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Abstract. 2MASS has provided a three-dimensional map of the > 360°,
wrapped tidal tails of the Sagittarius (Sgr) dwarf spheroidal galaxy, as
traced by M giant stars. With the inclusion of radial velocity data for
stars along these tails, strong constraints exist for dynamical models of the
Milky Way-Sgr interaction. N-body simulations of Sgr disruption with
model parameters spanning a range of initial conditions (e.g., Sgr mass
and orbit, Galactic rotation curve, halo flattening) are used to find pa-
rameterizations that match almost every extant observational constraint
of the Sgr system. We discuss the implications of the Sgr data and mod-
els for the orbit, mass and M / L of the Sgr bound core as well as the
strength, flattening, and lumpiness of the Milky Way potential.

1. Observational Constraints

The relatively nearby Sagittarius (Sgr) dwarf galaxy offers the opportunity to
explore in exquisite detail the interaction of a satellite with its parent galaxy.
Moreover, the extensive Sgr tidal tail system gives sensitive leverage on the prop-
erties of the Galactic potential, much as polar ring galaxies have been exploited
to determine the properties of extragalactic systems (e.g., Sparke 2002).

Since Sgr's discovery by Ibata, Gilmore & Irwin (1994), this archetype of a
dwarf galaxy merger has remained difficult to study because its core (centered at
[l, b] == [6, -14]°), lies obscured by foreground dust and stars of the Galactic disk
and bulge. However, the Two Micron All Sky Survey (2MASS) has opened a new
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window on Sgr because of the reduced extinction by dust in the near infrared
(NIR) and because Sgr contains a significant population of M giant stars, which
are bright in the NIR. To improve the contrast of Sgr, these M giants can be
separated from foreground M dwarfs using the combination of 2MASS J H K;
photometry because of differential, surface gravity-sensitive opacity effects near
1.6/-l (Bessell & Brett 1988). Majewski et al. (2003a; MSWO hereafter) used this
method to make all-sky maps that reveal Sgr to be the primary source (> 80%)
of M giants in the high halo (IZecl > 20 kpc), excluding those bound in the
LMC and SMC (which actually show no M giant tidal tails themselves). The
Sgr M giants lie along a great circle tipped only 13.5° from a truly polar ring.

A three dimensional analysis is made possible by converting K; magnitudes
into photometric parallaxes using the red giant branch relation defined by the Sgr
core (for which we adopt [m - M] == 16.90). The resulting three dimensional dis-
tribution reveals a flattened, planar alignment with a < 2 kpc RMS spread, and
clear trailing (predominantly south of the Galactic Plane) and leading (predom-
inantly north of the Galactic Plane) tidal arms. Even without benefit of mod-
eling, the debris arms show clearly that Sgr is orbiting within a non-precessing
plane in an elliptical (approximately 3:1 or 4:1 apo:peri-Galacticon) orbit of rv14
kpc peri-Galacticon. Together the tidal arms wrap at least 360° around the sky,
and overlap at even greater length.

To constrain the dynamics of the Sgr-Milky Way interaction further, we
(e.g., Majewski et al. 2003b, Paper I hereafter) have been collecting radial
velocities of Sgr M giants with the Swope 1-m, KPNO 2.1 m, YALO 1.5 m
and Bok 2.3 m telescopes. As of July 2003, our sample of M giant velocities,
distributed around the Sgr plane, is approaching 900 M giants. The rv 5 km s-l
precision velocities provide critical input to Sgr models, and help compensate for
remaining vagaries in the M giant spatial distribution due to contamination by
disk/bulge M giants and random (and perhaps systematic) errors in the distance
scale.

2. N-body Simulations

To understand in detail the Sgr interaction with the Milky Way (MW), we
(Law et al. 2003b, Paper II) have been using N-body simulations based on
those developed by Johnston et al. (1996, 1999). Early results of this work are
described in Law et al. (2003a). For now these models are constructed with a
focus on matching the structure and kinematics of the Sgr tails; future efforts
will aim to understand the detailed nature of the Sgr core. Our immediate goal is
to use the extensive tidal tail system revealed by 2MASS M giants as dynamical
probes of the MW potential - its size, overall flattening, and lumpiness - and
the global character of the Sgr dwarf - its orbit, mass, and dark matter content.

Sgr is represented by 105 self-gravitating particles (for both light and dark
matter) distributed according to a Plummer model. This satellite orbits in a
rigid MW potential represented by a Miyamoto-Nagai (1975) disk, Hernquist
(1990) spheroid, and logarithmic halo - iphalo == v~aloln([R2 + (z/q)2 + d2])
- constrained to fit the established Galactic HI/CO rotation curve interior to
the Solar Circle. The solar distance to the Galactic Center, R8 , the distance
of Sgr, dsgr , and the circular speed of the Galaxy, Vhalo, are varied but Sgr's
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radial velocity is fixed at 171 km s-l (Ibata et al. 1997, "197"). The velocity
vector of Sgr is constrained to lie within the orbital plane established by the M
giants, and the satellite is evolved through the simulated Galactic potential for
five orbits using the self-consistent field code of Hernquist & Ostriker (1992).

