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SOME EXTENSIONS OF HARDY’S INEQUALITY

BY
LING-YAU CHAN

This note is concerned with some new integral inequalities which are
extensions of the results in [2]. The method by which these results are obtained
is due to D. C. Benson [1]. Throughout the present note we shall assume
1<p< and f(x) a non-negative measurable function. In [2], D. T. Shum
proved that:

THEOREM A. Let rx 1, and f(x)e L(0, b) or f(x) € L(a, ) according as r>1
or r<1, where a>0, b>0. If F(x) is defined by

jxfm d (r>1),
F(x)=< 7

Jm f(r) dt (r<i),

and if [§ x7"(xf)? dx <o in (i) and [ x7"(xf)? dx <o in (ii), then

b p p p(b
(i)J x"Fde+——b1"FP(b)S(—)J x"(xf)dx for r>1,
o r—1 r—=1/ %

oo p oo
(ii)j x—'mdx+T§—ral-'Fv(a)s(£—rH x(xf)Pdx for r<i,
with equality in (i) or (ii) only for f=0, where the constant [p/(r—1)]° or
[p/(1—r)]P is the best possible when the left side of (i) or (ii) is unchanged
respectively.

The case when r=1 was not discussed in [2]. In the present note we shall
discuss this case in detail. In fact, Theorem A fails when r= 1: since [jx~ " dx =
o and [Tx ! dx =, the integrals on the left sides of (i) and (ii) tend to infinity
as a—0+ and b—x, unless f(x) =0 a.e. However, if we decompose [0, ), the
interval of integration, into [0, 1] and [1,%), we then have the following
variants:

TueoreM 1. Let f(t) € L(x, ) for every x € (1, =), and F(x)= [% f(t) dt. Then
we have

o

(1a) Jm x1FP(x) dx SpPJ x~1(x logx f(x))? dx.

1
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More precisely, the following inequality holds for 1=a <b =oe:

o

where FP(a)loga at a=1 and FP(b)logb at b=o are interpreted as
lim,_,,, FP(a)loga and lim,_,., FP(b)logb respectively; and we have
lim,_,,, FP(a)log a=0 if either |{ x 'FP(x) dx <o or { x~'(x logx f(x))? dx <
© (1<c<®), and lim,_., F°(b)logh=0 if either [7x 'F°(x)dx<® or
{2 x7X(x logx f(x))? dx <o (1 < ¢ <®). Moreover, the constant factor p® is the best
possible in (la), and it is also the best possible in (1b) when the term
pLF?(b)log b — FP(a)log a] remains unchanged. Equal sign in (1a) or (1b) holds
if and only if F(x)= K log™"Px (K=0) in [1,®) or in [a, b) respectively.

b b

xFP(x) dx =< p"J x~}(x logx f(x))? dx + p[F?(b) log b— F?(a) log a],

a

ReMARK. When F(x)= Klog "Px, K>0, and a=1 or b=, all integrals
occurring in (1a) and (1b) are infinite. Hence equality in (1a), or in (1b) in the
case when a=1 or b=, holds if and only if both sides of the equality are
either infinite (if K>0) or zero (if K=0). The same situation arises in the
following Theorems 2-4.

TueoREM 2. Let f(t)€ L(0, x) for every x € (0, 1), and F(x)= [ f(t) dt. Then
we have

1

(2a) Il x'FP(x) dx < pPI x " '(x[log x|f(x))? dx.
0 0

More precisely, the following inequality holds for 0=a<b=1:

(2b) jb x 'FP(x) dx < p"j ’ x~(x|log x|f(x))? dx + pF?(b)log b — F?(a)log a],

a

where FP(a)loga at a=0 and FP(b)logb at b=1 are interpreted as
lim, o, FP(a)loga and lim,_,,_FP(b)logb respectively; and we have
lim,_,o. FP(a)log a =0 if either |5 x 'FP(x) dx < or [§ x '(x|log x|f(x))? dx <
o (0<c<1), and lim,_,_ F°(b)logb=0 if either (! x 'F?(x)dx<o or
Ji x Y(x|log x|f(x))? dx < (0 < ¢ <1). Moreover, the constant factor p® is the best
possible in (2a), and it is also the best possible in (2b) when the term
pLF?(b)log b— F?(a)log a] remains unchanged. Equal sign in (2a) or (2b) holds
if and only if F(x)= K|log x| "/?(K=0) in [0, 1] or in [a, b] respectively.

