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The Batalin–Vilkovisky Algebra in the String
Topology of Classifying Spaces

Katsuhiko Kuribayashi and Luc Menichi

Abstract. For almost any compact connected Lie groupG and any ûeldFp , we compute the Batalin–
Vilkovisky algebra H∗+dim G

(LBG;Fp) on the loop cohomology of the classifying space introduced
by Chataur and the second author. In particular, if p is odd or p = 0, this Batalin–Vilkovisky algebra
is isomorphic to the Hochschild cohomology HH∗

(H∗(G),H∗(G)). Over F2 , such an isomor-
phism of Batalin–Vilkovisky algebras does not hold when G = SO(3) or G = G2 . Our elaborate
considerations on the signs in string topology of the classifying spaces give rise to a general theo-
rem on graded homological conformal ûeld theory.

1 Introduction

Let M be a closed oriented smoothmanifold and let LM denote the space of free loops
on M. Chas and Sullivan [4] have deûned a product on the homology of LM, called
the loop product,H∗(LM)⊗H∗(LM) → H∗−dim M(LM). _ey showed that this loop
product, together with the homological Batalin–Vilkovisky operator ∆ ∶ H∗(LM) →
H∗+1(LM), make the shi�ed free loop space homology H∗(LM) ∶= H∗+dim M(LM)
into a Batalin–Vilkovisky algebra, or BV-algebra. Over Q, when M is simply con-
nected, this BV-algebra can be computed using Hochschild cohomology [11]. In
particular, if M is formal over Q, there is an isomorphism of BV-algebras between
H∗(LM) and

HH∗(H∗(M;Q),H∗(M;Q)),
the Hochschild cohomology of the symmetric Frobenius algebra H∗(M;Q). Over a
ûeld Fp , if p ≠ 0, this BV-algebraH∗(LM) is hard to compute. It has been computed
only for complex Stiefel manifolds [41], spheres [34], compact Lie groups [19,35], and
complex projective spaces [5, 18].

Let G be a connected compact Lie group of dimension d and let BG be its clas-
sifying space. Motivated by Freed, Hopkins, and Teleman twisted K-theory [13] and
by a structure of symmetric Frobenius algebra on H∗(G), Chataur and the second
author [6] proved that the homology of LBG, the free loop space with coeõcients in a
ûeldK, admits the structure of a d-dimensional homological conformal ûeld theory.
(More generally, ifG acts smoothly onM, Behrend, Ginot, Noohi, andXu [1,_eorem
14.2] proved that H∗(L(EG ×G M)) is a (d − dimM)-homological conformal ûeld
theory.) In particular, the operation associated with a cobordism connecting one-
dimensional manifolds called the pair of pants, deûnes a product on the cohomology
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of LBG, called the dual of the loop coproduct, H∗(LBG) ⊗H∗(LBG) → H∗−d(LBG).
Chataur and the second author showed that the dual of the loop coproduct, together
with the cohomological BV-operator ∆ ∶ H∗(LBG) → H∗−1(LBG), make the shi�ed
free loop space cohomology H∗(LBG) ∶= H∗+d(LBG) into a BV-algebra up to signs.
Over F2, Hepworth and Lahtinen [20] extended this result to non-connected com-
pact Lie groups and more diõcult, they showed that this d-dimensional homological
conformal ûeld theory, in particular this algebraH∗(LBG), has a unit. One of our re-
sults aims to solve the sign issues and to show that, indeed,H∗(LBG) is a BV-algebra
(Corollary C.3).

In fact, one of the highlights in this manuscript is to show that more generally, the
dual of a d-homological ûeld theory has, a�er a d degree shi�, the structure of a BV-
algebra (_eorems B.1 and C.1). Our elaborate considerations on the signs give many
explicit computations on H∗(LBG) as mentioned below. Surprisingly, these compu-
tations enable us to determine the signs on the product of the prop in _eorem B.1;
that is, such local computations in string topology of BG give rise to a general theorem
on graded homological conformal ûeld theory.

Lahtinen [30] computed some non-trivial higher operations in the structure of
this d-dimensional homological conformal ûeld theory on the cohomology of BG
for some compact Lie groups G. In this paper, we compute the most important part
of this d-dimensional homological conformal ûeld theory, namely the BV-algebra
H∗(LBG;Fp) for almost any connected compact Lie group G and any ûeld Fp . Ac-
cording to our knowledge, this BV-algebra H∗(LBG;Fp) has never been computed
on any example.

Very recently, Grodal and Lahtinen [15] showed that the mod p cohomology of
a ûnite Chevalley group admits a module structure over this algebra H∗(LBG;Fp),
whereG is the p-compact group ofC-rational points associated with the ûnite group.
_is result appears in the program to attack Tezuka’s question [45] about an isomor-
phism compatible with the cup products between this group cohomology and this
free loop space cohomology of BG. _us our explicit computations are also strongly
relevant to the program.

Our method is completely diòerent from the methods used to compute the BV-
algebra H∗(LM) in the known cases recalled above. Suppose that the cohomology
algebra of BG over Fp , H∗(BG;Fp), is a polynomial algebra Fp[y1 , . . . , yN] (few
connected compact Lie groups do not satisfy this hypothesis). _en the cup prod-
uct on H∗(LBG;Fp) was ûrst computed by the ûrst author [28](see [24] for a quick
calculation). Tamanoi [42] explained the relation between the cap product and the
loop product on H∗(LM). Dually, in _eorem 2.2 we give the relation between the
cup product on H∗(LBG) and the BV-algebra H∗(LBG). Knowing the cup prod-
uct on H∗(LBG), this relation gives the dual of the loop coproduct on H∗(LBG)
(_eorem 3.1). But now, since the cohomological BV-operator ∆ (see Appendix E)
is a derivation with respect to the cup product, ∆ is easy to compute. So ûnally, on
H∗(LBG) we have computed the cup product and the BV-algebra structure at the
same time. _is has never been done for the BV-algebraH∗(LM).

If there is no top degree Steenrod operation Sq1 on H∗(BG;F2) or if p is odd or
p = 0, applying _eorem 3.1, we give an explicit formula for the dual of the loop
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coproduct ⊙ in _eorem 4.1 and we show in _eorem 6.2 that there is an isomor-
phism of BV-algebras betweenH∗(LBG;Fp) and HH∗(H∗(G;Fp),H∗(G;Fp)), the
Hochschild cohomology of the symmetric Frobenius algebra H∗(G;Fp).

_e case p = 2 is more intriguing. When p = 2, in general we do not give an
explicit formula for the dual of the loop coproduct ⊙ (however, see _eorem 5.4
for a general equation satisûed by ⊙). But for a given compact Lie group G, ap-
plying _eorem 3.1, we are able to give an explicit formula. As examples, we com-
pute the dual of the loop coproduct when G = SO(3) (_eorem 5.7) or G = G2
(_eorem 5.1). We show (_eorem 6.3) that the BV-algebras H∗(LBSO(3);F2) and
HH∗(H∗(SO(3);F2),H∗(SO(3);F2)), the Hochschild cohomology of the symmet-
ric Frobenius algebra H∗(SO(3);F2), are not isomorphic, although the underlying
Gerstenhaber algebras are isomorphic. Such a curious result was observed [34] for
the Chas–Sullivan BV-algebras H∗(LS2;F2).

However, for any connected compact Lie group such that H∗(BG;Fp), is a poly-
nomial algebra, we show (Corollary 4.3 and_eorem 5.8) that as graded algebras

H∗(LBG;Fp) ≅ H∗(G;Fp) ⊗H∗(BG;Fp) ≅ HH∗(H∗(G;Fp),H∗(G;Fp)) .
Such isomorphisms of Gerstenhaber algebras should exist (Conjecture 6.1).

We now give the plan of the paper
Section 2: We carefully recall the deûnition of the loop product and of the loop

coproduct, insisting on orientation (_eorem 2.1), and we prove_eorem 2.2.
Section 3: When H∗(X) is a polynomial algebra, following [24, 28], we give the

cup product on H∗(LX). _erefore, (_eorem 3.1) the dual of the loop coproduct is
completely given by _eorems 2.1 and 2.2.

Section 4 is devoted to the simple case when the characteristic of the ûeld is diòer-
ent from two or when there is no top degree Steenrod operation.

Section 5: _e ûeld is F2. We give some general properties of the dual of the loop
coproduct (Lemma 5.3, _eorem 5.4). In particular, we show that it has a unit (_e-
orem 5.5). As examples, we compute the dual of the loop coproduct on

H∗(LBSO(3);F2) (_eorem 5.7),

H∗(LBG2;F2) (_eorem 5.1).

Up to an isomorphism of graded algebras, H∗(LX;F2) is just the tensor product of
algebras

H∗(X;F2) ⊗H−∗(ΩX;F2) = F2[V] ⊗ Λ(sV)∨ (_eorem 5.8).

As examples, we compute the BV-algebra

H∗+3(LBSO(3);F2) ≅ Λ(u−1 , u−2) ⊗ F2[v2 , v3] (_eorem 5.13)

and the BV-algebra

H∗+14(LBG2;F2) ≅ Λ(u−3 , u−5 , u−6) ⊗ F2[v4 , v6 , v7] (_eorem 5.14).

Section 6: A�er studying the formality and the coformality of BG, we compare
the associative algebras, the Gerstenhaber algebras, the BV-algebras H∗(LBG) and
HH∗(H∗(G),H∗(G)) under various hypothesis.

Section 7: Independently of the rest of the paper, we show that the loop product on
H∗(LBG;Fp) is trivial if and only if the inclusion of the ûbre ι ∶ ΩBG↪ LBG induces
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a surjective map in cohomology, if and only if H∗(BG;Fp) is a polynomial algebra, if
and only if BG is Fp-formal (when p is odd).
Appendix A: We solve some sign problems in the results [6]. In particular, we

correct the deûnition of integration along the ûbre and the main dual theorem con-
cerning the prop structure on H∗(LX).
Appendix B: H∗(LX) is equipped with a graded associative and graded commu-

tative product ⊙.
AppendixC: In fact,H∗(LX) equippedwith⊙ and theBV-operator ∆ is a BV-alge-

bra since the BV identity arises from the lantern relation.
Appendix D: _is BV identity comes from seven equalities involving Dehn twists

and the prop structure on the mapping class group.
Appendix E: We compare diòerent deûnitions of the BV-operator ∆ ∶ H∗(LX) →

H∗−1(LX).
Appendix F: We compute the Gerstenhaber algebra structure on the Hochschild

cohomology HH∗(S(V), S(V)) of a free commutative graded algebra S(V) (_eo-
rem F.3). In particular, we give the BV-algebra structure on the Hochschild cohomol-
ogy HH∗(Λ(V), Λ(V)) of a graded exterior algebra Λ(V).

2 The Dual of the Loop Coproduct

In this paper, for simplicity, all the results are stated for a connected compact Lie group
G. But they are also valid for an exotic p-compact group. Indeed, following [6], we
only require that G is a connected topological group (or a pointed loop space) with
ûnite-dimensional cohomology H∗(G;Fp). _is is the main diòerence from [20],
where Hepworth and Lahtinen required the smoothness of G.

Let K be a ûeld. Let X be a simply-connected space satisfying the condition that
H∗(ΩX;K) is of ûnite dimension. _en there exists a unique integer d such that
H i(ΩX;K) = 0 for i > d and Hd(ΩX;K) ≅ K. In order to describe our results,
we ûrst recall the deûnitions of the product Dlcop on H∗+d(LX;K) and of the loop
product on H∗−d(LX;K) in [6].

Let F be the pair of pants regarded as a cobordism between one ingoing circle and
two outgoing circles. _e ingoingmap in ∶ S1 ↪ F and outgoingmap out ∶ S1∐ S1 ↪ F
give the correspondence

LX map(F , X)
map(in,X)oooo map(out,X) // // LX × LX

where map(in, X) and map(out, X) are orientable ûbrations. A�er orienting them,
the integration along the ûbre induces a map in cohomology

map(in, X)! ∶ H∗+d(map(F , X)) Ð→ H∗(LX)

and a map in homology

map(out, X)! ∶ H∗(LX)⊗2 Ð→ H∗+d(map(F , X)).
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See Appendix A for the deûnition of the integration along the ûbre. By deûnition, the
loop product is the composite

H∗(map(in, X)) ○map(out, X)! ∶ Hp−d(LX) ⊗Hq−d(LX)
Ð→ Hp+q−d(map(F , X)) Ð→ Hp+q−d(LX).

By deûnition, the dual of the loop coproduct, denoted Dlcop, is the composite

map(in, X)! ○H∗(map(out, X))∶ Hp+d(LX) ⊗Hq+d(LX)
Ð→ Hp+q+2d(map(F , X)) Ð→ Hp+q+d(LX).

_e pair of pants F is the mapping cylinder of c∐ π ∶ S1∐(S1∐ S1) → S1 ∨ S1 where
c ∶ S1 → S1 ∨ S1 is the pinch map and π ∶ S1∐ S1 → S1 ∨ S1 is the quotient map.
_erefore the wedge of circles S1 ∨ S1 is a strong deformation retract of the pair of
pants F. _e retract r ∶ F ≈↠ S1 ∨ S1 corresponds to lowering his pants and tucking up
his trouser legs at the same time:

Figure 1: _e homotopy between the pairs of pants and the ûgure eight.

_us we have the commutative diagram

LX map(F , X)
map(out,X) //map(in,X)oo LX×2

LX ×X LX
Comp

hh

q

55

map(r ,X)≈

OO

where Comp is the composition of loops and q is the inclusion. If X were a closed
manifold M of dimension d, Comp and q would be embeddings. And the Chas–
Sullivan loop product is the composite

H∗(Comp) ○ q! ∶ Hp+d(LM) ⊗Hq+d(LM)
Ð→ Hp+q+d(LM ×M LM)) Ð→ Hp+q+d(LM).

while the dual of the loop coproduct is the composite

Comp! ○H∗(q)∶ Hp−d(LM) ⊗Hq−d(LM)
Ð→ Hp+q−2d(LM ×M LM) Ð→ Hp+q−d(LM).

_erefore, although Comp and q are not ûbrations, by an abuse of notation, we will
sometimes say that in the case of string topology of classifying spaces [6], the loop
product on H∗−d(LX) is still H∗(Comp) ○ q!, while Dlcop is Comp! ○H∗(q).
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_e shi�ed cohomologyH∗(LX) ∶= H∗+d(LX) together with the dual of the loop
coproduct Dlcop deûned in [6] is a BV-algebra, in particular a graded commutative
associative algebra, only up to signs, for two reasons.