Both full N-body simulations as well as less CPU-intensive, test particle
models! (when appropriate - e.g., to explore gross orbital properties) are used
to explore the parameter space of Galactic potential strength and shape, Sgr or-
bit, and Sgr mass; the ranges of some parameters explored are given in Table 1.
Models are evaluated by their ability to reproduce a set of observed properties
of the M giant data, among the most important and discriminatory including
the apo-Galacticon of the leading arm, the mean positional, velocity and density
trends of the trailing arm, velocity and positional spreads of the debris, as well
as the amount of precession in the arms (see §3). Some degeneracy of parameter
combinations yielding reasonable fits to the data is found, but fixing q ~ 1 and
R8 ~ 8.5 kpc yields a "best-fitting" solution given by the "adopted model" in
Table 1. The latter model (subject to change with further experimentation) is
characterized by a 0.75 Gyr radial period Sgr orbit with a 14 kpc peri- and 52
kpc apo-Galacticon, and present space velocity of 326 km s-l. In this model the
observed M giant tidal arms correspond to debris lost on at least 2.5 orbits over
the last t".J1.8 Gyr or more. For any R8~8.5, the MW mass within 50 kpc is
restricted to 3.7-5.1x1011 M8' which is slightly smaller than the recent deter-
mination of 5.5 x 1011 M8 by Sakamoto, Chiba & Beers (2003) from an analysis
of the velocities of hundreds of random halo objects. The model timescales and
masses scale with the potential, while the apo- and peri-Galactica scale with the
M giant distance scale, which was based on the assumed dsgr ~ 24 kpc.

Table 1. Some Parameters in the N-body Models

Parameter
Galactocentric distance (R8' kpc)
MW halo circular velocity (Vhalo, km s-l)
MW halo flattening (q)
MW halo softening (d, kpc)
Sgr distance (ds gr , kpc)
Sgr angular momentum (kpc km s-l)
Present Sgr mass (M0 )

3. Constraints on the Halo Flattening

Range Explored
7.5 - 9.5
200 - 220
0.8 - 1.0
0-50
22 - 26

4309 - 5427
4 x 107 - 1 X 109

"Adopted"
8.5
210
1.0
9
24

4788
3 x 108

Because the Sgr orbital plane is not strictly polar, it should precess in a flat-
tened potential. Yet the observed debris plane is remarkably well collimated,
suggesting a nearly spherical MW halo at the distance of Sgr (Ibata et al. 2001,
MSWO). To quantify this, separate planes are fit to t".J 1200 sections of the lead-
ing and trailing arm corresponding to debris t".J 1800 out of orbital phase (but up

1A single test particle orbiting in the Galactic potential with the same dynamical constraints.
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to 3000 separated), and the angle between the planes measured. Errors reflect
the quadrature sum of the errors in fitting the two planes. Table 2 gives the re-
sults of this comparison for the observed M giant debris and for closely matching
simulations varying only by the degree of flattening in the halo potential.

Table 2. Amount of Precession for Different Halo Flattenings

Data Set
2MASS M giants
simulation
simulation
simulation
simulation

q

1.00
0.95
0.90
0.85

Precession (degrees)
1.7±2.4
2.2 ± 1.6
3.5 ± 1.7
5.6 ± 1.4
10.7 ± 1.0

As may be seen, the distribution of observed M giants is fully consistent with
a q == 1, spherical halo potential, although a 1a error permits a slight flattening
of the halo (q == 0.95). The constraint on halo flattening offered by the Sgr tidal
arms will strengthen as the length over which the arms are traced increases, both
by M giants (possible when we verify the radial velocity membership of potential
M giants at even greater separations from the core - an observing program in
progress) and by use of older stellar tracers that can track the arms beyond the
length that can be traced with the rv 2-3 Gyr old Sgr M giants. Based on these
results, we have adopted a q == 1 halo potential in our simulations.

