s ],

ρ2s

(
θ0,�

)
≡ − 1

2
E

{
∂ms [�]∂2m†

s [�]
∣∣∣zs− z†

s

∣∣∣}− 1

2
E

{
∂2ms [�]∂m†

s [�]
∣∣∣zs− z†

s

∣∣∣}
+E

{
∂ms [�]

∣∣∣zs− z†
s

∣∣∣}E[∂2m†
s [�]

]
+E

{
∂2ms [�]

∣∣∣zs− z†
s

∣∣∣}E[∂m†
s [�]

]
,

ρ3s

(
θ0,�

)
≡ − 1

4
E

{
∂2ms [�]∂2m†

s [�]
∣∣∣zs− z†

s

∣∣∣}+ 1

2
E

{
∂2ms [�]

∣∣∣zs− z†
s

∣∣∣}E[∂2m†
s [�]

]
,

ρ4s

(
θ0,�

)
≡ −E

{[
ms∂m†

s [�]+ ∂ms [�]m†
s

]∣∣∣zs− z†
s

∣∣∣}
+2E

{
ms

∣∣∣zs− z†
s

∣∣∣}E{∂m†
s [�]]

}
+2E

{
∂ms [�]

∣∣∣zs− z†
s

∣∣∣}E[m†
s ].

Then we can verify algebraically that

4∑
�=1

ρ�s

(
θ0,θ − θ0

)
=

4∑
�=1

ρ�s

(
θ0,θ − θ0

)
+MDD

[
ms

(
Y,X,θ0

)
|zs

]2

=MDD
{

ms

(
Y,X,θ0

)
+
[
ms (Y,X,θ)−ms

(
Y,X,θ0

)]
|zs

}2

=MDD
[
ms (Y,X,θ) |zs

]2
, (A.39)

where the first equality follows from the fact that MDD
[
ms

(
Y,X,θ0

)
|zs

]2 = 0, and the
second equality is verified by using the fact that

MDD(A+B|W)2 =−E
[
(A+B) (A†+B†)

∣∣∣W−W†
∣∣∣]+2E

[
(A+B)

∣∣∣W−W†
∣∣∣]E(A†+B†)

with A = ms

(
Y,X,θ0

)
, B = ms (Y,X,θ)−ms

(
Y,X,θ0

)
, W = zs, and (A†,B†,W†) being

the independent copy of (A,B,W).
Using arguments analogous to those in the proof of Theorem 3.1(ii), we can show that

for any given θ0 ∈�I ,

1

N
ρ1Ns

(
θ0,�

)
= ρ1s

(
θ0,�

)
+Op

(
N−1/2

)
uniformly in�= θ−θ0 ∈�−θ0≡

{
θ̃ − θ0 : θ̃ ∈�

}
. It follows that

√
N
[

1
N ρ1Ns

(
θ0,�

)
−

ρ1s

(
θ0,�

)]
=Op (1) uniformly in �= θ−θ0 ∈�−θ0, which in turn implies the uniform

asymptotic ‖·‖L2 -equicontinuity in probability in the sense that ∀ εN ↓ 0, it holds that

sup
‖θ1−θ2‖L2≤εN

√
N

∣∣∣∣[ 1

N
ρ1Ns

(
θ0,θ1

)
−ρ1s

(
θ0,θ1

)]
−
[

1

N
ρ1Ns

(
θ0,θ2

)
−ρ1s

(
θ0,θ2

)]∣∣∣∣= op (1) .

(A.40)
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It is easy to see algebraically that aρ1Ns

(
θ0,�

)
= ρ1Ns

(
θ0,a

1
2 �

)
and aρ1s

(
θ0,�

)
=

ρ1s

(
θ0,a

1
2 �

)
for any scalar constant a≥ 0. These algebraic properties imply that

sup
‖θ1−θ2‖L2≤δN

∣∣∣[ρ1Ns

(
θ0,θ1

)
−Nρ1s

(
θ0,θ1

)]
−
[
ρ1Ns

(
θ0,θ2

)
−Nρ1s

(
θ0,θ2

)]∣∣∣
= sup∥∥∥∥N

1
4 θ1−N

1
4 θ2

∥∥∥∥
L2
≤N

1
4 δN

√
N

∣∣∣∣[ 1

N
ρ1Ns(θ

0,N
1
4 θ1)−ρ1s(θ

0,N
1
4 θ1)

]

−
[

1

N
ρ1Ns(θ

0,N
1
4 θ2)−ρ1s(θ

0,N
1
4 θ2)

]∣∣∣∣= op (1),

(A.41)

where the last equality holds because N
1
4 δN ↓ 0 according to (A.31). This, in conjunction

with the fact that ρ1Ns

(
θ0,0

)
= ρ1s

(
θ0,0

)
= 0, implies that

sup
θ :
∥∥θ−θ0

∥∥
L2≤δN

∣∣∣ρ1Ns

(
θ0,θ − θ0

)
−Nρ1s

(
θ0,θ − θ0

)∣∣∣= op (1) . (A.42)