THEOREM 3. Let f(t)e L(1, x) for every x € (1,»), and F(x)= | f(t) dt. Then
we have

(3a) J‘:’ x{(F(x)/log x)° dx =< (,,—fi)p r M (xf(x))? dx.

1
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More precisely, the following inequality holds for 1=a <b=<o:

r x~'(F(x)/log x)? dx

) p \P(* p
<G or

where FP(a)/log?"'a at a=1 and FP(b)/log?™'b at b= are interpreted as
lim,_,,, F?(a)/log"’ ' a and lim,_,., F°(b)/log’ ' b respectively; and we have
lim,_,,, F?(a)/log? *a=0 if  either { x"1(F(x)/log x)? dx < or
5§ xM(xf(x))Pdx<o(1<c<x), and lim,_.F?(b)/logP 'b=0 if either
{2 x Y(F(x)log x)? dx < or [7x '(xf(x))? dx <o (1<c<%). Moreover, the
constant factor [p/(p—1)JP is the best possible in (3a), and it is also the best
possible in (3b) when the term (p/p—1)[F?(b)/log?~' b— F?(a)/log? ™" a] remains
unchanged. Equal sign in (3a) or (3b) holds if and only if F(x)=
Klog' "7 x (K=0) in [1,®) or in [a, b) respectively

[ FP(b)  F%(a) ]
log?~'b logP'a)

THEOREM 4. Let f(t)e L(x, 1) for every x€ (0, 1), and F(x)= (% f(t) dt. Then
we have

(4a) Ll x~!(F(x)/|log x|)? dx < (p—f—l)p L l x "1 (xf(x))? dx.

More precisely, the following inequality holds for 0=a<b=1:

b pfb

L x"}(F(x)/|log x|)? dxs<;—f—l-> L x 71 (xf(x))? dx
p [ F*(b)  F*(a) ]
p—1lllogblP™" [logal™' )

where FP(a)/|log alP™" at a=0 and F?(b)/|log b|°~' at b=1 are interpreted as
lim,_,o. F?(a)/|log al’~" and lim,_,,_ F?(b)/|log b|P~" respectively; and we have
lim,_o, FP(a)/llogalP™*=0 if either [{x '(F(x)/|logx|)?dx<x  or
fe x Mxf(x))Pdx<w (0<c<1), and lim,_,_ F?(b)/[logbP""'=0 if either
fLx Y (F(x)/|log x[)? dx <o or [ix ' (xf(x))P dx<o (0<c<1). Moreover, the
constant factor [p/(p—1)IP is the best possible in (4a), and it is also the best
possible in (4b) when the term (p/p—1)[F?(b)/|log b|P~' — F?(a)/|log a|°~"] re-
mains unchanged. Equal sign in (4a) or (4b) holds if and only if F(x)=
K |log x|'""? (K=0) in [0, 1] or in [a, b] respectively.

The proofs of Theorems 1-4 are similar to that of Theorem 2 in [2], so I only

give the proof of Theorem 1 in a very condensed form. The proof depends
upon the following lemma, which is essentially due to Benson [1, p.300]:

(4b)

LEmMmA 1 [2,Lemma 1]. Let u(x) be absolutely continuous on [a, b] with
u'(x)=0 a.e. in [a, b]. Also, suppose that Q(x) is positive and continuous on
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(a, b), and G(u, x) is continuously differentiable for x in [a, b] and u in the range
of the function u(x), with G,(u, x)>0. Then, if the integral exists,

b
J {Qu” +(vp)"* P(p-DGLP QY+ yG} dx
“ = y{G(u(b), b) - G(u(a), a)},

where vy is any positive number, p>1 and G,=(/0u)G(u,x), G,=
(8/0x)G(u, x). Equality holds if and only if the differential equation

, v 1/(p—-1) Gu 1/(p—1)
“ (p) (Q)

is satisfied for almost all x in [a, b].