4. Constraints on the Bound Sgr Mass and M / L

The M / Lv of Sgr has previously been found to be very large - of order 50
(197) to 100 (Ibata & Lewis 1998). However, MSWO showed that the M giants
of the Sgr core can be fit by a King model with much larger core and limiting
radii than previously adopted. Inserting these radii and the 11.4 km s-l central
velocity dispersion (197) into the standard King (1966) M j L methodology that
assumes virial equilibrium yields a 4.9 x 108M8 bound Sgr mass that drops
(M/ Lv )tot to 25. However, as MSWO point out, there is little reason to believe
even this M / L because it is very unlikely that the Sgr tidal radius corresponds
to the measured 12.6 kpc semi-major limiting radius. For example, adopting
this as a tidal radius yields an absurdly discrepant 1.6 x 1011 M8 Sgr mass
from the Roche tidal limit, mSgr == [2MMW(RGc)][rjRGc]3. Even adopting
the 4.4 kpc minor axis limiting radius still yields mSgr == 6.9 x 109 M8 and
M / L; rv 343. The tidal radius must be much smaller, especially if we are to
explain how 2-3 Gyr old M giants, presumably formed in the central few kpc
of Sgr, could so quickly have escaped across the tidal boundary into tidal arms
of similar dynamical age. With no clear physical markers of a tidal radius in
the spatial distribution of Sgr core stars, we must resort to alternative means to
estimate its mass.

Although we do not attempt to model the Sgr core in detail, we can use the
coherence of the Sgr stream to estimate the mass of the disintegrating parent
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core, since larger mass bodies produce commensurately "hotter", wider debris
trails. The simulated dwarf that best fits the spatial and velocity width of
the streams has a 3 x 108M

ev mass within a semi-major tidal radius of about
rtide = 3.5 kpc, which gives (M/ Lv )tot = 21 (adopting the Sgr Lv within this
radius). This may be regarded as an upper limit to the Sgr core mass (see §5).

When the Sgr arms can be mapped accurately over even greater lengths, it
may be possible to map the degree to which dynamical friction has acted on the
Sgr core, and thereby derive yet another, independent estimate of the Sgr mass.
We have explored dynamical friction models as a means to explain one apparent
discrepancy between the model and M giant velocities in the nearest sections of
the Sgr leading arm, however no satisfactory results have been obtained that do
not imply a huge recent mass loss and extreme former Sgr core mass.

5. Constraints on the Lumpiness of the Milky 'Way Halo

Current CDM models for the formation of structure in the universe predict that
MW-like galaxies should contain substantial halo substructure at current epochs
as a result of the accretion of thousands of subhalos over a Hubble time (e.g.,
Navarro et al. 1997). Because the MW currently has only eleven known luminous
satellite galaxies, it is commonly held that the bulk of the subhalos must be made
up of pure dark matter (see Klypin et al. 1999, Moore et al. 1999). If so, these
dark matter lumps should make their presence known through the heating of
dynamically cold, luminous stellar systems, like tidal tails (Moore et al. 1999,
Font et al. 2001, Johnston, Spergel & Haydn 2002, Ibata et al. 2001, 2002).

The present velocity and spatial dispersion of the Sgr tails reflect both
the initial dispersion of tidally released debris as well as subsequent heating of
that debris imparted by encounters with large halo masses. Attributing all of
the dispersion to one or the other of these phenomena provides upper limits to
the effects of each. We (Paper I) have measured a 10.4 ± 1.5 km s-l velocity
dispersion over a >100° expanse of the trailing Sgr arm, a dispersion nearly
equivalent that of the Sgr core. If we attribute all of this dispersion to the Sgr
central mass, then we derive an upper limit to that mass of 3x 108 Mev and
M/ Lv < 21 (as described above). However, if any of the velocity dispersion in
the tidal arms is attributable to heating by subhalos, the implied bound mass
of Sgr decreases. While the velocity dispersion of the trailing Sgr arm actually
is observed to increase slightly with distance from the Sgr core (Paper I), it is
not yet clear whether this is the signature of subhalo heating or simply the fact
that the bound Sgr mass was larger in the past.

Johnston et al. (2002, "JSH") give a prescription for a tidal debris "scat-
tering index" , B, that measures position and velocity perturbations of tidal arm
stars induced by lumps in the halo under the assumption of an initial zero veloc-
ity dispersion tidal debris population (thus the index provides an upper limit to
the scattering for real debris). When applied to trailing arm M giants with 25-
90° separation from the Sgr core we obtain B = 0.031, a "colder" result than the
0.037 value JSH obtained for presumed Sgr carbon stars. The new, smaller B is
consistent with JSH simulations of heating in a smooth halo containing just one
LMC-like (mass and orbit) lump; however, some realizations of lumpier halos
in the JSH analysis are not inconsistent with the degree of scattering observed
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here. Unfortunately, this reflects a vagary of this type of halo probe: Dynamical
heating in CDM halos tends to be dominated by the most massive lumps.

Nevertheless, still tighter constraints - in the direction of making lumpy
halos even less likely - may derive from future observations and modeling of
tidal streams. For example, accurately determining the zero-age dispersion of
Sgr debris will make it possible to remove this contribution from any dispersion
by heating. The study of initially colder streams, e.g., from globular clusters,
would place even stricter constraints on the lumpiness of the halo.

We acknowledge funding from NASA, the National Science Foundation, and
the David and Lucile Packard Foundation.
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