Analogously to the analysis of ρ1Ns

(
θ0,�

)
, it can be shown that

√
N

[
1

N
ρ2Ns

(
θ0,�

)
−ρ2s

(
θ0,�

)]
= Op (1) uniformly in �= θ − θ0 ∈�− θ0 and

sup
θ :
∥∥θ−θ0

∥∥
L2≤δN

∣∣∣ρ2Ns

(
θ0,θ − θ0

)
−Nρ2s

(
θ0,θ − θ0

)∣∣∣= op (1), (A.43)

where we use the fact that aρ2Ns

(
θ0,�

)
= ρ2Ns

(
θ0,a1/3�

)
and aρ2s

(
θ0,�

)
=

ρ2s

(
θ0,a1/3�

)
for any scalar constant a ≥ 0, ρ2Ns

(
θ0,0

)
= ρ2s

(
θ0,0

)
= 0, and that

N
1
6 δN ↓ 0. And it can be shown that

√
N

[
1

N
ρ3Ns

(
θ0,�

)
−ρ3s

(
θ0,�

)]
= Op (1) uniformly in �= θ − θ0 ∈�− θ0 and

sup
θ :
∥∥θ−θ0

∥∥
L2≤δN

∣∣∣ρ3Ns

(
θ0,θ − θ0

)
−Nρ3s

(
θ0,θ − θ0

)∣∣∣= op (1), (A.44)

where we use the fact that aρ3Ns

(
θ0,�

)
= ρ3Ns

(
θ0,a1/4�

)
and aρ3s

(
θ0,�

)
=

ρ3s

(
θ0,a1/4�

)
for any scalar constant a ≥ 0, ρ3Ns

(
θ0,0

)
= ρ3s

(
θ0,0

)
= 0, and that

N
1
8 δN ↓ 0.
To recap, up to this point, we have established that,∣∣∣ρlNs

(
θ0,θ − θ0

)
−Nρls

(
θ0,θ − θ0

)∣∣∣= op (1), uniformly in θ ∈ BδN
N

(
θ0
)
,
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for l = 1,2,3. These results validate our passing from ρlNs to Nρls, for l = 1,2,3, in θ ∈
BδN

N

(
θ0
)

later. However, it would be invalid to pass from ρ4Ns to Nρ4s in θ ∈ BδN
N

(
θ0
)

in
the same way, because

sup
θ : ‖θ−θ0‖L2≤δN

∣∣∣ρ4Ns

(
θ0,θ − θ0

)
−Nρ4s

(
θ0,θ − θ0

)∣∣∣
= sup

θ : ‖θ−θ0‖L2≤δN

√
N

∣∣∣∣ 1

N
ρ4Ns

(
θ0,N1/2

(
θ − θ0

))
−Nρ4s

(
θ0,N1/2

(
θ − θ0

))∣∣∣∣
= sup

θ : ‖N1/2(θ−θ0)‖L2≤N1/2δN

√
N

∣∣∣∣ 1

N
ρ4Ns

(
θ0,N1/2

(
θ − θ0

))
−Nρ4s

(
θ0,N1/2

(
θ − θ0

))∣∣∣∣
�= op (1), (A.45)

where the equality in (A.45) follows from the fact that aρ4Ns

(
θ0,�

)
= ρ4Ns

(
θ0,a�

)
and

aρ4s

(
θ0,�

)
= ρ4s

(
θ0,a�

)
for any scalar constant a ≥ 0. In the final step of (A.45), one

is unable to establish the subject to be op (1) because there is no guarantee that N1/2δN =
op (1), that is, δN does not shrink to 0 fast enough (it is only op

(
N−1/4

)
, as specified in

(A.31)).
Combining (A.39) and (A.42)–(A.44), we have

4∑
�=1

ρ�Ns

(
θ0,θ − θ0

)
= N

4∑
�=1

ρ�s

(
θ0,θ − θ0

)
+
[
ρ4Ns

(
θ0,θ − θ0

)
−Nρ4s

(
θ0,θ − θ0

)]
+op (1)

= N ·MDD
[
ms (Y,X,θ) |zs

]2+ ρ̃4Ns

(
θ0,θ − θ0

)
+op (1), (A.46)

where each op (1) holds uniformly in θ ∈ BδN
N

(
θ0
)

, and

ρ̃4Ns

(
θ0,θ − θ0

)
≡ ρ4Ns

(
θ0,θ − θ0

)
−Nρ4s

(
θ0,θ − θ0

)
.