Proof of Theorem 1. We first prove (1b) for 1<a<b<w. Let 1<a=sx=<
b <. Applying Lemma 1 with u(x)=—F(x)= —{ f(¢) dt, Q(x)=x?""log? x,
G(u, x) = —(—u)? log x, we get

j {7 (x Togx f(0)? +[(p — 1)y7®— y1x (= u)?} dx
‘ = y[-F?(b) log b+ F*(a) log a]

for every y=0. Since [(p—1)y?® V-] attains its minimum value —1/p® at
v=1/p?~!, (1b) follows immediately.

Next, consider the case when a=1 or b=«. From what we have just
proved we see that if fx '(xlogxf(x)’dx<w, then [Sx 'FP(x)dx=
f¢ x'FP(x) dx + pF®(a)log a <p® < x '(x logx f(x))” dx + pF*(c)log c=p° f{ x !
(x logx f(x))? dx + pFP(c)logc < for every ae(l,c), and it follows
that [$x'FP(x)dx<c. But [{x 'FP(x)dx<c implies FP(a)loga=
FP(a)[¢ x ' dx <[4 x 'FP(x) dx — 0 as a — 1+ (in fact Lemma 3 in [2] can also
be proved by this simple argument). Thus either [{x 'FP(x)dx<® or
S x 7 (x logx f(x))° dx < implies lim,_,,, F?(a)log a =0. On the other hand, if
[2x 'FP(x)dx <o, we have FP(b)logh=2F"(b){%x ' dx=<2f% x 'F°(x)dx—
0 as b—o. If [°x '(xlogxf(x))°dx<w, by a standard application of
Holder’s inequality (as in [3, pp. 20-21], for example) we have

o

F(b)= J’ f(x)x® VP logx (x® VP log x)~* dx
b

” Up( = (-1/p
= U x 7 (x logx f(x))? dx} {J (x logP/® Vx)™! dx}
b b

1/p

={] x e roge e ax] o= v t0g by,

and again we obtain lim,_,., F?(b)log b =0. So, we have proved (1b) for a=1
or b=o. (1a) is the special case of (1b) in which a=1 and b = .
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We now investigate the condition under which equality in (1b) or (1a) occurs.
When 1<a<b<», Lemma 1 shows that equality in (1b) holds if and only if
the differential equation u’' = (y/p)®"(G,/Q)"®~V s satisfied for almost all x
in [a, b], where y=1/pP~’. Calculation shows that this is equivalent to F(x)=
Klog '’ x in [a, b], where K is a non-negative constant.

Write I(a, B)

= JB {x7*(x logx f(x))? dx — pPx "' FP(x)} dx

a

+p P [FP(B)log B — F*(a)log a]
8
= j {x‘l(x logx f(x))? —p Px'FP(x)+p~?*! d—‘i [F?(x)log x]} dx.

We have I(a, B)=0 for 1<a<B<», and I(a, B)=0 if and only if F(x)=
Klog™'? x in [a, B]. Therefore equality in (1a) or in (1b) holds if and only if
F(x)=Klog "?x in [1, ) or in [a, b) respectively, and in this case both sides
of (1b) are equal and finite if 1 <a <b <. Thus, we have also shown that the
constant factor p? is the best possible in (1b) when 1<a <b <.

To see that the constant pP is the best possible in the general case, we
replace p? in (1a) and (1b) by a constant A and consider particular functions
f(x) to show that A =pP. In (1b) we put f(x)=(x log' ="' x)™* (¢ >0) when
a=1and 1<b<w, and we put f(x)=x log'***Px)™! (¢ >0) when 1<a<®
and b=, In (1a) we put

0, 1=x=<2
f(x)={ (1=x=2)

(xlog'*=* P x)71,  (x>2).

Straightforward calculation shows that in all cases, by letting e —0+ we obtain
A=pP.

This completes the proof of Theorem 1.

By applying Lemma 1, Theorems 2—4 are proved in a similar way. To prove
Theorem 2 we put u(x)=F(x)=3f(t) dt, Q(x)=x?"'(—logx)?, G(u,x)=
—(u)? log x. To prove Theorem 3 we put u(x) = F(x)= {3 f(t) dt, Q(x)=x""",
G(u, x) = u?/logP™" x. To prove Theorem 4 we put u(x)= — F(x)= -1 f(t) dt,
Q(x)=x""", G(u, x)= — (-~ u)?/(~log x)*~".
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