• First, the integration along the ûbre deûned in [6] usually does not satisfy the
usual property with respect to the product. We have corrected this sign mistake in
Appendix A.
• Second, as explained in Appendix A, this is also due to the non-triviality of the

prop detH1(F , ∂out;Z)⊗d (if d is odd).

Nevertheless, we have_eorem C.1. In particular, we have thatH∗(LX) equipped
with the operator ∆ induced by the action of the circle on LX (see our deûnition
in Appendix E) is a BV-algebra with respect to the product ⊙ deûned by a ⊙ b =
(−1)d(d−∣a∣)Dlcop(a ⊗ b) for a ⊗ b ∈ H∗(LX) ⊗H∗(LX); see Corollary C.3.

In order to investigate Dlcop more precisely, we need to know how the ûbration
map(in, X) is oriented. As explained in [6, §11.5], we must choose a pointed homo-
topy equivalence f ∶ F/∂in

≈→ S1. _en the ûbre map∗(F/∂in , X) of map(in, X) is
oriented by the composite

τ ○Hd(map∗( f , X))∶ Hd(map∗(F/∂in , X)) Ð→ Hd(ΩX) Ð→ K,

where τ is the chosen orientation on ΩX. In this paper, we choose f such that we
have the following homotopy commutative diagram

map∗(F/∂in , X) incl // map(F , X)

ΩX

map∗( f ,X) ≈

OO

j
// LX ×X LX

map(r ,X)≈

OO

where incl is the inclusion of the ûbre of map(in, X) and j is the map deûned by
j(ω) = (ω,ω−1).

_eorem 2.1 Let ι ∶ ΩX ↪ LX be the inclusion of pointed loops into free loops. Let
S be the antipode of the Hopf algebra H∗(ΩX). Let τ ∶ Hd(ΩX) → K be the chosen
orientation on ΩX. Let a ∈ Hp(LX) and b ∈ Hq(LX) such that p + q = d. _en with
the above choice of pointed homotopy equivalence f ∶ F/∂in

≈→ S1,

a ⊙ b = (−1)d(d−p)τ (Hp(ι)(a) ∪ S ○Hq(ι)(b)) 1H∗(LX) .

Proof Let F
incl
↪Ð→ E

projÐÐ→→ B be an oriented ûbrationwith orientation τ ∶ Hd(F) → K.
By deûnition or by naturality with respect to pull-backs, the integration along the ûbre
proj! is in degree d the composite

Hd(E) Hd(incl)ÐÐÐÐ→ Hd(F) τÐ→ K
ηÐ→ H0(B)
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where η is the unit of H∗(B). _erefore Dlcop is given by the commutative diagram

Hd(LX × LX)
Hd map(out,X)

vv
Hd(q)
��

Hd(ι×ι)

((
Hd(map(F , X))

Hd map(r ,X)//

Hd(incl)
��

map(in,X)!

&&

Hd(LX ×X LX)

Hd( j)
��

Hd(incl)// Hd(ΩX ×ΩX)

Hd(Id× Inv)
��

Hd(map∗(F/∂in))
Hd map∗( f ,X)

// Hd(ΩX)

τ

��

Hd(ΩX ×ΩX)
Hd(∆)

oo

H0(LX) K
ηoo

where incl ∶ ΩX ×ΩX ↪ LX ×X LX is the inclusion and Inv ∶ ΩX → ΩX maps a loop
ω to its inverse ω−1. _erefore,

Dlcop(a ⊗ b) = τ(Hp(ι)(a) ∪ S ○Hq(ι)(b)) 1H∗(LX) .

We deûne a bracket { ⋅ , ⋅ } on H∗(LX) with the product ⊙ and the BV-operator
∆ ∶ H∗(LX) → H∗−1(LX) by

{a, b} = (−1)∣a∣∆(a ⊙ b) − (−1)∣a∣∆(a) ⊙ b − a ⊙ ∆(b)

for a, b in H∗(LX). By _eorem C.3, this bracket is exactly a Lie bracket. _e fol-
lowing theorem is an analogue for the string topology of classifying spaces [6] to the
theorems of Tamanoi [42] for Chas–Sullivan string topology [4]. _is analogy is quite
surprising and complete. For our calculations, in the rest of the paper, we use only
parts (i)–(iii) of this theorem. Let ev ∶ LX ↠ X be the evaluation map deûned by
ev(γ) = γ(0) for γ ∈ LX.

_eorem 2.2 (Cup products in string topology of classifying spaces) Let X be a simply-
connected space such that H∗(ΩX;K) is ûnite-dimensional. Let P, Q ∈ H∗(X), and a
and b ∈ H∗(LX).

(i) (Cf. [42, _eorem A (1.2)]) _e dual of the loop coproduct

⊙∶ H∗(LX) ⊗H∗(LX) Ð→ H∗(LX)

is a morphism of le� H∗(X) ⊗H∗(X)-modules:

(H∗(ev)(P) ∪ a) ⊙ (H∗(ev)(Q) ∪ b)
= (−1)(∣a∣−d)∣Q ∣H∗(ev)(P) ∪H∗(ev)(Q) ∪ (a ⊙ b).

(ii) (See [42,_eoremA (1.3)])_e cup product with ∆○H∗(ev)(P) is a derivation
with respect to the algebra (H∗(LX),⊙):

∆ ○H∗(ev)(P) ∪ (a ⊙ b) = (∆ ○H∗(ev)(P) ∪ a) ⊙ b
+ (−1)(∣P∣−1)(∣a∣−d)a ⊙ (∆ ○H∗(ev)(P) ∪ b).
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(iii) Let r ≥ q0. Let P1, . . . , Pr be r elements of H∗(X). Denote by X i ∶= ∆ ○
H∗(ev)(Pi). _en

(H∗(ev)(P) ∪ a) ⊙ (H∗(ev)(Q) ∪ X1 ∪ ⋅ ⋅ ⋅ ∪ Xr ∪ b) = (−1)(∣a∣−d)(∣Q ∣+∣X1 ∣+⋅⋅⋅+∣Xr ∣)

× ∑
0≤ j1 , . . . , jr≤1

±H∗(ev)(P)∪H∗(ev)(Q)∪X1− j1
1 ∪⋅ ⋅ ⋅∪X1− jr

r ∪((X j1
1 ∪⋅ ⋅ ⋅∪X

jr
r ∪a)⊙b) ,

where ± is the sign (−1) j1+⋅⋅⋅+ jr+∑r
k=1(1− jk)∣Xk ∣( j1 ∣X1 ∣+⋅⋅⋅+ jk−1 ∣Xk−1 ∣).

(iv) (See [42,_eoremA(1.4) ])_e cup product with∆○H∗(ev)(P) is a derivation
with respect to the bracket

∆ ○H∗(ev)(P) ∪ {a, b}
= {∆ ○H∗(ev)(P) ∪ a, b} + (−1)(∣P∣−1)(∣a∣−d−1){a, ∆ ○H∗(ev)(P) ∪ b} .

(v) (See [42, formula p. 1220, line -9])_e following formula gives a relation for the
cup product of H∗(ev)(P) with the bracket

{H∗(ev)(P) ∪ a, b}
= H∗(ev)(P) ∪ {a, b} + (−1)∣P∣(∣a∣−d−1)a ⊙ (∆ ○H∗(ev)(P) ∪ b).

(vi) (See [42,_eorem B])_e direct sum H∗(X)⊕H∗(LX) is a BV-algebra where
the dual of the loop coproduct ⊙, the bracket, and the ∆ operator are extended by

P ⊙ a ∶= H∗(ev)(P) ∪ a, P ⊙ Q ∶= P ∪ Q

{P, a} ∶= (−1)∣P∣∆ ○H∗(ev)(P) ∪ a, {P,Q} ∶= 0,
∆(P) ∶= 0.

(vii) (See [42, _eorem C]) Suppose that the algebra (H∗(LX),⊙) has a unit I.
Let s! ∶ H∗(X) → H∗+d(LX) be the map sending P to H∗(ev)(P) ∪ I. _en s! is a
morphism of BV-algebras with respect to the trivial BV-operator on H∗(X) and

H∗(ev)(P) ∪ a = s!(P) ⊙ a and (−1)∣P∣∆ ○H∗(ev)(P) ∪ a = {s!(P), a}.

To prove parts (i) and (ii), it is shorter to use the following lemma. _is lemma is
just the cohomological version of [4, _eorem 8.2] when we replace the correspon-

dence LM × LM
q

↪Ð→ LM ×M LM
CompÐÐÐ→ LM by its opposite

LX
Comp←ÐÐÐ LX ×X LX

q
↪Ð→ LX × LX .

Similarly, it would have been shorter for Tamanoi to prove [42,_eoremA (1.2), (1.3)]
using [4, _eorem 8.2].

Lemma 2.3 Let a = ∑ a1 ⊗ a2 ∈ H∗(LX × LX) and A ∈ H∗(LX) such that
H∗(Comp)(A) = H∗(q)(a). _en for any z1, z2 ∈ H∗(LX),

A∪ (z1 ⊙ z2) = ∑(−1)(∣z1 ∣−d)∣a2 ∣(a1 ∪ z1) ⊙ (a2 ∪ z2).
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Proof Integration along the ûbre, Comp!, is a morphism of le� H∗(LX)-modules
with the correct signs (see our deûnition of integration along the ûbre in cohomology
in Appendix A). _erefore

Comp!(H∗(Comp)(A) ∪ y) = (−1)d ∣A∣A∪Comp!(y).
Let z ∶= z1 ⊗ z2 ∈ H∗(LX × LX). Since H∗(q) is a morphism of algebras,

(−1)d ∣A∣Dlcop(a ∪ z) = (−1)d ∣A∣Comp! ○H∗(q)(a ∪ z)
= (−1)d ∣A∣Comp!(H∗(Comp)(A) ∪H∗(q)(z))
= A∪Comp! ○H∗(q)(z) = A∪Dlcop(z).

_en the previous equation is

A∪ (−1)d(∣z1 ∣−d)z1 ⊙ z2

= ∑(−1)d(∣a1 ∣+∣a2 ∣)(−1)d(∣a1 ∣+∣z1 ∣−d)(−1)∣a2 ∣∣z1 ∣(a1 ∪ z1) ⊙ (a2 ∪ z2).

Proof of_eorem 2.2 (i) We have the commutative diagram

LX

ev
''

LX ×X LX
Compoo q //

��

LX × LX

ev× ev
��

X
δ

// X × X

_erefore by applying Lemma2.3 to a ∶= H∗(ev× ev)(P⊗Q),A ∶= H∗(δ○ev)(P⊗Q),
z1 ∶= a, and z2 ∶= b, we obtain (i).

(ii) By [42, Proof of _eorem 4.2 (4.5)]

Comp∗(∆ ○H∗(ev)(P)) = H∗(q)(∆ ○H∗(ev)(P) × 1 + 1 × ∆ ○H∗(ev)(P)).
So we can apply Lemma 2.3 to a ∶= ∆ ○ H∗(ev)(P) × 1 + 1 × ∆ ○ H∗(ev)(P) and
A ∶= ∆ ○H∗(ev)(P).

(iii) _e case r = 0 is just (i). Now, by induction on r,

(H∗(ev)(P) ∪ a) ⊙ (H∗(ev)(Q) ∪ X1 ∪ ⋅ ⋅ ⋅ ∪ Xr−1 ∪ (Xr ∪ b))
= (−1)(∣a∣−d)(∣Q ∣+∣X1 ∣+⋅⋅⋅+∣Xr−1 ∣) ∑

0≤ j1 , . . . , jr−1≤1
±H∗(ev)(P) ∪H∗(ev)(Q)

∪ X1− j1
1 ∪ ⋅ ⋅ ⋅ ∪ X1− jr−1

r−1 ∪ ((X j1
1 ∪ ⋅ ⋅ ⋅ ∪ X jr−1

r−1 ∪ a) ⊙ (Xr ∪ b))
But by (ii),

(X j1
1 ∪ ⋅ ⋅ ⋅ ∪ X jr−1

r−1 ∪ a) ⊙ (Xr ∪ b)

=
1

∑
jr=0

(−1)∣Xr ∣(∣a∣−d)+ jr+(1− jr)∣Xr ∣∑r−1
l=1 j l ∣X l ∣X1− jr

r ∪ ((X j1
1 ∪ ⋅ ⋅ ⋅ ∪ X jr

r ∪ a) ⊙ b).

(iv) By using _eorem 2.2 (ii), the same argument as in [42, Proof of_eorem 4.5]
deduces the derivation formula on the bracket.

(v) Again, the arguments are identical to those given by Tamanoi [42, end of proof
of _eorem 4.7].
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(vi) As explained by Tamanoi [42, proof of _eorem 4.7], (ii), (iv), and (v) are
equivalent to the Poisson and Jacobi identities in the Gerstenhaber algebra

H∗(X) ⊕H∗(LX).

By deûnition of the bracket, this Gerstenhaber algebra is a BV-algebra [42, proof of
_eorem 4.8].

(vii) Since H∗+d(LX) is an H∗(X)-algebra, (_eorem 2.2 (i)), the map

s! ∶ H∗(X) → H∗+d(LX), P ↦ H∗(ev)(P) ∪ I,

is a morphism of unital commutative graded algebras (we denote this map s! because
this map should coincide with some Gysin map of the trivial section s ∶ X ↪ LX [6].
Indeed, byH∗(LX)-linearity, s!(P) = s!○H∗(s)○H∗(ev)(P) = (−1)d ∣P∣H∗(ev)(P)∪
s!(1).

Since the cup product with ∆○H∗(ev)(P) is a derivationwith respect to the dual of
the loop coproduct, ∆ ○H∗(ev)(P) ∪ I = 0. SinceH∗(LX) is a BV-algebra, ∆(I) = 0.
_erefore, since ∆ is a derivation with respect to the cup product,

∆(s!(P)) = ∆ ○H∗(ev)(P) ∪ I + (−1)∣P∣H∗(ev)(P) ∪ ∆(I) = 0 + 0.

Now we can conclude using the same arguments as in [42, proof of_eorem 5.1].