Plugging (A.46) in (A.34) yields

min
θ∈�N∩�R

SN (θ)

≤ inf
θ0∈�I∩�R

⎡⎣ min
θ∈B

δN
N (θ0)

T−R∑
s=1

[
SNs

(
θ0
)
+N ·MDD

[
ms (Y,X,θ) |zs

]2+ ρ̃4Ns

(
θ0,θ − θ0

)]⎤⎦
+op (1)

= inf
θ0∈�I∩�R

⎡⎣SN

(
θ0
)
+ min

θ∈B
δN
N (θ0)

T−R∑
s=1

[
N ·MDD

[
ms (Y,X,θ) |zs

]2+ ρ̃4Ns

(
θ0,θ − θ0

)]⎤⎦
+op (1) . (A.47)

Part II. In this part, we establish a stochastic upper bound for minθ∈�N∩�R SN (θ), by

examining smaller neighborhoods of θ0 (compared with BδN
N

(
θ0
)

), namely Bδ̃N
N

(
θ0
)

.
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Specifically, recalling that δs,N = sup
θ∈�I∩�R

∥∥�N θ − θ
∥∥

L2 = o
(

N−1/2
)

by Assumption

3.3(i), we pick a positive sequence δ̃N ↓ 0 such that

δ̃N ≤ δN, δ̃N = o
(

N−1/2
)
, and δs,N = o

(
δ̃N

)
. (A.48)

Let Bδ̃N
N

(
θ0
)
≡

{
θ ∈�N ∩�R :

∥∥∥θ − θ0
∥∥∥

L2
≤ δ̃N

}
. It is helpful to note that Bδ̃N

N

(
θ0
)

defined similarly to BδN
N

(
θ0
)

, but with a smaller radius δ̃N .

Analogously to the analysis of ρ1Ns

(
θ0,�

)
shown in (A.40)–(A.42), it can be shown

that

√
N

[
1

N
ρ4Ns

(
θ0,�

)
−ρ4s

(
θ0,�

)]
= Op (1) uniformly in �= θ − θ0 ∈�− θ0,

and

sup
θ :
∥∥θ−θ0

∥∥
L2≤δ̃N

∣∣∣ρ̃4Ns

(
θ0,θ − θ0

)∣∣∣
= sup

θ :
∥∥θ−θ0

∥∥
L2≤δ̃N

∣∣∣ρ4Ns

(
θ0,θ − θ0

)
−Nρ4s

(
θ0,θ − θ0

)∣∣∣
= sup

θ :
∥∥θ−θ0

∥∥
L2≤δ̃N

√
N

∣∣∣∣ 1

N
ρ4Ns

(
θ0,
√

N
(
θ − θ0

))
−Nρ4s

(
θ0,
√

N
(
θ − θ0

))∣∣∣∣
≤ sup

‖�‖L2≤N
1
2 δ̃N

√
N

∣∣∣∣ 1

N
ρ4Ns

(
θ0,�

)
−Nρ4s

(
θ0,�

)∣∣∣∣
= op (1), (A.49)

where we use the fact that aρ4Ns

(
θ0,�

)
= ρ4Ns

(
θ0,a�

)
and aρ4s

(
θ0,�

)
=

ρ4s

(
θ0,a�

)
for any scalar constant a ≥ 0, ρ4Ns

(
θ0,0

)
= ρ4s

(
θ0,0

)
= 0, and that

N
1
2 δ̃N ↓ 0.
Continuing with (A.47),

min
θ∈�N∩�R

SN (θ)

≤ inf
θ0∈�I∩�R

⎡⎣SN

(
θ0
)
+ min

θ∈B
δN
N (θ0)

T−R∑
s=1

[
N ·MDD

[
ms (Y,X,θ) |zs

]2+ ρ̃4Ns

(
θ0,θ − θ0

)]⎤⎦
+op (1) .

≤ inf
θ0∈�I∩�R

⎡⎣SN

(
θ0
)
+ min

θ∈B
δ̃N
N (θ0)

T−R∑
s=1

[
N ·MDD

[
ms (Y,X,θ) |zs

]2+ ρ̃4Ns

(
θ0,θ − θ0

)]⎤⎦
+op (1)
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= inf
θ0∈�I∩�R

⎡⎣SN

(
θ0
)
+ min

θ∈B
δ̃N
N (θ0)

N
T−R∑
s=1

MDD
[
ms (Y,X,θ) |zs

]2

⎤⎦+op (1), (A.50)

where the inequality in (A.50) follows from that δ̃N ≤ δN as specified in (A.48), and the last
step in (A.50) follows from (A.49).

Part III. Next, we first show that the term min
θ∈B

δ̃N
N

(
θ0
)N

∑T−R
s=1 MDD

[
ms (Y,X,θ) |zs

]2
in (A.50) can be dropped asymptotically and then derive the asymptotic null distribution of

infθ0∈�I∩�R
SN

(
θ0
)

. The non-negativity of MDD implies that

min
θ∈B

δ̃N
N

(
θ0
)N

T−R∑
s=1

MDD
[
ms (Y,X,θ) |zs

]2 ≥ 0. (A.51)

According to the third condition in (A.48), that is, sup
θ∈�I∩�R

∥∥�N θ − θ
∥∥

L2 = o
(
δ̃N

)
, it

holds that
∥∥∥�N θ0− θ0

∥∥∥
L2
≤ δ̃N, or equivalently, �Nθ0 ∈ Bδ̃N

N

(
θ0
)

for all θ0 ∈ �I ∩�R

and large enough N. Therefore,

min
θ∈B

δ̃N
N

(
θ0
)N

T−R∑
s=1

MDD
[
ms (Y,X,θ) |zs

]2 ≤ N
T−R∑
s=1

MDD
[
ms

(
Y,X,�Nθ0

)
|zs

]2
(A.52)

for all θ0 ∈�I ∩�R and large enough N. Then for all θ0 ∈�I ∩�R,

0≤ N
T−R∑
s=1

MDD
[
ms

(
Y,X,�Nθ0

)
|zs

]2

= N
T−R∑
s=1

MDD
[
ms

(
Y,X,�Nθ0

)
−ms

(
Y,X,θ0

)
|zs

]2

= Ndw

(
�Nθ0,θ0

)2 ≤
[

N1/2 sup
θ0∈�I∩�R

dw

(
�Nθ0,θ0

)]2

= o(1),

where the first equality follows from Lemma A.1 and the fact that MDD[
ms

(
Y,X,θ0

)
|zs

]2 = 0, and the last equality follows from Assumption 3.3(ii). It follows

that

sup
θ0∈�I∩�R

N
T−R∑
s=1

MDD
[
ms

(
Y,X,�Nθ0

)
|zs

]2 = o(1) . (A.53)

Combining (A.51)–(A.53) yields

sup
θ0∈�I∩�R

min
θ∈B

δ̃N
N

(
θ0
)N

T−R∑
s=1

MDD
[
ms (Y,X,θ) |zs

]2 = o(1) . (A.54)
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As a result, substituting (A.54) into (A.50) delivers

min
θ∈�N∩�R

SN (θ)

≤ inf
θ0∈�I∩�R

⎧⎨⎩SN

(
θ0
)
+ min

θ∈B
δ̃N
N

(
θ0
)N

⎡⎣T−R∑
s=1

MDD
[
ms (Y,X,θ) |zs

]2⎤⎦⎫⎬⎭+op (1)

= inf
θ0∈�I∩�R

SN

(
θ0
)
+op (1) . (A.55)

Now, we show that if we write minθ∈�N∩�R SN (θ) = infθ0∈�I∩�R
SN

(
θ0
)
− cN +

op (1), we must have 0≤ cN ≤ c̄N, where

c̄N ≡− inf
θ0∈�I∩�R

min
θ∈B

δN
N

(
θ0
)

T−R∑
s=1

ρ̃4Ns

(
θ0,θ − θ0

)
. (A.56)

Let II
(
θ0
)
=min

θ∈B
δN
N

(
θ0
)∑T−R

s=1 N ·MDD
[
ms (Y,X,θ) |zs

]2 . As above, we can also show

that supθ0∈�I∩�R
II
(
θ0
)
= op (1) . Note that

min
θ∈�N∩�R

SN (θ)

= inf
θ0∈�I∩�R

⎡⎣SN

(
θ0
)
+ min

θ∈B
δN
N (θ0)

T−R∑
s=1

[
N ·MDD

[
ms (Y,X,θ) |zs

]2+ ρ̃4Ns

(
θ0,θ − θ0

)]⎤⎦
+op (1)

≥ inf
θ0∈�I∩�R

⎡⎣SN

(
θ0
)
+ II

(
θ0
)
+ min

θ∈B
δN
N (θ0)

T−R∑
s=1

ρ̃4Ns

(
θ0,θ − θ0

)⎤⎦+op (1)

= inf
θ0∈�I∩�R

⎡⎣SN

(
θ0
)
+ min

θ∈B
δN
N (θ0)

T−R∑
s=1

ρ̃4Ns

(
θ0,θ − θ0

)⎤⎦+op (1)

≥ inf
θ0∈�I∩�R

SN

(
θ0
)
+ inf

θ0∈�I∩�R

min
θ∈B

δN
N (θ0)

T−R∑
s=1

ρ̃4Ns

(
θ0,θ − θ0

)
+op (1)

= inf
θ0∈�I∩�R

SN

(
θ0
)
− c̄N +op (1) .

This implies that 0≤ cN ≤ c̄N .
Lastly, by Theorem 3.1(i) and the extended continuous mapping (see, e.g., Theorem

1.11.1 in van der Vaart and Wellner (1996)), we have

inf
θ0∈�I∩�R

SN

(
θ0
) L−→ inf

θ0∈�I∩�R

T−R∑
s=1

[
Bs

(
θ0
)
+Cs

(
θ0
)]

,

which, in conjunction with (A.55), complete the proof. �
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Proof of Theorem 3.4. Let δN be the same as the one specified by (A.31) in the proof
of Theorem 3.3. By Theorem 3.1,

sup
θ∈�

∣∣∣∣∣∣ 1

N
SN (θ)−

T−R∑
s=1

MDD
[
ms (Y,X,θ) |zs

]2∣∣∣∣∣∣ p−→ 0. (A.57)