Remark 2.4. Suppose that the algebra H∗(LX) is generated by H∗(X) and
∆(H∗(X)). _en by _eorem 2.2 (iii) when b = 1, we see that the dual of the loop
coproduct ⊙ is completely given by the cup product, by the ∆ operator, and by its re-
striction onH∗(LX) ⊗ 1. In the following section, we show that this is the case when
H∗(X) is a polynomial (see Remark 3.2).

3 The Cup Product on Free Loops and the Main Theorem

Let X be a simply-connected space with polynomial cohomology: H∗(X) is a poly-
nomial algebra K[y1 , . . . , yN]. _e cup product on the free loop space cohomology
H∗(LX;K) was ûrst computed by the ûrst author [28,_eorem 1.6]. We now explain
how to recover simply this computation following [24, p. 648].

Let σ ∶ H∗(X) → H∗−1(ΩX) be the suspension homomorphism and σ(y i) be the
suspension image of y i . By Borel’s theorem [38, Chapter VII. Corollary 2.8(2)], which
can be easily proved using the Eilenberg–Moore spectral sequence associated with the
path ûbration ΩX ↪ PX ↠ X since E∗,∗2 ≅ Λ(σ(y1), . . . , σ(yN)),

H∗(ΩX;K) = ∧(σ(y1), . . . , σ(yN)),

where ∧σ(y i) denotes an algebra with a simple system of generators σ(y i) (Here
an algebra with a simple system of generators x i is a graded commutative algebra,
denoted ∧x i , such that the products of the form x i1x i2 ⋅ ⋅ ⋅ x ir with 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ <
ir ≤ N and r ≥ 0 form a linear basis of the algebra [38, Deûnition p. 367]). If ch(K) ≠
2, ∧σ(y i) is just the exterior algebra Λσ(y i).

Let ∆ ∶ H∗(LX) → H∗−1(LX) be the operator induced by the action of the cir-
cle on LX (Appendix E). Let D ∶= ∆ ○H∗(ev) denote the module derivation in [28].
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Since ∆ is a derivationwith respect to the cup product,D is a (H∗(ev),H∗(ev))-deri-
vation [28, Proposition 3.3]. Since ∆ and H∗(ev) commutes with the Steenrod op-
erations, D also commutes with them [28, Proposition 3.3]. Since the composite
H∗(ι) ○D is the suspension homomorphism σ [24, Proposition 2(1)], H∗(ι) is sur-
jective and so by the Leray–Hirsch theorem,

H∗(LX;K) = H∗(X) ⊗ ∧(D(y1), . . . ,D(yN))
as H∗(X)-algebra. Modulo 2, it follows from above that H∗(LX;F2) is the polyno-
mial algebra F2[H∗(ev)(y i),Dy i] quotiented by the relations

(Dy i)2 =D(Sq∣y i ∣−1 y i).
In particular, we have ∆(H∗(ev)(y i)) = Dy i and ∆(Dy i) = 0, since ∆ ○ ∆ = 0.
_erefore, we know the cup product and the ∆ operator onH∗(LX;K). _e following
theorem shows that we also know the dual of the loop coproduct.

_eorem 3.1 Let X be a simply-connected space such that H∗(X;K) is the polynomial
algebraK[y1 , . . . , yN]. Denote again by y i , the element of H∗(LX), H∗(ev)(y i), and
by x i , ∆ ○H∗(ev)(y i). O�en, the cup product a∪ b on H∗(LX) is now simply denoted
ab. With respect to this cup product, as algebras we have

H∗(LX) = K[y1 , . . . , yN] ⊗ ∧(x1 , . . . , xN).
Let d be the degree of x1 ⋅ ⋅ ⋅ xN . _en the dual of the loop coproduct

⊙∶ H i(LX) ⊗H j(LX) Ð→ H i+ j−d(LX)
is given inductively (Remark 3.2) by the following four formulas.

(i) For any a and b ∈ H∗(LX), for all 1 ≤ i ≤ N,

a ⊙ x ib = (−1)∣x i ∣(∣a∣−d)x i(a ⊙ b) − (−1)d ∣x i ∣ax i ⊙ b
(ii) Let {i1 , . . . , i l} and { j1 , . . . , jm} be two disjoint subsets of {1, . . . ,N} such that

{i1 , . . . , i l} ∪ { j1 , . . . , jm} = {1, . . . ,N}. If we orient τ ∶ Hd(ΩX) ≅→ K by
τ ○H∗(ι)(x1 . . . xN) = 1,

then x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x jm = (−1)Nm+mε, where ε is the signature of the permutation

( 1 ⋅ ⋅ ⋅ l +m
i1 ⋅ ⋅ ⋅ i l j1 ⋅ ⋅ ⋅ jm

) .

(iii) Let {i1 , . . . , i l} and { j1 , . . . , jm} be two disjoint subsets of {1, . . . ,N} such that
{i1 , . . . , i l} ∪ { j1 , . . . , jm} ≠ {1, . . . ,N}. _en x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x jm = 0.

(iv) ⊙ is a morphism of le� H∗(X) ⊗ H∗(X)-modules: for P,Q ∈ H∗(X) and
a, b ∈ H∗(LX), one has (−1)∣Q ∣(∣a∣−d)Pa ⊙ Qb = PQ(a ⊙ b).

Proof Note that if y i is of odd degree, then 2 = 0 in K. (i) and (iv) are particular
cases of _eorem 2.2 (i) and (ii). Since x i1 ⋅ ⋅ ⋅ x i l ⊗ x j1 ⋅ ⋅ ⋅ x jm is of degree less than d,
for degree reasons, we have (iii).

(ii) Since H∗(ι)(x i) = H∗(ι) ○ ∆ ○ H∗(ev)(y i) is the suspension of y i , denoted
σ(y i), by _eorem 2.1,

x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x jm = (−1)Nmτ(σ(y i1) ⋅ ⋅ ⋅ σ(y i l ) ∪ S(σ(y j1) ⋅ ⋅ ⋅ σ(y jm)) 1.
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Since σ(y i) is a primitive element, S(σ(y i)) = −σ(y i). Since the antipode

S ∶ H∗(ΩX) → H∗(ΩX)

is also a morphism of commutative graded algebras,

x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x jm = (−1)Nm+mετ(σ(y1) ⋅ ⋅ ⋅ σ(yN)).

Remark 3.2. We now explain why the four formulas of_eorem 3.1 determine induc-
tively the dual of the loop coproduct⊙. For P ∈ H∗(X) and {i1 , . . . , i l} a strict subset
of {1, . . . ,N}, by (ii), (iii), and (iv), Px i1 ⋅ ⋅ ⋅ x i l ⊙1 = 0 and Px1 ⋅ ⋅ ⋅ xN⊙1 = P. _erefore,
we know the restriction of ⊙ onH∗(LX) ⊗ 1. Since the algebra H∗(LX) is generated
byH∗(X) and ∆(H∗(X)), the product⊙ is now given inductively by (i) and (iv) (see
Remark 2.4).

_e restriction of⊙∶ H∗(LX)⊗ 1→ H∗(X) looks similar to the intersection mor-
phism ι! ∶ H∗(LM) → H∗(ΩM) for a manifoldM given by the loop product with the
constant pointed loop.

4 Case p Odd or No Sq1

Let Sq1 be the operator H∗(BG;F2) → H∗(BG;F2) deûned by Sq1(x) = Sqdeg x−1 x
for x ∈ H∗(BG;F2).

Suppose that H∗(BG;K) is a polynomial algebraK[y1 , . . . , yN] and that

(H) : Sq1 ≡ 0 on H∗(BG) ifK = F2 or the characteristic ofK is
diòerent from 2.

(Since Sq1(PQ) = P2 Sq1(Q) + Sq1(P)Q2, it suõces to check that Sq1(y i) = 0 for
all i.) _en it follows from Section 3 (or [26, Remark 3.4]) that

H∗(LBG;K) = ∧(x1 , . . . , xN) ⊗K[y1 , . . . , yN]

as an algebra where x i ∶= ∆ ○H∗(ev)(y i). _en we have the following.

_eorem 4.1 Under hypothesis (H), an explicit form of the dual of the loop coproduct
⊙∶ H∗(LBG;K) ⊗H∗(LBG;K) → H∗−dim G(LBG;K) is given by

x i1 ⋅ ⋅ ⋅ x i l a ⊙ x j1 ⋅ ⋅ ⋅ x jmb = (−1)ε
′+ε+m+u+lu+Nmxk1 ⋅ ⋅ ⋅ xku ab

if {i1 , . . . , i l} ∪ { j1 , . . . , jm} = {1, . . . ,N} and x i1 ⋅ ⋅ ⋅ x i l a ⊙ x j1 ⋅ ⋅ ⋅ x jmb = 0 otherwise,
where {i1 , . . . , i l} ∩ { j1 , . . . , jm} = {k1 , . . . , ku}, a, b ∈ H∗(BG),

(−1)ε = sgn( j1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ jm
k1⋅ ⋅ ⋅ ku j1 ⋅ ⋅ ⋅ k̂1 ⋅ ⋅ ⋅ k̂u ⋅ ⋅ ⋅ jm

) ,

(−1)ε
′
= sgn( i1⋅ ⋅ ⋅ i l j1 ⋅ ⋅ ⋅ k̂1 ⋅ ⋅ ⋅ k̂u ⋅ ⋅ ⋅ jm

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ N
) .

Here x̂ means that the element x disappears from the presentation.
OverR, Behrend, Ginot, Noohi, andXu [1, 17.23] had the same formulawithout any

signs for their dual hidden loop product⋆ onH∗([G/G]). With our signs,⊙ is graded
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associative and graded commutative (Corollary B.3). In [1, 17.23], ⋆ is commutative,
but not graded commutative. For example, by [1, 17.23],

x1 ⋅ ⋅ ⋅ xN−1 ⋆ x2 ⋅ ⋅ ⋅ xN = x2 ⋅ ⋅ ⋅ xN = x2 ⋅ ⋅ ⋅ xN ⋆ x1 ⋅ ⋅ ⋅ xN−1 ,

although x1 ⋅ ⋅ ⋅ xN−1 and x2 ⋅ ⋅ ⋅ xN are of odd degree in H∗+d(LBG).

Proof of_eorem 4.1 To prove _eorem 4.1, by _eorem 3.1 (iv) it suõces to show
the formula for the element x i1 ⋅ ⋅ ⋅ x i l ⊗ x j1 ⋅ ⋅ ⋅ x jm , namely where a = b = 1.

Since x2
k1
= 0, x i1 ⋅ ⋅ ⋅ x i l xk1 ⊙ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x jm = 0. So by _eorem 3.1 (i),

x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x jm = (−1)∣xk1 ∣(∣x i1 ⋅⋅⋅x i l x j1 ⋅⋅⋅x̂k1 ∣−d)xk1(x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x jm).
By induction on u,

x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x jm = (−1)u(l−d)+εxk1 ⋅ ⋅ ⋅ xku(x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x̂ku ⋅ ⋅ ⋅ x jm).
By _eorem 3.1 (ii) and (iii),

x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x̂ku ⋅ ⋅ ⋅ x jm

=
⎧⎪⎪⎨⎪⎪⎩

(−1)N(m−u)+m−u+ε′ if {i1 , . . . , i l} ∪ { j1 , . . . , jm} = {1, . . . ,N},
0 otherwise.

Corollary 4.2 Under hypothesis (H), the graded associative commutative algebra
(H∗(LBG),⊙) of Corollary B.3 is unital.

Proof We see that x1 ⋅ ⋅ ⋅ xN is the unit. _eorem 4.1 yields that

x1 ⋅ ⋅ ⋅ xN ⊙ x j1 ⋅ ⋅ ⋅ x jmb =

sgn( j1 ⋅ ⋅ ⋅ jm
j1 ⋅ ⋅ ⋅ jm

) sgn( 1 ⋅ ⋅ ⋅N
1 ⋅ ⋅ ⋅N)(−1)m+m+mN+Nmx j1 ⋅ ⋅ ⋅ x jmb.

x i1 ⋅ ⋅ ⋅ x i l a ⊙ x1 ⋅ ⋅ ⋅ xN = sgn( 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ N
i1⋅ ⋅ ⋅ i l 1 ⋅ ⋅ ⋅ î1 ⋅ ⋅ ⋅ î l ⋅ ⋅ ⋅N

)

sgn( i1⋅ ⋅ ⋅ i l 1 ⋅ ⋅ ⋅ î1 ⋅ ⋅ ⋅ î l ⋅ ⋅ ⋅N
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ N)(−1)N+l+l 2+N2

x i1 ⋅ ⋅ ⋅ x i l a.

_eorem 4.3 Under hypothesis (H), H∗(LBG) = H∗+dim G(LBG;K) is isomorphic
as BV algebras to the tensor product of algebras

H∗(BG;K) ⊗H−∗(G;K) ≅ K[y1 , . . . , yN] ⊗ ∧(x∨1 , . . . , x∨N)
equippedwith theBV-operator∆ given by∆(x∨i ∧x∨j ) = ∆(y i y j) = ∆(x∨j ) = ∆(y i) = 0
for any i , j and

∆(y i ⊗ x∨j ) =
⎧⎪⎪⎨⎪⎪⎩

0 if i ≠ j,
1 if i = j.
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Proof SinceH∗(G) is the Hopf algebra Λx i with x i = σ(y i) primitive, its dual is the
Hopf algebra Λx∨i . By Corollary B.3 and Corollary 4.2, we see that the shi�ed coho-
mology H∗(LBG) is a graded commutative algebra with unit x1 ⋅ ⋅ ⋅ xN . _is enables
us to deûne a morphism of algebras Θ from

H∗(BG;K) ⊗H−∗(G;K) = K[y1 , . . . , yn] ⊗ Λ(x∨1 , . . . , x∨N)

to

H∗(LBG) = K[y1 , . . . , yn] ⊗ Λ(x1 , . . . , xN)

by

Θ(1⊗ x∨j ) = (−1) j−11⊗ (x1 ∧ ⋅ ⋅ ⋅ ∧ x̂ j ∧ ⋅ ⋅ ⋅ ∧ xN),
Θ(a ⊗ 1) = a ⊗ (x1 ∧ ⋅ ⋅ ⋅ ∧ xN)

for any a in K[V]. By induction on p, using _eorem 4.1, we have

Θ(a ⊗ (x∨j1 ∧ ⋅ ⋅ ⋅ ∧ x∨jp)) = ±a ⊗ (x1 ∧ ⋅ ⋅ ⋅ ∧ x̂ j1 ∧ ⋅ ⋅ ⋅ ∧ x̂ jp ∧ ⋅ ⋅ ⋅ ∧ xN)

for any a ∈ K[V]. _erefore the map Θ is an isomorphism.
_e isomorphism Θ sends 1 ⊗ Λ(x∨1 , . . . , x∨N) to 1 ⊗ Λ(x1 , . . . , xN) and sends

K[y1 , . . . , yN]⊗1 toK[y1 , . . . , yN]⊗x1 ⋅ ⋅ ⋅ xN . Since ∆ is null on 1⊗Λ(x1 , . . . , xN) and
K[y1 , . . . , yN]⊗x1 ⋅ ⋅ ⋅ xN , ∆ is null on 1⊗Λ(x∨1 , . . . , x∨N) andK[y1 , . . . , yN]⊗1; we have
the ûrst equalities. Moreover, we see that Θ(y i⊗x∨j ) = (−1) j−1 y ix1∧⋅ ⋅ ⋅∧ x̂ j∧⋅ ⋅ ⋅∧xN

and hence ∆Θ(y i⊗x∨j ) = 0 if i ≠ j. _e equalities ∆((−1)i−1 y ix1∧⋅ ⋅ ⋅∧ x̂ i∧⋅ ⋅ ⋅∧xN) =
x1 ∧ ⋅ ⋅ ⋅ ∧ xN = Θ(1) enable us to obtain the second formula.