Since � is compact under ‖·‖c by Lemma A.3, it follows from the theorem of the maximum
and the continuous mapping theorem that

min
θ∈�∩�R

1

N
SN (θ)= min

θ∈�∩�R

T−R∑
s=1

MDD
[
ms (Y,X,θ) |zs

]2+op (1) . (A.58)

Let θ̃N ∈ argmin
θ∈�∩�R

SN (θ). Note that

0≤ min
θ∈�N∩�R

1

N
SN (θ)− min

θ∈�∩�R

1

N
SN (θ)

≤ 1

N
SN

(
�N θ̃N

)
− 1

N
SN

(
θ̃N

)
=

∣∣∣∣∣∣
T−R∑
s=1

MDD
[
ms

(
Y,X,�N θ̃N

)
|zs

]2−
T−R∑
s=1

MDD
[
ms

(
Y,X,θ̃N

)
|zs

]2

∣∣∣∣∣∣+op (1)

%
T−R∑
s=1

{
MDD

[
ms

(
Y,X,�N θ̃N

)
−ms

(
Y,X,θ̃N

)
|zs

]2
}1/2

+op (1)

≤ (T−R)1/2

⎧⎨⎩
T−R∑
s=1

MDD
[
ms

(
Y,X,�N θ̃N

)
−ms

(
Y,X,θ̃N

)
|zs

]2

⎫⎬⎭
1/2

+op (1)

%
∥∥∥�N θ̃N − θ̃N

∥∥∥
L2
+op (1)

= op (1), (A.59)

where the first equality holds because of the uniform asymptotic ‖·‖L2 -equicontinuity of
1
N SN (θ)−∑T−R

s=1 MDD
[
ms (Y,X,θ) |zs

]2 (implied by (A.57) or by Theorem 3.1 directly)

and the fact that
∥∥∥�N θ̃N − θ̃N

∥∥∥
L2
= o(δN) with δN ↓ 0, the third inequality follows from

Lemma A.2,13 the fourth inequality holds by Cauchy–Schwarz inequality, and the last
inequality holds by Lemma 3.1.

(A.58) and (A.59) imply

1

N
ŜN = min

θ∈�N∩�R

1

N
SN (θ)= min

θ∈�∩�R

T−R∑
s=1

MDD
[
ms (Y,X,θ) |zs

]2+op (1) .

13The finite moments requirement in Lemma A.2 can be easily verified by Assumption 3.1(ii), together with the
result that |ms (Y,X,θ)| % |Y|+1, which is established in (A.22) in the proof of Theorem 3.1.

https://doi.org/10.1017/S0266466623000403 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000403


56 SHENGJIE HONG ET AL.

If �I ∩�R = ∅, then ∀ θ ∈ �∩�R it holds that
∑T−R

s=1 MDD
[
ms (Y,X,θ) |zs

]2
> 0. The

compactness of �∩�R guarantees that

min
θ∈�∩�R

T−R∑
s=1

MDD
[
ms (Y,X,θ) |zs

]2
> 0,

which completes the proof.14 �

Proof of Theorem 3.5. Recall that m∗is (θ) = mis (θ)vi Note that S∗Ns (θ) = S∗Ns,1 (θ)+
S∗Ns,2 (θ), where S∗Ns,1 (θ) = − 1

N
∑

1≤i �=j≤N m∗is (θ)m∗js (θ)κij,s and S∗Ns,2 (θ) =
2
N
∑

1≤i �=j≤N m∗is (θ)κij,s
1
N
∑N

k=1 m∗ks (θ) . Note that

S∗Ns,2 (θ)=
2

N2

∑
1≤i�=j≤N

m∗is (θ)2 κij,s+ 2

N2

∑
1≤i�=j≤N

m∗is (θ)m∗js (θ)κij,s+ (N−1)(N−2)

N2 NU
∗
2Ns,

whereU∗2Ns=
(N

3
)−1∑

1≤i<j≤k≤N ψs

(
ξ∗i ,ξ∗j ,ξ∗k ;θ

)
, ξ∗i = (ξ ′i ,vi)

′ andψ∗s (ξ∗i ,ξ∗j ,ξ∗k ;θ)=
1
3 [m∗is (θ)m∗ks (θ)κij,s +m∗is (θ)m∗js (θ)κik,s +m∗js (θ)m∗ks (θ)κjk,s+m∗js (θ)m∗is (θ)κjk,s+
m∗ks (θ)m∗is (θ)κjk,s +m∗ks (θ)m∗js (θ)κik,s]is a symmetrized version of ψ0s

(
ξi,ξj,ξk;θ

) ≡
2m∗is (θ)m∗ks (θ)κij,s. Note that

E
∗ [ψs

(
ξ∗1 ,ξ∗2 ,ξ∗3 ;θ

)]= 0, E∗
[
ψs

(
ξ∗1 ,ξ∗2 ,ξ∗3 ;θ

) |ξ∗1 ]= 0 and

E
∗ [ψs

(
ξ∗1 ,ξ∗2 ,ξ∗3 ;θ

) |ξ∗1 ,ξ∗2 ]= 1

3
m∗1s (θ)m∗2s (θ)E3(κ13,s+κ23,s)≡ h(2)s

(
ξ∗1 ,ξ∗2 ;θ

)
.

Let h(3∗)s
(
ξ∗1 ,ξ∗2 ,ξ∗3 ;θ

) = ψs
(
ξ∗1 ,ξ∗2 ,ξ∗3 ;θ

) − [h(2)s
(
ξ∗1 ,ξ∗2 ;θ

) + h(2)s
(
ξ∗1 ,ξ∗3 ;θ

) + h(2)s(
ξ∗2 ,ξ∗3 ;θ

)
]. By Hoeffding’s decomposition in (A.15), we have U

∗
2Ns (θ) = 3H∗2Ns (θ)+

H
∗
3Ns (θ), where

H2Ns (θ)=
(

N

3

)−1 ∑
1≤i<j≤N

h(2∗)
s

(
ξ∗i ,ξ∗j ;θ

)
and H3Ns (θ)=

(
N

3

)−1 ∑
1≤i<j≤k≤N

h(3∗)
s

(
ξ∗i ,ξ∗j ,ξ∗k ;θ

)
,

where h(2∗)s

(
ξ∗i ,ξ∗j ;θ

)
= 1

N
∑N

k=1 h(2)s (ξ∗i ,ξ∗j ;zk,s,θ)= 1
3 m∗is (θ)m∗js (θ)Ek(κik,s+κjk,s).

Similarly, S∗Ns,1 (θ) = N−1
N NU

∗
1Ns (θ), where U

∗
1N (θ) = −(N

2
)−1∑

1≤i �=j≤N m∗is (θ)m∗js
(θ)κij,s. Then we have

S∗Ns (θ)= NU
∗
Ns (θ)+NH

∗
3Ns (θ)+

2

N2

∑
1≤i�=j≤N

m∗is (θ)2 κij,s− 3N−2

N
U
∗
1Ns (θ)−

3N−2

N
U
∗
2Ns,

where U
∗
Ns (θ) = U

∗
1Ns (θ) + 3H∗2Ns (θ) = (N

2
)−1∑

1≤i<j≤N h∗s (ξ∗i ,ξ∗j ;θ) and

h∗s (ξ∗i ,ξ∗j ;θ)= m∗is (θ)m∗js (θ) κ̆ij,s with κ̆ij,s = Ek(κik,s+κjk,s)−κij,s.

14Note that �R is a linear subspace, so it is closed, which, in conjunction with the compactness of �, implies the
compactness of �∩�R.
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Define

F∗1s ≡ {m∗s (·;θs) : (RT ×X T ×R)→ R : m∗s ((y,x,v);θs)= {[ys−g(xs)]

+
R∑

r=1

φs,r
[
yT−R+r−g(xT−R+r)

]}v
for some θs =

(
φ′s,g

)′ ∈�s×G}, (A.60)

F∗2s ≡ {f ∗s (·, · ;θs) : S∗ ×S∗ → R : f ∗s
(
ξ∗1 ,ξ∗2 ;θs

)= m∗s
(
ξ∗1 ;θs

)
m∗s

(
ξ∗2 ;θs

)
κ̆12,s

for some θs =
(
φ′s,g

)′ ∈�s×G}, (A.61)

and

F∗3s ≡ {f ∗s (·, ·, · ;θs) : S∗ ×S∗ ×S∗ → R : f ∗s
(
ξ∗1 ,ξ∗2 ,ξ∗3 ;θs

)= m∗s (ξ1;θs)m∗s (ξ2;θs) κ̆12,s

+m∗s (ξ1;θs)m∗s (ξ3;θs) κ̆13,s+m∗s (ξ2;θs)m∗s (ξ3;θs) κ̆23,s

for some θs =
(
φ′s,g

)′ ∈�s×G}, (A.62)

where S∗ = S×R. It is easy to see the envelope functions for F∗1s, F
∗
2s, and F∗3s are respec-

tively given by F∗1
(
ξ∗
) ≡ K (|y|+1) |v|, F∗2

(
ξ∗1 ,ξ∗2

) = K(|y1| + 1)(|y2| + 1)κ̆12,s |v1v2|,
and F∗3

(
ξ∗1 ,ξ∗2 ,ξ∗3

)= K{(|y1|+1)(|y2|+1)κ̆12,s |v1v2| + (|y1|+1)(|y3|+1)κ̆13,s |v1v3|+
(|y2|+1)(|y3|+1)κ̆23,s |v2v3|}. Following the analysis in the proof of Theorem 3.1, we can
readily show that

logN[]
(
ε
∥∥F∗�

∥∥, F∗�s, ‖·‖L2
)% ln

(
1

ε

)
+ 1

ε
for �= 1,2,3. (A.63)