5 Mod 2 Case

In the case where the operation Sq1 is non-trivial on H∗(BG;F2), the loop coproduct
structure on H∗(LBG;F2) is more complicated in general. For example, we compute
the dual of the loop coproduct on H∗(LBG2;F2), where G2 is the simply-connected
compact exceptional Lie group of rank 2. Recall that

H∗(LBG2;F2) ≅ ∧(x3 , x5 , x6) ⊗ F2[y4 , y6 , y7]

≅ F2[x3 , x5] ⊗ F2[y4 , y6 , y7]/(
x4
3 + x5 y7 + x2

3 y6
x2
5 + x3 y7 + x2

3 y4
)

as algebras over H∗(BG2;F2) ≅ F2[y4 , y6 , y7], where deg x i = i and deg y j = j;
see [28, _eorem 1.7].

_eorem 5.1 _e dual to the loop coproduct

Dlcop ∶ H∗(LBG2;F2) ⊗H∗(LBG2;F2) → H∗−14(LBG2;F2)

is commutative and the only non-trivial forms restricted to the submodule

∧(x3 , x5 , x6) ⊗ ∧(x3 , x5 , x6)

856

https://doi.org/10.4153/CJM-2018-021-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-021-9


_e Batalin–Vilkovisky Algebra in the String Topology of Classifying Spaces

are given by

Dlcop(x3x5x6 ⊗ 1) = Dlcop(x3x5 ⊗ x6) = Dlcop(x3x6 ⊗ x5)
= Dlcop(x5x6 ⊗ x3) = 1,

Dlcop(x3x5x6 ⊗ x3) = Dlcop(x3x5 ⊗ x3x6) = x3 ,
Dlcop(x3x5x6 ⊗ x5) = Dlcop(x3x5 ⊗ x5x6) = x5 ,
Dlcop(x3x5x6 ⊗ x6) = Dlcop(x3x6 ⊗ x5x6) = x6 + y6 ,

Dlcop(x3x5x6 ⊗ x3x5) = x3x5 ,
Dlcop(x3x5x6 ⊗ x3x6) = x3x6 + x3 y6 ,
Dlcop(x3x5x6 ⊗ x5x6) = x5x6 + x5 y6 + y4 y7 ,

Dlcop(x3x5x6 ⊗ x3x5x6) = x3x5x6 + x3x5 y6 + x3 y4 y7 + y2
7 .

_e proof of _eorem 5.1 will be given a�er the proof of _eorem 5.7.

Lemma 5.2 Let k ∶ {1, . . . , q} → {1, . . . ,N}, j ↦ k j be a map such that for 1 ≤ i ≤ N,
the cardinality of the inverse image k−1({i}) is less than or equal to 2. In H∗(LX;F2) =
F2[y1 , . . . , yN] ⊗ ∧(x1 , . . . , xN), the cup product satisûes the equality

xk1 ⋅ ⋅ ⋅ xkq = ∑
0≤l≤cardinal of {k1 , . . . ,kq},

1≤i1<⋅⋅⋅<i l≤N

Pi1 , . . . , i l x i1 ⋅ ⋅ ⋅ x i l ,

where Pi1 , . . . , i l are elements of F2[y1 , . . . , yN].

Proof Suppose by induction that the lemma is true for q−1. If the elements k1 , . . . , kq
are pairwise distinct, take {i1 , . . . , i l} = {k1 , . . . , kq}. Otherwise by permuting the
elements xk1 , . . . , xkq , suppose that kq−1 = kq .

x2
kq
= ∆ ○H∗(ev) ○ Sq∣ykq ∣−1(ykq) =

N

∑
i=1

x iPi ,

where P1 , . . . , PN are elements ofF2[y1 , . . . , yN]. So xk1 ⋅ ⋅ ⋅ xkq = ∑N
i=1 xk1 ⋅ ⋅ ⋅ xkq−2x iPi .

Since kq = kq−1, by hypothesis, kq in{k1 , . . . , kq−2}. _erefore the cardinal of

{k1 , . . . , kq−2 , i}

is less or equal to the cardinal of {k1 , . . . , kq}. By our induction hypothesis,

xk1 ⋅ ⋅ ⋅ xkq−2x i = ∑
0≤l≤cardinal of {k1 , . . . ,kq−2 , i},

1≤i1<⋅⋅⋅<i l≤N

Pi1 , . . . , i l x i1 ⋅ ⋅ ⋅ x i l .

Lemma 5.3 Let k ∶ {1, . . . , q+ r} → {1, . . . ,N}, j ↦ k j be a non-surjective map such
that for all 1 ≤ i ≤ N, the cardinality of the inverse image k−1({i}) is less than 2. _en

Dlcop(xk1 ⋅ ⋅ ⋅ xkq ⊗ xkq+1 ⋅ ⋅ ⋅ xkq+r) = 0.

Proof We do an induction on r ≥ 0.
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Case r = 0: By Lemma 5.2, since the cardinal of {k1 , . . . , kq}is less than N ,

Dlcop(xk1 ⋅ ⋅ ⋅ xkq ⊗ 1) = ∑
0≤l<N ,

1≤i1<⋅⋅⋅<i l≤N

Dlcop(Pi1 , . . . , i l x i1 ⋅ ⋅ ⋅ x i l ⊗ 1),

where Pi1 , . . . , i l are elements of F2[y1 , . . . , yN]. By _eorem 3.1 (iii), (iv), since l < N ,

Dlcop(Pi1 , . . . , i l x i1 ⋅ ⋅ ⋅ x i l ⊗ 1) = 0.

Suppose now by induction that the lemma is true for r − 1. _en by _eorem 3.1 (i),

Dlcop(xk1 ⋅ ⋅ ⋅ xkq ⊗ xkq+1 ⋅ ⋅ ⋅ xkq+r) = xkq+1 Dlcop(xk1 ⋅ ⋅ ⋅ xkq ⊗ xkq+2 ⋅ ⋅ ⋅ xkq+r)
+Dlcop(xk1 ⋅ ⋅ ⋅ xkq+1 ⊗ xkq+2 ⋅ ⋅ ⋅ xkq+r)

= xkq+1 ∪ 0 + 0.

Let I = {i1 , . . . , i l} ⊂ {1, . . . ,N}. In ∧(x1 , . . . , xN), denote the generator x i1 ∪ x i2 ∪
⋅ ⋅ ⋅∪x i l by xI . Since we consider the algebra over F2, the cup product is commutative,
so we do not need to assume that i1 < i2 < ⋅ ⋅ ⋅ < i l .

_eorem 5.4 Let I and J be two subsets of {1, . . . ,N}. _en

Dlcop(xI ⊗ xJ) =
⎧⎪⎪⎨⎪⎪⎩

Dlcop(x1 ⋅ ⋅ ⋅ xN ⊗ xI∩J) if I ∪ J = {1, . . . ,N},
0 otherwise.

In particular {xI , xJ} = ∆(Dlcop(xI ⊗ xJ)) = ∆(Dlcop(xI∪J ⊗ xI∩J)) = {xI∪J , xI∩J}.

Proof Let i1 , . . . , i l denote the elements of the relative complement I − J, j1 , . . . , jm
denote the elements of the relative complement J − I, and k1 , . . . , ku denote the ele-
ments of the intersection I ∩ J.
By Lemma 5.3, Dlcop(x i1 . . . x i l xk1 . . . xku ⊗ x j2 . . . x jm xk1 . . . xku) = 0. So by _e-

orem 3.1 (i),

Dlcop(x i1 ⋅ ⋅ ⋅ x i l xk1 ⋅ ⋅ ⋅ xku ⊗ x j1 ⋅ ⋅ ⋅ x jm xk1 ⋅ ⋅ ⋅ xku)
= x j1 ∪ 0 +Dlcop(x i1 ⋅ ⋅ ⋅ x i l x j1xk1 ⋅ ⋅ ⋅ xku ⊗ x j2 ⋅ ⋅ ⋅ x jm xk1 ⋅ ⋅ ⋅ xku).

By induction on m, this is equal to Dlcop(x i1 ⋅ ⋅ ⋅ x i l x j1 ⋅ ⋅ ⋅ x jm xk1 ⋅ ⋅ ⋅ xku ⊗ xk1 ⋅ ⋅ ⋅ xku).
So we have proved that Dlcop(xI ⊗ xJ) = Dlcop(xI∪J ⊗ xI∩J). By Lemma 5.3, if
I ∪ J ≠ {1, . . . ,N}, then Dlcop(xI ⊗ xJ) = 0.

_eorem 5.5 Let X be a simply-connected space such that H∗(X;F2) is the polyno-
mial algebra F2[y1 , . . . , yN]. _e dual of the loop coproduct admits

Dlcop(x1 ⋅ ⋅ ⋅ xN ⊗ x1 ⋅ ⋅ ⋅ xN) ∈ Hd(LX;F2)
as a unit.

Lemma 5.6 Let a ∈ H∗(LX;F2).
(i) For 1 ≤ i ≤ N, x i ∪Dlcop(a ⊗ a) = 0.
(ii) For any b ∈ H∗(LX;F2),

Dlcop(Dlcop(a ⊗ a) ⊗ b) = b ∪Dlcop(Dlcop(a ⊗ a) ⊗ 1).
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Proof (i) By _eorem 3.1 (i),

Dlcop(a ⊗ ax i) = x i Dlcop(a ⊗ a) +Dlcop(ax i ⊗ a).

Since Dlcop is graded commutative [6], Dlcop(a ⊗ ax i) = Dlcop(ax i ⊗ a). So
x i Dlcop(a ⊗ a) = 0.

(ii) By (i) and_eorem 3.1 (i),

Dlcop(Dlcop(a ⊗ a) ⊗ bx i) = x i Dlcop(Dlcop(a ⊗ a) ⊗ b) + 0.

_erefore by induction,

Dlcop(Dlcop(a ⊗ a) ⊗ x i1 ⋅ ⋅ ⋅ x i l ) = x i1 ⋅ ⋅ ⋅ x i l Dlcop(Dlcop(a ⊗ a) ⊗ 1).

Using _eorem 3.1 (iv), we obtain (ii).

Proof of_eorem 5.5 Since Dlcop is graded associative [6] and using _eorem 3.1
(ii) twice,

Dlcop(Dlcop(x1 . . . xN ⊗ x1 . . . xN) ⊗ 1) = Dlcop(x1 . . . xN ⊗Dlcop(x1 . . . xN ⊗ 1))
= Dlcop(x1 . . . xN ⊗ 1) = 1.

_erefore using Lemma 5.6 (ii),

Dlcop(Dlcop(x1 ⋅ ⋅ ⋅ xN⊗x1 ⋅ ⋅ ⋅ xN) ⊗ b)
= b ∪Dlcop(Dlcop(x1 ⋅ ⋅ ⋅ xN ⊗ x1 ⋅ ⋅ ⋅ xN) ⊗ 1)
= b ∪ 1 = b.

_e simplest connected Lie group with non-trivial Steenrod operation Sq1 in the
cohomology of its classifying space is SO(3).

_eorem 5.7 _e cup product and the dual of the loop coproduct on the mod 2 free
loop cohomology of the classifying space of SO(3) are given by

H∗(LBSO(3);F2) ≅ ∧(x1 , x2) ⊗ F2[y2 , y3]

≅ F2[x1 , x2] ⊗ F2[y2 , y3]/(
x2
1 + x2

x2
2 + x2 y2 + y3x1

)

as algebras over H∗(BSO(3);F2) ≅ F2[y2 , y3], where deg x i = i and deg y j = j.

Dlcop(x1x2 ⊗ 1) = Dlcop(x1 ⊗ x2) = 1,
Dlcop(x1x2 ⊗ x1) = x1 ,
Dlcop(x1x2 ⊗ x2) = x2 + y2 ,
Dlcop(x1x2 ⊗ x1x2) = x1x2 + x1 y2 + y3 .

Proof _e cohomology H∗(BSO(3);F2) is the polynomial algebra on the Stiefel–
Whitney classes y2 and y3 of the tautological bundle γ3 [37,_eorem 7.1], [38, III Co-
rollary 5.10]. ByWu’s formula [38, III._eorem 5.12(1)], Sq1 y2 = y3 and Sq2 y3 = y2 y3.
Now the computation of the cup product and of the dual of the loop coproduct follows
from _eorem 3.1.
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In the following proof, we detail the computation of the cup product and the dual
of the loop coproduct following _eorem 3.1 for a more complicated example of Lie
group.