Part I. Proof of part (i). It is easy to see that E∗[F∗2
(
ξ∗1 ,ξ∗2

)2] <∞, verifying condition
(a) in Theorem 5.6 of AG. As in the proof of Theorem 3.1, we can readily show that

lim
δ→0

limsup
N→∞

E
o∗
[∫ δ

0
logNN,2

(
ε,F∗2s

)
dε

]

= lim
δ→0

limsup
N→∞

E
o∗
⎡⎣∫ δ

0

2∑
r=0

logN

(
ε

2
√

3c2,r
,F∗2s, ‖·‖L2

(
Ur

N×P∗2−r
))dε

⎤⎦
% lim

δ→0
limsup
N→∞

[∫ δ

0
log

1

ε
dε+E

∗
{[

U1
N(P∗1F2

2)
]ν/2+

[
U2

N(F∗2
2 )

]ν/2
}
δ1−ν

]
= 0,

where E
o∗ is the outer-expectation associated with E

∗, the last equality follows from

the fact that E
∗
{[

U2
N(F∗2

2 )
]ν/2

}
≤

{
E
∗ [U2

N(F∗2
2 )

]}ν/2 = {E∗
(

F∗2
2

)
}ν/2 < ∞ by

Jensen inequality and similarly E
∗{
[
U1

N(P∗1F∗2
2 )

]ν/2}<∞. This verifies condition (c) in

Theorem 5.6 of AG. Note that N

(
ε

2
√

3c2,r
,F∗2s, ‖·‖L2

(
Ur

N×P∗2−r
)) = 1 a.s. for r = 0,1,2

and for sufficiently large ε, say, ε ≥ ε∗0 . It follows that for some small ε > 0 and by the
above calculations,
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E
o∗
∣∣∣∣∫ ∞

0
logNN,2

(
ε,π2,2F∗2s

)
dε

∣∣∣∣1+ε

%
∣∣∣∣∣
∫ ε∗0

0
log

1

ε
dε

∣∣∣∣∣
1+ε

+E

{[
U1

N(P∗1F∗2
2 )

](1+ε)ν/2+
[
U2

N(F∗2
2 )

](1+ε)ν/2
}
<∞,

where the last inequality holds by choosing ε sufficiently small such that (1+ ε)ν/2 ≤ 1.
This verifies the uniform integrability of the sequence

{∫∞
0 logNN,2

(
ε,F∗2s

)
dε
}∞

N=1 and
thus condition (b) in Theorem 5.6 of AG.

Then by Theorem 5.6 of AG, we have NU
∗
Ns (θ)�⇒C

∗
s (θ) in L∞ (�), where C∗s (θ)=

C
(
h∗s (·, · ;θ)) and h∗s

(
ξ∗i ,ξ∗j ;θs

)
=m∗s

(
ξ∗i ;θs

)
m∗s

(
ξ∗j ;θs

)
κ̆12,s=mis (θ)mjs (θ)vivjκ̆12,s.

We now argue that
{
C
∗
s (θ)

}
share the same finite-sample distribution as that of

{Cs (θ)= C (hs (·, · ;θ))} when θ ∈ �I . That is, {NU
∗
Ns(θ(1)), . . . , NU

∗
Ns(θ(L))} has the

same limiting distribution as {NUNs(θ(1)), . . . ,NU
∗
Ns(θ(L))} for any finite L when we restrict

θ(1), . . . ,θ(L) to lie in �I . Without loss of generality, we can focus on the case L= 1.
Note that for θ ∈�I, hs(ξi,ξj;θ)= mis (θ)mjs (θ) κ̆12,s and h∗s (ξ∗i ,ξ∗j ;θs)= hs(ξi,ξj;θ)

vivj. Let {λk} denote an enumeration of the positive eigenvalues of λ�(·)= E [hs (·,ξ1;θ)
�(ξ1)] in decreasing order and according to their multiplicity. The corresponding orthonor-
mal eigenfunctions are denoted by {�k (·)}∞k=1 . It follows from a version of Mercer’s
theorem (e.g., Theorem 2 of Sun, 2005) that

h(K)
s (ξ,ξ̃ ;θs)=

K∑
k=1

λk�k (ξ)�k(ξ̃ )→
∞∑

k=1

λk�k (ξ)�k(ξ̃ )≡ hs(ξ,ξ̃ ;θs)

for all ξ and ξ̃ on the support of the probability law of ξi. Let

VN = 1

N

N∑
i=1

N∑
j=1

hs
(
ξi,ξj;θs

)
and V∗N =

1

N

N∑
i=1

N∑
j=1

hs
(
ξi,ξj;θs

)
vivj,

V(K)
N = 1

N

N∑
i=1

N∑
j=1

h(K)
s

(
ξi,ξj;θs

)
and V(K∗)

N = 1

N

N∑
i=1

N∑
j=1

h(K)
s

(
ξi,ξj;θs

)
vivj.