Proof of_eorem 5.1. Observe that Sq2 y4 = y6, Sq1 y6 = y7 [38, VII.Corollary 6.3]
and hence Sq3 y4 = Sq1 Sq2 y4 = y7. From [28, Proof of _eorem 1.7], Sq5 y6 = y4 y7
and Sq6 y7 = y6 y7. _erefore the computation of the cup product on H∗(LBG2;F2)
follows from _eorem 3.1: x2

3 = x6, x2
5 = x3 y7 + y4x6, and x2

6 = x5 y7 + y6x6.
Lemma 5.3 implies that monomials with non-trivial loop coproduct are only the

ones listed in the theorem.
By _eorem 3.1 (ii),

Dlcop(x3x5x6 ⊗ 1) = Dlcop(x3x5 ⊗ x6) = Dlcop(x3x6 ⊗ x5) = Dlcop(x5x6 ⊗ x3) = 1.

By Lemma 5.3, Dlcop(x3x2
5 ⊗ 1) = 0. By _eorem 3.1 (i),

Dlcop(x3x5x6 ⊗ x6) = x6Dlcop(x3x5x6 ⊗ 1) +Dlcop(x3x5x2
6 ⊗ 1).

Since x3x5x2
6 = x3x5(x5 y7 + y6x6), by _eorem 3.1 (iv),

Dlcop(x3x5x2
6 ⊗ 1) = y7Dlcop(x3x2

5 ⊗ 1) + y6Dlcop(x3x5x6 ⊗ 1) = y7 ∪ 0 + y6 ∪ 1

So ûnally Dlcop(x3x5x6 ⊗ x6) = x6 + y6.
By _eorem 5.4, Dlcop(x3x6 ⊗ x5x6) = Dlcop(x3x5x6 ⊗ x6).
Since x3x2

5x6 = x5 y2
7 + x6 y6 y7 + x3x5 y7 y4 + x3x6 y6 y4, by _eorem 3.1 (i) and

Lemma 5.3,

Dlcop(x3x5x6 ⊗ x5x6) = x5Dlcop(x3x5x6 ⊗ x6) +Dlcop(x3x2
5x6 ⊗ x6)

= x5(x6 + y6) + y2
7 ∪ 0 + y6 y7 ∪ 0 + y7 y4 ∪ 1 + y6 y4 ∪ 0.

_e other computations are le� to the reader.

We would like to emphasize that at the same time_eorem 5.1 gives the cup prod-
uct and the dual of the loop coproduct on H∗(LBG2;F2). As mentioned in the intro-
duction, if we forget the cup product, then the following theorem shows that the dual
of the loop coproduct is really simple.

_eorem 5.8 Let X be a simply-connected space such that H∗(X;F2) is the poly-
nomial algebra F2[V]. _en with respect to the dual of the loop coproduct, there is
an isomorphism of graded algebras between H∗+d(LX;F2) and the tensor product of
algebras H∗(X;F2) ⊗H−∗(ΩX;F2) ≅ F2[V] ⊗ Λ(sV)∨.

Lemma 5.9 Let X be a simply-connected space such that H∗(X;F2) = F2[V]. Let
x1 , . . . , xN be a basis of sV.

(i) Suppose that {i1 , . . . , i l} ∪ { j1 , . . . , jm} = {1, . . . ,N}. Let

{k1 , . . . , ku} ∶= {i1 , . . . , i l} ∩ { j1 , . . . , jm}.

_en H∗(ι) ○Dlcop(x i1 ⋅ ⋅ ⋅ x i l ⊗ x j1 ⋅ ⋅ ⋅ x jm) = xk1 ⋅ ⋅ ⋅ xku .
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(ii) Let Θ ∶ H−∗(ΩX) = ∧(sV)∨ ≅→ H∗+d(ΩX) = ∧(sV) be the linear isomor-
phism deûned by Θ(x∨j1 ∧ ⋅ ⋅ ⋅ ∧ x∨jp) = x1 ∪ ⋅ ⋅ ⋅ ∪ x̂ j1 ∪ ⋅ ⋅ ⋅ ∪ x̂ jp ∪ ⋅ ⋅ ⋅ ∪ xN . Here ∨ denotes
the dual and ̂ denotes omission. _en the composite

Θ−1 ○H∗(ι)∶ H∗+d(LX) Ð→ H∗+d(ΩX) ≅Ð→ H−∗(ΩX)
is a morphism of graded algebras preserving the unit.

Proof of Lemma 5.9 (i) Suppose that ∣xk1 ∣ ≥ ⋅ ⋅ ⋅ ≥ ∣xku ∣. _ere exist polynomials
P1 , . . . , PN ∈ F2[y1 , . . . , yN], possibly null, such that

x2
k1
= ∆ ○H∗(ev) ○ Sq∣yk1 ∣−1(yk1) =

N

∑
i=1

x iPi .

If Pi is of degree 0, since ∣x i ∣ > ∣xk1 ∣, x i is not one of the elements xk1 , . . . , xku and so
by Lemma 5.3, Dlcop(x i1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x i l x i ⊗ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x jm) = 0.

If Pi is of degree ≥ 1, by _eorem 3.1 (iv),

H∗(ι) ○Dlcop(Pix i1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x i l x i ⊗ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x jm) = 0.

_erefore H∗(ι) ○ Dlcop(x i1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x i l x
2
k1
⊗ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x jm) = 0. Now the same

proof as the proof of _eorem 4.1 shows (i).
(ii) Since H∗(ΩX;F2) is generated by the x i ∶= σ(y i), 1 ≤ i ≤ N , which are prim-

itives, H∗(ΩX;F2) is commutative and by [36, Proposition 4.20], all squares vanish
in H∗(ΩX;F2). _erefore H∗(ΩX;F2) is the exterior algebra Λσ(y i)∨.

Let I = {i1 , . . . , i l} ⊂ {1, . . . ,N}. Recall from _eorem 5.4 that in ∧(x1 , . . . , xN),
xI denotes the generator x i1 ∪ x i2 ∪ ⋅ ⋅ ⋅ ∪ x i l . Denote also in the exterior algebra
Λ(x∨1 , . . . , x∨N) by x∨I the element x∨i1 ∧x

∨
i2 ∧⋅ ⋅ ⋅∧x

∨
i l . _en with this notation, Θ(x∨I ) =

xIc , where Ic is the complement of I in {1, . . . ,N}. Let
Comp! ∶ H∗+d(ΩX) ⊗H∗+d(ΩX) Ð→ H∗+d(ΩX)

be the multiplication deûned by Comp!(xI ⊗ xJ) = xI∩J if I ∪ J = {1, . . . ,N} and 0
otherwise. By (i) and Lemma 5.3, H∗(ι)∶ H∗+d(LX) → H∗+d(ΩX) commutes with
the products Dlcop and Comp!. Since x(I∪J)c = xIc∩Jc , Θ ∶ H−∗(ΩX) → H∗+d(ΩX)
commutes with the exterior product and Comp!.
By _eorem 5.5, Dlcop(x1 . . . xN ⊗ x1 . . . xN) is the unit of Dlcop. By (i),

Θ−1 ○H∗(ι) ○Dlcop(x1 . . . xN ⊗ x1 ⋅ ⋅ ⋅ xN) = Θ−1(x1 ⋅ ⋅ ⋅ xN) = 1.

_erefore Θ−1 ○H∗(ι) also preserves the unit.

Proof of_eorem 5.8 Denote the unit of H∗+d(LX;F2) (_eorem 5.5) by

I ∶= Dlcop(x1 . . . xN ⊗ x1 . . . xN).
By _eorem 2.2 (vii), the map s! ∶ H∗(X) → H∗+d(LX), a ↦ H∗(ev)(a)I, is a mor-
phism of unital commutative graded algebras.
By Lemma 5.3, we have Dlcop(x1 . . . x̂ i . . . xN ⊗ x1 . . . x̂ i . . . xN) = 0. So let

σ ∶ H∗+d(ΩX) Ð→ H∗+d(LX)
be the unique linear map such that for 1 ≤ i ≤ N , σ(x1 . . . x̂ i ⋅ ⋅ ⋅ xN) = x1 ⋅ ⋅ ⋅ x̂ i ⋅ ⋅ ⋅ xN
and such that σ ○ Θ ∶ H−∗(ΩX) = Λ(sV)∨ → H∗+d(LX) is a morphism of unital
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commutative graded algebras. For 1 ≤ i ≤ N , Θ−1 ○ H∗(ι) ○ σ ○ Θ(x∨i ) = x∨i . By
Lemma 5.9, the composite Θ−1 ○H∗(ι)∶ H∗+d(LX) → H∗+d(ΩX) ≅→ H−∗(ΩX) is a
morphism of graded algebras. So the composite Θ−1○H∗(ι)○σ ○Θ is the identitymap
and σ is a section of H∗(ι). So by the Leray–Hirsch theorem, the linear morphism
of H∗(X)-modules H∗(X) ⊗ H∗(ΩX) → H∗(LX), a ⊗ g ↦ H∗(ev)(a)σ(g), is an
isomorphism.

_e composite

φ ∶ H∗(X) ⊗H−∗(ΩX) s !⊗σ○ΘÐÐÐÐ→ H∗+d(LX) ⊗H∗+d(LX) DlcopÐÐÐ→ H∗+d(LX)

is a morphism of commutative graded algebras with respect to the dual of the loop
coproduct. By _eorem 3.1 (iv) and since I is the unit for Dlcop,

φ(a ⊗ g) = Dlcop(H∗(ev)(a)I⊗ σ ○Θ(g)) = H∗(ev)(a)σ ○Θ(g).

_erefore, φ is an isomorphism.

Example 5.10 With respect to the dual of the loop coproduct, there is an isomor-
phism of algebras between H∗+3(LBSO(3);F2) and

H−∗(SO(3);F2) ⊗H∗(BSO(3);F2) ≅ ∧(u−1 , u−2) ⊗ F2[v2 , v3].

Proof By_eorem 5.5, Dlcop(x1x2⊗x1x2) = x1x2+x1 y2+ y3 is the unit for the dual
of the loop coproduct on H∗+3(LBSO(3);F2). By Lemma 5.3,

Dlcop(x1 ⊗ x1) = Dlcop(x2 ⊗ x2) = 0.

So let φ ∶ ∧ (u−1 , u−2) ⊗ F2[v2 , v3] → H∗+3(LBSO(3);F2) be the unique morphism
of algebras such that φ(u−2) = x1, φ(u−1) = x2, φ(v2) = y2(x1x2 + x1 y2 + y3), and
φ(v3) = y3(x1x2 + x1 y2 + y3).
For all i, j ≥ 0, we see that φ(v i

2v
j
3) = y i

2 y
j
3(x1x2 + x1 y2 + y3), φ(u−1u−2v i

2v
j
3) =

y i
2 y

j
3, φ(u−1v i

2v
j
3) = x2 y i

2 y
j
3, and φ(u−2v i

2v
j
3) = x1 y i

2 y
j
3. _erefore φ sends a linear

basis of ∧(u−1 , u−2) ⊗ F2[v2 , v3] to a linear basis H∗+3(LBSO(3);F2). So φ is an
isomorphism.

Example 5.11 With respect to the dual of the loop coproduct, there is an isomor-
phism of algebras between H∗+14(LBG2;F2) and

H−∗(G2;F2) ⊗H∗(BG2;F2) ≅ ∧(u−3 , u−5 , u−6) ⊗ F2[v4 , v6 , v7].

Proof By _eorem 5.5, Dlcop(x3x5x6 ⊗ x3x5x6) = x3x5x6 + x3x5 y6 + x3 y4 y7 + y2
7

is the unit for the dual of the loop coproduct on H∗+14(LBG2;F2). By Lemma 5.3,

Dlcop(x5x6 ⊗ x5x6) = Dlcop(x3x6 ⊗ x3x6) = Dlcop(x3x5 ⊗ x3x5) = 0.

So let φ ∶ ∧ (u−3 , u−5 , u−6) ⊗ F2[v4 , v6 , v7] → H∗+14(LBG2;F2) be the unique mor-
phism of algebras such that φ(u−3) = x5x6, φ(u−5) = x3x6, φ(u−6) = x3x5, φ(v4) =
y4(x3x5x6 + x3x5 y6 + x3 y4 y7 + y2

7), φ(v6) = y6(x3x5x6 + x3x5 y6 + x3 y4 y7 + y2
7), and

φ(v7) = y7(x3x5x6 + x3x5 y6 + x3 y4 y7 + y2
7).

For all i, j, and k ≥ 0, we see that
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φ(v i
4v

j
6v

k
7 ) = y i

4 y
j
6 y

k
7(x3x5x6 + x3x5 y6 + x3 y4 y7 + y2

7),
φ(u−3u−5u−6v i

4v
j
6v

k
7 ) = y i

4 y
j
6 y

k
7 ,

φ(u−3u−5v i
4v

j
6v

k
7 ) = (x6 + y6)y i

4 y
j
6 y

k
7 ,

φ(u−3u−6v i
4v

j
6v

k
7 ) = x5 y i

4 y
j
6 y

k
7 ,

φ(u−5u−6v i
4v

j
6v

k
7 ) = x3 y i

4 y
j
6 y

k
7 ,

φ(u−3v i
4v

j
6v

k
7 ) = x5x6 y i

4 y
j
6 y

k
7 ,

φ(u−5v i
4v

j
6v

k
7 ) = x3x6 y i

4 y
j
6 y

k
7

φ(u−6v i
4v

j
6v

k
7 ) = x3x5 y i

4 y
j
6 y

k
7 .

_erefore φ sends a linear basis of ∧(u−3 , u−5 , u−6) ⊗ F2[v4 , v6 , v7] to a linear basis
H∗+14(LBG2;F2). So φ is an isomorphism.

Lemma 5.12 Let (A,⊙) be a commutative unital associative graded algebra. Let
x ∈ A such that x ⊙ x = 1. Let ψ ∶ A → A be the linear morphism mapping a to x ⊙ a.
_en ψ is an involutive isomorphism such that for any a, b in A, ψ(a) ⊙ψ(b) = a ⊙ b.

Proof ψ(a)⊙ψ(b) = (x⊙a)⊙(x⊙b) = (x⊙x)⊙(a⊙b) = 1⊙(a⊙b) = a⊙b.

Second proof of_eorem 5.8 _is proof gives another (better?) algebra isomor-
phism. By commutativity and associativity of Dlcop and _eorem 5.5, applying
Lemma 5.12, ψ ∶ H∗(X) ⊗H∗+d(ΩX) → H∗+d(LX) deûned by

ψ(a ⊗ xk1 ⋅ ⋅ ⋅ xku) = Dlcop(x1 ⋅ ⋅ ⋅ xN ⊗ axk1 ⋅ ⋅ ⋅ xku)

is an involutive isomorphism such that

Dlcop(ψ(a ⊗ xI) ⊗ ψ(b ⊗ xJ)) = Dlcop(axI ⊗ bxJ)

for any subsets I and J of {1, . . . ,N}.
Case I ∪ J = {1, . . . ,N}. By _eorem 5.4,

Dlcop(axI ⊗ bxJ) = Dlcop(x1 . . . xN ⊗ abxI∩J) = ψ(ab ⊗ xI∩J)
= ψ(ab ⊗Comp!(xI ⊗ xJ)).

Case I ∪ J ≠ {1, . . . ,N}. By _eorem 5.4,

Dlcop(axI ⊗ bxJ) = 0 and Comp!(xI ⊗ xJ) = 0.

_erefore ψ is a morphism of graded algebras. One can show that

{ψ(1⊗Θ(x∨i )),ψ(1⊗Θ(x∨j ))} = 0.

_at is why this isomorphism might be better.
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_eorem 5.13 As a BV-algebra,

H∗+3(LBSO(3);F2) ≅ ∧(u−1 , u−2) ⊗ F2[v2 , v3]
where for all i , j ≥ 0,

∆(v i
2v

j
3) = 0,

∆(u−1u−2v i
2v

j
3) = iu−2v i−1

2 v j
3 + ju−1v i

2v
j−1
3 ,

∆(u−2v i
2v

j
3) = iu−1v i−1

2 v j
3 + jv i

2v
j−1
3 + ju−2v i+1

2 v j−1
3 + ju−1u−2v i

2v
j
3 ,

∆(u−1v i
2v

j
3) = iv i−1

2 v j
3 + (i + j)u−2v i

2v
j
3 + iu−1u−2v i−1

2 v j+1
3 + ju−1v i+1

2 v j−1
3 .

In particular, 1 ∉ Im∆.

Proof _eorem 5.7 gives the BV-algebraH∗+3(LBSO(3);F2), since ∆ is a derivation
with respect to the cup product. In the proof of Example 5.10, the isomorphism of
algebras φ ∶ ∧ (u−1 , u−2) ⊗F2[v2 , v3] → H∗+3(LBSO(3);F2) of_eorem 5.8 is made
explicit on generators. We now transport the operator ∆ using φ.

In degree 1, the ∆ operator is given by ∆(u−1u−2v2
2) = 0 and

∆(u−2v3) = ∆(u−1v2) = 1 + u−2v2 + u−1u−2v3 .

_eorem 5.14 As a BV-algebra,

H∗+14(LBG2;F2) ≅ ∧(u−3 , u−5 , u−6) ⊗ F2[v4 , v6 , v7]

where for all i , j, k ≥ 0, ∆(v i
4v

j
6v

k
7 ) = 0,

∆(u−3u−5u−6v i
4v

j
6v

k
7 ) = iu−5u−6v i−1

4 v j
6v

k
7 + ju−3u−6v i

4v
j−1
6 vk

7

+ ku−3u−5v i
4v

j
6v

k−1
7 + ku−3u−5u−6v i

4v
j+1
6 vk−1

7 ,

∆(u−5u−6v i
4v

j
6v

k
7 ) = iu−3u−5v i−1

4 v j
6v

k
7 + iu−3u−5u−6v i−1

4 v j+1
6 vk

7

+ ju−6v i
4v

j−1
6 vk

7 + ku−5v i
4v

j
6v

k−1
7 ,

∆(u−3u−6v i
4v

j
6v

k
7 ) = iu−6v i−1

4 v j
6v

k
7 + ju−5u−6v i

4v
j−1
6 vk+1

7 + ju−3u−5v i+1
4 v j−1

6 vk
7

+ ju−3u−5u−6v i+1
4 v j

6v
k
7 + ku−3v i

4v
j
6v

k−1
7 ,

∆(u−3u−5v i
4v

j
6v

k
7 ) = iu−5v i−1

4 v j
6v

k
7 + iu−5u−6v i−1

4 v j+1
6 vk

7 + ju−3v i
4v

j−1
6 vk

7

+ ( j + 1 + k)u−3u−6v i
4v

j
6v

k
7

∆(u−6v i
4v

j
6v

k
7 ) = iu−3v i−1

4 v j
6v

k
7 + ju−5v i+1

4 v j−1
6 vk

7 + ju−3u−5v i
4v

j−1
6 vk+1

7

+ ( j + k)u−3u−5u−6v i
4v

j
6v

k+1
7 + kv i

4v
j
6v

k−1
7

+ ku−6v i
4v

j+1
6 vk−1

7 + ku−5u−6v i+1
4 v j

6v
k
7 ,

∆(u−3v i
4v

j
6v

k
7 ) = iv i−1

4 v j
6v

k
7 + iu−6v i−1

4 v j+1
6 vk

7 + (i + k)u−5u−6v i
4v

j
6v

k+1
7

+ iu−3u−5u−6v i−1
4 v j

6v
k+2
7 + ju−5v i

4v
j−1
6 vk+1

7

+ ju−3u−6v i+1
4 v j−1

6 vk+1
7 + ( j + k)u−3u−5v i+1

4 v j
6v

k
7

+ ( j + k)u−3u−5u−6v i+1
4 v j+1

6 vk
7 + ku−3v i

4v
j+1
6 vk−1

7 ,
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∆(u−5v i
4v

j
6v

k
7 ) = iu−3u−5v i−1

4 v j+1
6 vk

7 + iu−3u−5u−6v i−1
4 v j+2

6 vk
7 + jv i

4v
j−1
6 vk

7

+ ( j + k)u−6v i
4v

j
6v

k
7 + ju−5u−6v i+1

4 v j−1
6 vk+1

7

+ ju−3u−5u−6v i
4v

j−1
6 vk+2

7 + ku−5v i
4v

j+1
6 vk−1

7 .

In particular, 1 ∉ Im∆.

Proof _eorem 5.1 gives the BV-algebra H∗+14(LBG2;F2), since ∆ is a derivation
with respect to the cup product. In the proof of Example 5.11, the isomorphism of
algebras φ ∶ ∧ (u−3 , u−5 , u−6) ⊗ F2[v4 , v6 , v7] → H∗+14(LG2;F2) of _eorem 5.8 is
made explicit on generators. We now transport the operator ∆ using φ.

In degree 1, the ∆ operator is given by ∆(u−5u−6v2
6) = 0,

∆(u−3u−5u−6v2
4v7) = ∆(u−5u−6v3

4) = u−3u−5v2
4 + u−3u−5u−6v2

4v6 ,

∆(u−3u−6v4v6) = u−6v6 + u−5u−6v4v7 + u−3u−5v2
4 + u−3u−5u−6v2

4v6 ,
∆(u−6v7) = ∆(u−5v6) = ∆(u−3v4) = 1 + u−6v6 + u−5u−6v4v7

+ u−3u−5u−6v2
7 .

Note that φ−1 ○ ∆ ○ φ(y i ⊗ x∨i ) = φ−1(x1 ⋅ ⋅ ⋅ xN) is independent of i.

6 Relation to Hochschild Cohomology

Let K be any ûeld. Let G be a connected compact Lie group of dimension d.

Conjecture 6.1 ( [6, Conjecture 68]) _ere is an isomorphism of Gerstenhaber alge-
bras H∗+d(LBG) ≅→ HH∗(S∗(G), S∗(G)).

Suppose that H∗(BG;K) is a polynomial algebra K[V] = K[y1 , . . . , yN]. It fol-
lows from [40, _eorem 9, p. 572], [31, Proposition 8.21] that BG is K-formal. _en
BG is K-coformal and H∗(G;K) is the exterior algebra ∧(sV)∨. Indeed, since BG
is K-formal, the Cobar construction ΩH∗(BG) is weakly equivalent as algebras to
S∗(G). Let A i denote the exterior algebra Λs−1(y∨i ). _en EZ, the Eilenberg–Zilber
map, and ε, the counit of the adjunction between the Bar and the Cobar construction,
give the quasi-isomorphims of algebras

ΩH∗(BG) = Ω(
N
⊗
i=1
BA i)

EZ←Ð
≃

N
⊗
i=1

ΩBA i
⊗N

i=1 ε iÐÐÐ→
≃

]
N
⊗
i=1
A i = Λs−1V∨ .

Alternatively, since BG isK-formal, we can use the implication (2) ⇒ (1) in [2, _e-
orem 2.14]. _erefore, we have the isomorphism of Gerstenhaber algebras

HH∗(S∗(G), S∗(G)) ≅ HH∗(H∗(G;K),H∗(G;K)) ≅ HH∗(∧(sV)∨ ,∧(sV)∨).
By _eorem F.3 (i) and (ii) as graded algebras,

HH∗(∧(sV)∨ ,∧(sV)∨) ≅ ∧(sV)∨ ⊗K[V] ≅ H−∗(G;K) ⊗H∗(BG;K).
So in _eorem 5.8, we have checked only Conjecture 6.1 for the algebra structure

when K = F2. When K = F2, we would like also to check Conjecture 6.1 also for the
Gerstenhaber algebra structure.
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_e following theorem shows that the conjecture is true for the Gerstenhaber al-
gebra structure when K is a ûeld of characteristic diòerent from 2.

_eorem 6.2 Under hypothesis (H), the free loop space cohomology of the classifying
space of G, H∗+dim G(LBG;K) is isomorphic as BV-algebra to the Hochschild cohomol-
ogy of H∗(G;K), HH∗(H∗(G;K);H∗(G;K)). In particular, the underlying Gersten-
haber algebras are isomorphic.

Proof By hypothesis, H∗(BG) ≅ K[V] = K[y i] as algebras. _en

H∗(G) ≅ Λ(sV)∨ = Λx∨j

as algebras.
Let Ψ ∶ sV → (sV)∨∨ be the canonical isomorphism of the graded vector space sV

into its bidual. By deûnition, Ψ(sv)(φ) = (−1)∣φ∣∣sv∣φ(sv) for any linear form φ on
sV .
By _eorem F.3 (iii), we have the BV-algebra isomorphism

HH∗(H∗(G);H∗(G)) ≅ Λ(sV)∨ ⊗K[s−1(sV)∨∨],

where for any v ∈ V and φ ∈ (sV)∨,

∆((1⊗ s−1Ψ(sv))(φ ⊗ 1)) = (−1)∣v∣{s−1Ψ(sv), φ} = −Ψ(sv)(φ) = −(−1)∣φ∣∣sv∣φ(sv)

and where ∆ is trivial on Λ(sV)∨ and on K[s−1(sV)∨∨].
_e isomorphism of algebras

Id⊗K[s−1Ψ] ∶ Λ(sV)∨ ⊗K[V] Ð→ Λ(sV)∨ ⊗K[s−1(sV)∨∨]

is an isomorphism of BV-algebras if for any v ∈ V and φ ∈ (sV)∨, ∆((1⊗v)(φ⊗ 1)) =
−(−1)∣φ∣∣sv∣φ(sv) and if ∆ is trivial on Λ(sV)∨ and on K[V].

Taking v = y i and φ = σ(y j)∨ = x∨j , we obtained that ∆(y i ⊗ x∨j ) = 1 if i = j and 0
otherwise, as in _eorem 4.3.

_eorem 6.3 For G = SO(3) or G = G2, the free loop space modulo 2 cohomology of
the classifying space of G, H∗+dim G(LBG;F2) is not isomorphic as a BV-algebra to the
Hochschild cohomology of H∗(G;F2), HH∗(H∗(G;F2);H∗(G;F2)), although when
G = SO(3), the underlying Gerstenhaber algebras are isomorphic.

_e main result of [34] is that the same phenomenon appears for Chas–Sullivan
string topology even in the simple case of the two-dimensional sphere S2.

Deûnition 6.4 LetAbe an augmented graded algebra. Let F0(A) ∶= Aand Fn(A) ∶=
A ⋅ A ⋅ ⋅ ⋅ A for n ≥ 1 be the augmentation ûltration [36, 7.1]. We say that A is Haus-
dorò [31, Lemma 3.10] if ⋂n∈N Fn(A) = {0}.

Lemma 6.5 Let A and B be a morphism of graded algebras between two Hausdorò
augmented graded algebras such that the only indecomposable elements of A and B,
Q(A) and Q(B), are the zero vectors. Let f ∶ A→ B be a morphism of graded algebras.
_en f preserves the augmentations. Let d ∈ N be a non-negative integer. Suppose
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moreover that B = B≥−d , i.e., B is concentrated in degrees greater than or equal to −d
and B is graded commutative. _en f is surjective if and only if Q( f ) is surjective.

Proof When d = 0, A0 = {0}, and B0 = {0}, this lemma is Proposition 3.8 of [36],
but the proof cannot be easily generalized. _erefore, we provide a proof.
Denote by Q ∶ A↠ Q(A) ∶= A

A⋅A the quotient map. _e sequence

n
⊕
i=1

(A⊗i−1 ⊗ A ⋅ A⊗ A⊗n−i) Ð→ A
⊗n Q⊗n

ÐÐ→→ Q(A)⊗n Ð→ 0

is exact. Alternatively, since over a ûeldK, A = A ⋅ A⊕ Q(A),

0Ð→ +n
i=1(A

⊗i−1 ⊗ A ⋅ A⊗ A⊗n−i) ↪Ð→ A
⊗n Q⊗n

ÐÐ→→ Q(A)⊗n Ð→ 0

is a short exact sequence. _erefore, the iterated multiplication of A induces a natural
map Q(A)⊗n ↠ Fn(A)/Fn+1(A) that is obviously surjective.

Let x ∈ A = F 1(A)with x ≠ 0. Since⋂n∈N Fn(A) = {0}, there exists r ≥ 1 such that
x ∈ F r(A) and x ∉ F r+1(A). _erefore x is the product of r elements of A, x1 ⋅ ⋅ ⋅ xr
such that Q(x1) ⊗ ⋅ ⋅ ⋅ ⊗Q(xr) ≠ 0. By hypothesis, Q(A)0 = {0}. So x i and f (x i) are
of degrees diòerent from 0. So f (x i) ∈ B. And f (x) = Π i f (x i) ∈ B: we have proved
that f preserves the augmentations.