Noting that VN −V(K)
N ≥ 0, it is standard to show that

E

∣∣∣VN −V(K)
N

∣∣∣= ∞∑
k=K+1

λk
1

N

N∑
i=1

E

[
�k (ξi)

2
]
=

∞∑
k=K+1

λk → 0 as K →∞ and

E
∗ ∣∣∣V∗N −V(K∗)

N

∣∣∣= ∞∑
k=K+1

λk
1

N

N∑
i=1

E
∗ [�k (ξi)

2 v2
i

]
=

∞∑
k=K+1

λk → 0 as K →∞.

Let ζi = (�1 (ξi), . . . ,�K (ξi))
′ and ζ∗i = (�1 (ξi), . . . ,�K (ξi))

′ vi. For any fixed K, it is
trivial to show under Assumption 3.1 that

1√
N

N∑
i=1

ζi
L−→ N (0,IK) and

1√
N

N∑
i=1

ζ∗i
L−→ N (0,IK) .
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Then by the continuous mapping theorem, we have

V(K)
N =

K∑
k=1

λk

⎛⎝ 1

N1/2

N∑
i=1

�k (ξi)

⎞⎠2
L−→

K∑
k=1

λkW2
k and

V(K∗)
N =

K∑
k=1

λk

⎛⎝ 1

N1/2

N∑
i=1

�k (ξi)vi

⎞⎠2
L−→

K∑
k=1

λkW2
k ,

where {Wk} is a sequence of independent N(0,1) random variables. These results, in

conjunction with Theorem 2 in Dehling, Durieu, and Volny (2009), imply that VN
L−→∑∞

k=1 λkW2
k and V∗N

L−→∑∞
k=1 λkW2

k . Consequently, we have

NUNs (θ)= VN − 1

N

N∑
i=1

hs (ξi,ξi;θ)= VN −
∞∑

k=1

λk
1

N

N∑
i=1

�k (ξi)
2 L−→

∞∑
k=1

λk

(
W2

k −1
)

and

NU
∗
Ns (θ)= V∗N −

1

N

N∑
i=1

h∗s
(
ξ∗i ,ξ∗i ;θs

)= VN −
∞∑

k=1

λk
1

N

N∑
i=1

�k (ξi)
2 v2

i
L−→

∞∑
k=1

λk

(
W2

k −1
)

.

That is, NU
∗
Ns (θ) share the same asymptotic distribution as NUNs (θ) when θ ∈ �I . As a

result, we have NU
∗
Ns (θ)�⇒ Cs (θ) in L∞ (�I).

Next, note that H
∗
3N (θ) is a third-order P∗-canonical U-process with the envelope

function for its associated kernel given by F∗3 . Following the analysis of U∗N (θ), it is easy to

show thatE∗
[
F∗3

(
ξ∗1 ,ξ∗2 ,ξ∗3

)]
<∞, limδ→0 limsup

N→∞
E

o∗ [∫ δ
0
[
logNN,2

(
ε,F∗3s

)]3/2 dε
]
= 0

and the sequence
{∫∞

0
[
logNN,2

(
ε,F∗3s

)]3/2 dε
}∞

N=1
is uniformly integrable. As a

result, N3/2
H
∗
3N (θ) converges to a Gaussian chaos process and supθ∈�

∣∣NH
∗
3N (θ)

∣∣ =
OP

(
N−1/2

)
. In addition, by the uniform law of large numbers for U-statistics,

2
N2

∑
1≤i �=j≤N m∗is (θ)2 κij,s = 2E∗

[
m̃1s (θ)

2 v2
1κ12,s

]
+ op(1) = 2E∗

[
m̃1s (θ)

2 κ12,s

]
=

Bs (θ)+ op(1)uniformly in θ ∈ �. Following the analysis of U∗Ns (θ), we can also show
that both NU

∗
1Ns (θ) and NU

∗
2Ns (θ) converge to Gaussian chaos processes. Consequently,

we have

S∗Ns (θ)�⇒ Bs (θ)+C
∗
s (θ), (A.64)

where the process
{
C
∗
s (θ)

}
coincides with {Cs (θ)} on �I .

Part II. Proof of part (ii). When θ /∈�I, (A.64) continues to hold, which implies that

μ−1
N S∗N (θ)= μ−1

N

T−R∑
s=1

S∗Ns (θ)= OP

(
μ−1

N

)
uniformly in θ ∈�\�I .
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By Theorem 3.1(ii) and Assumption 3.3, we can show that

min
θ∈�N∩�R

1

N
SN (θ)

p−→ min
θ∈�∩�R

T−R∑
s=1

{
MDD

[
ms (Y,X,θ) |zs

]}2 .

Then under H1 : �I ∩�R =∅,

μ−1
N Ŝ∗N = min

θ∈�N∩�R

[
μ−1

N S∗N (θ)+ 1

N
SN (θ)

]
= min

θ∈�N∩�R

[
1

N
SN (θ)

]
+Op

(
μ−1

N

)
p−→ min

θ∈�∩�R

T−R∑
s=1

{
MDD

[
ms (Y,X,θ) |zs

]}2 .

This completes the proof of the theorem. �
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