Let y ∈ Fn(B) with y ≠ 0. Similarly, y is the product of r ≥ n elements of B,
y1 ⋅ ⋅ ⋅ yr such that all the Q(y i) are non-zero. Since Q(B)0 = {0}, the y i are all of
degrees diòerent from 0. Since B is graded commutative, B<−d = {0} and y ≠ 0,
there are at most d elements y i of negative degree in the product y1 ⋅ ⋅ ⋅ yr . So there
is at least r − d elements y i of positive degree. _erefore, the degree of y is at least
d × (−1) + (r − d) × 1; we have proved that the non-zero elements of Fn(B) are all of
degree greater than or equal to n − 2d.
Assume that Q( f ) is surjective. _en Q( f )⊗n ∶ Q(A)⊗n ↠ Q(B)⊗n is also sur-

jective. Since the following square is commutative by naturality,

Q(A)⊗n

Q( f )⊗n

��

// Fn(A)/Fn+1(A)

Grn f
��

Q(B)⊗n // Fn(B)/Fn+1(B),

the map induced by f , Grn f , is also surjective. In a ûxed degree, consider the com-
mutative diagram

0 // Fn+1(A) //

f ∣Fn+1(A)
��

Fn(A) //

f ∣Fn(A)
��

Fn(A)/Fn+1(A)

Grn f
��

// 0

0 // Fn+1(B) // Fn(B) // Fn(B)/Fn+1(B) // 0

with exact rows. Suppose by induction that the restriction of f to Fn+1(A), f ∣Fn+1(A),
is surjective. _en by the ûve Lemma, f ∣Fn(A), is also surjective. Since Fn(B) is
concentrated in degrees greater than or equal to n − 2d, in a ûxed degree, for large n,
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Fn(B) is trivial and we can start the induction. _erefore f = f ∣F0(A) is surjective.

Proof of_eorem 6.3 Since H∗(G) is an exterior algebra, by Example F.2 (ii), 1 ∈
Im∆ in the BV-algebra HH∗(H∗(G);H∗(G)). On the contrary, by _eorems 5.13
and 5.14, the unit 1 does not belong to the image of ∆ in the BV-algebra

H∗+dim G(LBG;F2).

So the BV-algebras HH∗(H∗(G);H∗(G)) and H∗+dim G(LBG;F2) are not isomor-
phic.

_e BV-algebra HH∗(H∗(SO(3)),H∗(SO(3))) was explicitly computed in the
proof of_eorem6.2 and is isomorphic to the tensor product of algebras Λ(x−2 , x−1)⊗
F2[y2 , y3] with ∆(x−2 y3) = 1, ∆(x−2 y2) = 0, ∆(x−1 y2) = 1, ∆(x−1 y3) = 0, and ∆ is
trivial on Λ(x−2 , x−1)⊗1 and on 1⊗F2[y2 , y3]. _e BV-algebraH∗+3(LBSO(3);F2) ≅
Λ(u−2 , u−1) ⊗ F2[v2 , v3] is given explicitly by _eorem 5.13.

Let φ ∶ Λ(x−2 , x−1) ⊗ F2[y2 , y3] → Λ(u−2 , u−1) ⊗ F2[v2 , v3] be any morphism of
graded algebras. Since Λ(x−2 , x−1) ⊗ F2[y2 , y3] and Λ(u−2 , u−1) ⊗ F2[v2 , v3] are of
the same ûnite dimension in each degree, φ is an isomorphism if and only if φ is
surjective. By Lemma 6.5, φ is surjective if and only if Q(φ) is surjective. _erefore,
φ is an isomorphism of algebras if and only if

φ(x−2) = u−2 , φ(x−1) = u−1 + εu−1u−2v2 ,

φ(y2) = v2 + au−2v2
2 + bu−1u−2v2v3 + cu−1v3 ,

φ(y3) = v3 + αu−2v2v3 + βu−1u−2v2
3 + γu−1u−2v3

2 + δu−1v2
2 ,

where ε, a, b, c, α, β, γ, δ are eight elements of F2. Since

(u−2)2 = 0 and (u−1 + εu−1u−2v2)2 = 0,

the above four formulas always deûne a morphism φ of algebras.
By the Poisson rule, a morphism of algebras between Gerstenhaber algebras is a

morphism of Gerstenhaber algebras if and only if the brackets are compatible on the
generators.

Note that, modulo 2, in a BV-algebra, for any elements z and t, {z + t, z + t} =
{z, z} + {t, t} and {z, z} = ∆(z2). _erefore it is easy to check that

φ({x−2 , x−2}) = 0 = {φ(x−2), φ(x−2)}, φ({x−1 , x−1}) = 0 = {φ(x−1), φ(x−1)},
φ({y2 , y2}) = 0 = {φ(y2), φ(y2)}, φ({y3 , y3}) = 0 = {φ(y3), φ(y3)}.

Note that ∆φ(x−1) = εu−2, ∆φ(x−2) = 0, ∆φ(y2) = (b + c)(u−2v3 + u−1v2), and
∆φ(y3) = αu−1v3 + αv2 + (α + γ)u−2v2

2 + αu−1u−2v2v3.
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_erefore

φ({x−2 , y2}) = 0,
{φ(x−2), φ(y2)} = (1 + c)u−1 + (b + c)u−1u−2v2 ,

φ({x−1 , y2}) = 1,
{φ(x−1), φ(y2)} = 1 + (1 + ε)u−2v2 + (εc + 1 + b + c)u−1u−2v3 ,

φ({x−2 , x−1}) = 0 = {φ(x−2), φ(x−1)},
φ({x−2 , y3}) = 1,

{φ(x−2), φ(y3)} = 1 + (1 + α)u−2v2 + (1 + α)u−1u−2v3 ,
φ({x−1 , y3}) = 0,

{φ(x−1), φ(y3)} = (1 + α + ε + α)u−1v2 + (ε + 1 + α + ε)u−2v3

+ (εδ + α + γ + εα)u−1u−2v2
2 ,

φ({y2 , y3}) = 0,
{φ(y2), φ(y3)} = ∆φ(y2)φ(y3) + ∆(φ(y2)φ(y3)) + φ(y2)∆φ(y3)

= (b + c)(u−2v2
3 + u−1v2v3 + (α + δ)u−1u−2v2

2v3)
+ ∆((a + α)u−2v2

2v3 + (b + cα + β)u−1u−2v2v2
3 + δu−1v3

2)
+ φ(y2)∆φ(y3)

= (a + α + δ + α)v2
2 + (a + α + δ + α + γ + aα)u−2v3

2

+ ((b + c)(α + δ) + a + α + δ + α + aα + bα + cα + cγ)
× u−1u−2v2

2v3

+ (b + c + α + cα)u−1v2v3 + (b + c + b + cα + β)u−2v2
3 .

_erefore, by symmetry of the Lie brackets, φ is amorphism of Gerstenhaber algebras
if and only if ε = b = c = α = 1, β = 0 and a = γ = δ. Conclusion: we have found
only two isomorphisms of Gerstenhaber algebras between H∗+3(LBSO(3);F2) and
HH∗(H∗(SO(3)),H∗(SO(3))).

7 Triviality of the Loop Product When H∗(BG) Is Polynomial

_is section is independent of the rest of the paper. Recall that the dual of the loop
coproduct introduced by Sullivan for manifolds H∗(LM) ⊗H∗(LM) → H∗+d(LM)
is (almost) trivial [44]. In this section, we prove that the loop product for classifying
spaces of Lie groups H∗(LBG) ⊗ H∗(LBG) → H∗+d(LBG) is trivial if the inclusion
of the ûbre in cohomology H∗( j)∶ H∗(LBG;K) ↠ H∗(G;K) is surjective (_eo-
rem 7.1). We also explain that the condition that H∗( j)∶ H∗(LBG;K) ↠ H∗(G;K)
is surjective is equivalent to our hypothesis H∗(BG) polynomial (_eorem 7.3).

_eorem 7.1 Let BG be the classifying space of a connected Lie group G. Suppose that
the map induced in cohomology H∗(LBG;K) ↠ H∗(G;K) is surjective. _en the loop
product on H∗(LBG;K) is trivial, while the loop coproduct is injective.
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_is result is a generalization of [12,_eoremD] inwhich it is assumed that the un-
derlying ûeld is of characteristic zero. If CharK ≠ 2, the triviality of the loop product
was ûrst proved by Tamanoi [43,_eorem 4.7 (2)]. David Chataur and the second au-
thor conjectured that the loop coproduct onH∗(LBG) always has a counit. Assuming
that the loop coproduct on H∗(LBG) has a counit, obviously the loop coproduct is
injective and it follows from [43,_eorem 4.5 (i)] that the loop product on H∗(LBG)
is trivial.

_e injectivity described in _eorem 7.1 follows from a consideration of the Eilen-
berg–Moore spectral sequences associated with appropriate pullback diagrams. In
fact, the induced maps Comp! and H(q) in the cohomology are epimorphisms; see
Proposition 7.2.

Let ΩX
ι↪ LX ↠ X be the free loop ûbration. _e following proposition is key to

proving _eorem 7.1.

Proposition 7.2 Let X be a simply-connected space. Suppose that

H∗(ι)∶ H∗(LX) Ð→ H∗(ΩX)
induced by the inclusion is surjective. _en one has the following.
(i) _emap H∗(q) induced by the inclusion q ∶ LX ×X LX → LX ×LX is an epimor-

phism.
(ii) Suppose moreover that X is the classifying space of a connected Lie group G. _en

for the map Comp ∶ LBG×BG LBG→ LBG, Comp! is an epimorphism.

Proof of_eorem 7.1. By Proposition 7.2 (i) and (ii), we see that the dual to the loop
coproduct Dlcop ∶= Comp! ○H∗(q) on H∗(LBG) is surjective. Since q! is

H∗(LBG×LBG)-linear
and decreases the degrees, q! ○H∗(q) = 0. By Proposition 7.2 (i),H∗(q) is an epimor-
phism. _erefore q! is trivial and the dual of the loop product Dlp ∶= q! ○H∗(Comp)
on H∗(LBG) is also trivial.

Proof of Proposition 7.2. Consider the twoEilenberg–Moore spectral sequences as-
sociated with the free loop ûbrationmentioned above and with the pull-back diagram

LX ×X LX
q //

ev
��

LX × LX

ev× ev
��

X δ // X × X

SinceH∗(LX) is a freeH∗(X)-module by the Leray–Hirsch theorem, these twoEilen-
berg–Moore spectral sequences are concentrated on the 0-th column. So the two
morphisms of graded algebras

H∗(ι) ⊗
H∗(X)

η ∶ H∗(LX) ⊗
H∗(X)

K ≅Ð→ H∗(ΩX),

H∗(q) ⊗
H∗(X)⊗2

H∗(ev) ∶ (H∗(LX) ⊗H∗(LX)) ⊗
H∗(X)⊗2

H∗(X) ≅Ð→ H∗(LX ×X LX)
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are isomorphisms. In particular, H∗(q) is an epimorphism and we have an isomor-
phism of graded vector spaces between H∗(LX ×X LX) and H∗(LX) ⊗H∗(ΩX).
Consider the Leray–Serre spectral sequence {Ê∗,∗r , d̂r} of the homotopy ûbration

ΩX→LX ×X LX
CompÐÐÐ→ LX .

Since H∗(LX ×X LX) is isomorphic to H∗(LX) ⊗ H∗(ΩX), by [38, III.Lemma 4.5
(2)], {Ê∗,∗r , d̂r} collapses at the E2-term. _en for X = BG, the integration along the
ûbre Comp! ∶ H∗(LBG×BG LBG) → H∗−dim G(LBG) is surjective.

Let G be a connected Lie group and K a ûeld of arbitrary characteristic. Let

F ∶ G j→ LBG→ BG be the free loop ûbration.

_eorem 7.3 _e induced map H∗( j)∶ H∗(LBG;K) → H∗(G;K) is surjective if
and only if H∗(BG;K) is a polynomial algebra.

Proof _e “if ” part follows from the usual Eilenberg–Moore spectral sequence ar-
gument. In fact, suppose that H∗(BG;K) ≅ K[V]. _en the Eilenberg–Moore spec-
tral sequence for the universal bundle F′ ∶ G → EG → BG allows one to deduce that
H∗(G;K) ≅ ∧(sV). By using the Eilenberg–Moore spectral sequence for the ûbre
square ( [26, Proof of _eorem 1.2] or [28, Proof of _eorem 1.6])

LBG //

��

BGI

��
BG

δ
// BG×BG,

we see that H∗(LBG;K) ≅ H∗(BG;K)⊗∧(sV) as an H∗(BG) = K[V]-algebra. _is
implies that the Leray–Serre spectral sequence (LSSS) for F collapses at the E2-term
and hence H∗( j) is surjective. See the beginning of Section 3 for an alternative proof
that uses module derivations.

Suppose that H∗( j) is surjective. We further assume that CharK = 2. By the
argument in [28, Remark 1.4] or [21, Proof of _eorem 2.2], we see that the Hopf al-
gebra A = H∗(G;K) is cocommutative and so primitively generated, i.e., the natural
map P(A) → Q(A) is surjective. By [28, Lemma 4.3], this yields that H∗(G;K) ≅
∧(x1 , . . . , xN), where x i is primitive for any 1 ≤ i ≤ N . _e same argument as in the
proof of [38, Chapter 7,_eorem 2.26(2)] allows us to deduce that each x i is transgres-
sive in the LSSS {Er , dr} for F′. To see this more precisely, we recall that the action of
G on EG gives rise to a morphism of spectral sequence

{µ∗r }∶ {Er , dr} Ð→ {Er ⊗H∗(G;K), dr ⊗ 1}
for which

µ∗2 = 1⊗ µ∗ ∶ H∗(BG;K) ⊗H∗(G;K) Ð→ H∗(BG;K) ⊗H∗(G;K) ⊗H∗(G;K),
where µ ∶ G ×G → G denotes the multiplication on G [38, Chapter 7, §2].

Suppose that there exists an integer i such that x j is transgressive for j < i, but not
x i . _en we see that for some r < deg x i + 1, dr(x i) ≠ 0 and dp(x i) = 0 if p < r. We
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write dr(x i) = ∑l b l ⊗ x l1 ⋅ ⋅ ⋅ x ls l
, where each b l is a non-zero element of H∗(BG;K)

and 1 ≤ lu ≤ N for any l and u. _e equality µ∗r dr(x i) = (dr ⊗ 1)µ∗r (x i) implies that

∑
l
b l ⊗ x l1 ⋅ ⋅ ⋅ x ls l−1 ⊗ x ls l

= dr ⊗ 1 (1⊗ x i ⊗ 1 + 1⊗ 1⊗ x i)

= ∑
l
b l ⊗ x l1 ⋅ ⋅ ⋅ x ls l

⊗ 1,

which is a contradiction. Observe that x i and x lu are primitive. _us it follows that
x i is transgressive for any 1 ≤ i ≤ N .

In the case where CharK = p ≠ 2, since H∗( j) is surjective by assumption, it fol-
lows from the argument in [28, Remark 1.4] that H∗(G;Z) has no p-torsion. Observe
that to obtain the result, the connectedness of the loop space is assumed. By virtue
of [38, Chapter 7,_eorem 2.12], we see that H∗(BG;K) is a polynomial algebra. _is
completes the proof.

_eorem 7.4 gives another characterisation of our hypothesis that H∗(BG) is poly-
nomial.

_eorem 7.4 Let G be a connected Lie group. _en the following three conditions are
equivalent.
(i) H∗(BG;K) is a polynomial algebra on even degree generators.
(ii) BG is K-formal and H∗(BG;K) is strictly commutative.
(iii) _e singular cochain algebra S∗(BG;K) is weakly equivalent, as algebra, to a

strictly commutative diòerential graded algebra A.

Strictly commutative means that a2 = 0 if a ∈ Aodd (K can be a ûeld of character-
istic two). We conjecture that over a ûeld of characteristic two, this theorem remains
valid if we omit “on even degree generators” in (i), “and H∗(BG;K) is strictly com-
mutative” in (ii) and “strictly” in (iii).

Proof (i) ⇒ (ii). Suppose that H∗(BG;K) is a polynomial algebra. _en by the
beginning of Section 6, BG is K-formal.

(ii)⇒ (iii). Formality means that we can take A = (H∗(BG;K), 0) in (iii).
(iii)⇒ (i). Let Y be a simply connected space such that S∗(Y ;K) is weakly equiva-

lent as algebras to a strictly commutative diòerential graded algebra A. Let (ΛV , d) be
a minimal Sullivan model of A. Consider the semifree-(ΛV , d) resolution of (K, 0),
(ΛV ⊗ ΓsV ,D) given in [16, Proposition 2.4] or [33, Lemma 7.2]. _en the tensor
product of commutative diòerential graded algebras

(K, 0) ⊗
(ΛV ,d)

(ΛV ⊗ ΓsV ,D) ≅ (ΓsV ,D)

has a trivial diòerentialD = 0 [16, Corollary 2.6]. _ereforewe have the isomorphisms
of graded vector spaces

H∗(ΩY) ≅ TorS
∗(Y ;K)(K,K) ≅ Tor(ΛV ,d)(K,K) ≅ H∗(ΓsV ,D) ≅ ΓsV .

IfH∗(ΩY) is of ûnite dimension, then the suspension ofV , sV must be concentrated
in odd degree and so V must be in even degree and d = 0; thus Y is K-formal and
H∗(Y) is polynomial in even degree.
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A Review of [6] With Sign Corrections

In this appendix, we review the results of Chataur and the second author [6]. And we
correct a sign mistake.

A.1 Integration Along the Fibre in Homology With Corrected Sign

Let F → E
projÐÐ→ B be an oriented ûbration with B path-connected, i.e., the homology

H∗(F;K) is concentrated in degree less than or equal to n, π1(B) acts on Hn(F;K)
trivially, and Hn(F;K) ≅ K. In what follows, we write H∗(X) for H∗(X;K). We
choose a generator ω of Hn(F;K), which is called an orientation class. _en the
integration along the ûbre projω! ∶ H∗(B) → H∗+n(E) is deûned by the composite

Hs(B)
ηÐ→ Hs(B) ⊗Hn(F) = E2

s ,n Ð→→ E∞s ,n = F s/F s−1 = F s ⊂ Hs+n(E),

where η sends the x ∈ Hs(B) to the element (−1)snx⊗ω ∈ Hs(B)⊗Hn(F) and {F l}l≥0
denotes the ûltration of the Leray–Serre spectral sequence {Er

∗,∗ , d
r} of the ûbration

F → E
projÐÐ→ B. _is Koszul sign (−1)sn does not appear in the usual deûnition of

integration along the ûbre recalled in [6, 2.2.1].

A.2 Products

Let F′ → E′
proj′ÐÐ→ B′ be another oriented ûbrationwith orientation classω′ ∈ Hn′(F′).

We will choose ω ⊗ ω′ ∈ Hn+n′(F × F′) as an orientation class of the ûbration

F × F′ Ð→ E × E′ proj× proj′ÐÐÐÐÐ→ B × B′ .
By [39, _eorem 3, p. 493], the cross product × induces a morphism of spectral se-
quences between the tensor product of the Serre spectral sequences associated with
proj and proj′ and the Serre spectral sequence associated with proj×proj′. _erefore
the interchange on H∗(B) ⊗ Hn(F) ⊗ H∗(B′) ⊗ Hn′(F′) between the orientation
class ω ∈ Hn(F) and elements in H∗(B′) yields the formula given (without proof)
in [6, §2.3]

(proj×proj′)ω×ω′
! (a × b) = (−1)∣ω

′∣∣a∣ projω! (a) × proj′ω
′

! (b).
Note that with the usual deûnition of integration along the ûbre recalled from [6,
2.2.1], the Koszul sign (−1)∣ω′∣∣a∣ must be replaced by the awkward sign (−1)∣ω∣∣b∣.
_erefore there is a sign mistake in [6, §2.3].

A.3 Integration Along the Fibre in Cohomology With Corrected Sign

Let F
incl↪ E

proj↠ B be an oriented ûbration with orientation τ ∶ Hn(F) → K. By
deûnition, proj!τ ∶ Hs+n(E) → Hs(B) is the composite

Hs+n(E) Ð→→ Es ,n
∞ ⊂ Es ,n

2 = Hs(B) ⊗Hn(F) id⊗τÐÐ→ Hs(B),

where (id⊗τ)(b ⊗ f ) = (−1)n∣b∣bτ( f ). _is Koszul sign (−1)n∣b∣ does not appear in
the usual deûnition of integration along the ûbre recalled from [3, p. 268].
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By [3, IV.14.1], proj!τ(H∗(proj)(β) ∪ α) = (−1)∣β∣nβ ∪ proj!τ(α) for α ∈ H∗(E) and
β ∈ H∗(B). _is means that the degree −n linear map proj!τ ∶ H∗(E) → H∗−n(B)
is a morphism of le� H∗(B)-modules in the sense that f (xm) = (−1)∣ f ∣∣x ∣x f (m) as
stated in [9, p. 44].

A.4 Example: Trivial Fibrations

Let ω ∈ Hn(F;K) be a generator. Deûne the orientation τ ∶ Hn(F) → K as the image
ofω by the natural isomorphismof the homology into its double dual,ψ ∶ Hn(F;K) →
Hom(Hn(F;K),K). Explicitly, τ( f ) = (−1)n∣ f ∣⟨ f ,ω⟩, where ⟨ ⋅ , ⋅ ⟩ is the Kronecker
bracket.

Let proj1 ∶ B × F ↠ B be the projection on the ûrst factor. _en for any f ∈ H∗(F)
and b ∈ H∗(B), proj!1τ(b × f ) = (−1)∣ f ∣∣b∣bτ( f ). Let proj2 ∶ F × B ↠ B be the pro-
jection on the second factor. Since proj2 is the composite of proj1 and the exchange
homeomorphism, by naturality of integration along the ûbre,

proj!2τ( f × b) = proj!1τ((−1)
∣ f ∣∣b∣b × f ) = bτ( f ) = (−1)n∣ f ∣⟨ f ,ω⟩b.

A.5 Main Dual Theorem With Signs

_emain theorem of [6] states that H∗(LX) is a d-dimensional (non-unital non co-
unital) homological conformal ûeld theory, i.e.,H∗(LX) is an algebra over the tensor
product of graded linear props

⊕
Fp+q

detH1(F , ∂in;Z)⊗d ⊗Z H∗(Bdiò+(F , ∂);K).

See [6, §3 and 11] for the deûnition of this prop: here F (respectively Fp+q) denotes
a non-necessarily connected cobordism (with p incoming circles and q outcoming
circles). _e prop detH1(F , ∂in;Z) manages the degree shi� and the sign of each
operation. In [6], Chataur and the second author did not pay attention to this prop
detH1(F , ∂in;Z) (and neither did [1, p. 120], it seems). _erefore, in order to get the
signs correct, we need to review all the results of [6] by taking this prop into account.
Explicitly, we have maps

ϑ(Fq+p)∶ detH1(Fq+p , ∂in;Z)⊗d ⊗Z H∗(Bdiò+(Fq+p , ∂)) ⊗H∗(LX)⊗q

Ð→ H∗(LX)⊗p

that assign ϑ s⊗a(Fq+p)(v) to s ⊗ a ⊗ v.
_erefore (cf. [6, §6.3]), its dual H∗(LX) is an algebra over the opposite prop

⊕Fp+q detH1(F , ∂in;Z)op⊗d⊗ZH∗(Bdiò+(F , ∂))op, which is isomorphic to the prop
⊕Fp+q detH1(F , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(F , ∂)), since

detH1(Fp+q , ∂out;Z) = detH1(Fq+p , ∂in;Z)
and diò+(Fp+q , ∂) = diò+(Fq+p , ∂). Explicitly, the degree 0 map since

ν(Fp+q)∶ detH1(Fq+p , ∂in;Z)⊗d ⊗Z H∗(Bdiò+(Fq+p , ∂)) ⊗H∗(LX)⊗p

Ð→ H∗(LX)⊗q
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sends the element s ⊗ a ⊗ α to

νs⊗a(Fp+q)(α) ∶=t (ϑ s⊗a(Fq+p))(α) = (−1)∣α∣(∣s∣+∣a∣)α ○ ϑ s⊗a(Fq+p).
Note that here we have deûned the transposition of a map f as t f (α) = (−1)∣α∣∣ f ∣α ○ f .

_is yields the following ûve propositions: A.1, A.3, A.4, A.5.

Proposition A.1 (Cf. [6, Proposition 24]) Let F and F′ be two cobordisms with the
same incoming boundary and the same outgoing boundary. Let ϕ ∶ F → F′ be an ori-
entation preserving diòeomorphism, ûxing the boundary, i.e., an equivalence between
the two cobordisms F and F′. Let cϕ ∶ diò+(F , ∂) → diò+(F′ , ∂) be the isomorphism
of groups, mapping f to ϕ ○ f ○ ϕ−1. _en for

s ⊗ a ∈ detH1(F , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(F , ∂)),

νs⊗a(F) = νdet H1(ϕ ,∂out ;Z)⊗d(s)⊗H∗(Bcϕ)(a)(F′).

Remark A.2. In Proposition A.1, suppose that F = F′. By a variant of [6, Proposi-
tion 19], H1(ϕ, ∂out;Z) is of determinant +1. Since the natural surjection

diò+(F , ∂)) ≃Ð→ π0(diò+(F , ∂))
is a homotopy equivalence [7] and π0(cϕ) is the conjugation by the isotopy class of
ϕ, H∗(Bcϕ) is the identity. So the conclusion of Proposition A.1 is just νs⊗a(F) =
νs⊗a(F).

Using Proposition A.1, it is enough to deûne the operation ν(F) for a set of repre-
sentatives F of oriented classes of cobordisms (therefore, the direct sum over a set⊕F
in the above deûnition of the prop has a meaning). Conversely, if ν(F) is deûned for
a cobordism F, then using Proposition A.1, we can deûne ν(F′) for any equivalent
cobordism F′ using an equivalence of cobordism ϕ ∶ F → F′. Two equivalences of
cobordism ϕ, ϕ′ ∶ F → F′ deûne the same operation ν(F′), since

detH1(ϕ, ∂out) ○ detH1(ϕ′ , ∂out)−1 = detH1(ϕ ○ ϕ′−1 , ∂out) = Id

and H∗(Bcϕ) ○H∗(Bcϕ′)−1 = H∗(Bcϕ○ϕ′−1) = Id by Remark A.2.

Proposition A.3 (Cf. [6, Proposition 30,Monoidal]) Let F and F′ be two cobordisms.
For

s ⊗ a ∈ detH1(F , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(F , ∂)),
and

t ⊗ b ∈ detH1(F′ , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(F′ , ∂)),

we have ν(s⊗t)⊗(a⊗b)(F∐ F′) = (−1)∣t∣∣a∣νs⊗a(F) ⊗ νt⊗b(F′).

Proposition A.4 (Cf. [6, Proposition 31, Gluing]) Let Fp+q and Fq+r be two compos-
able cobordisms. Denote by Fq+r ○ Fp+q the cobordism obtained by gluing. For

s1 ⊗m1 ∈ detH1(Fp+q , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(Fp+q , ∂)),
and

s2 ⊗m2 ∈ detH1(Fq+r , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(Fq+r , ∂)),
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we have νs2⊗m2(Fq+r) ○ νs1⊗m1(Fp+q) = (−1)∣m2 ∣∣s1 ∣ν(s2○s1)⊗(m2○m1)(Fq+r ○ Fp+q). Here
○∶ H∗(Bdiò+(Fq+r , ∂)) ⊗H∗(Bdiò+(Fp+q , ∂)) Ð→ H∗(Bdiò+(Fq+r ○ Fp+q , ∂)),
and mapping m2 ⊗m1 to m2 ○m1 is induced by the gluing of Fp+q and Fq+r .

Asnoted in [20], with their notion of h-graph cobordism, Chatour andMenichi [6]
never used the smooth structure of the cobordisms. So, in fact, our cobordisms are
topological. _erefore the cobordism Fq+r ○ Fp+q obtained by gluing is canonically
deûned [25, 1.3.2]. Note that by [7, 17] the inclusion diò+(F , ∂) ≈↪ Homeo+(F , ∂) is a
homotopy equivalence since π0(diò+(F , ∂)) ≅ π0(Homeo+(F , ∂)) [8, p. 45].

Proposition A.5 (Cf. [6, Corollary 28 i), Identity]) Let id1 ∈ detH1(F0,1+1 , ∂out;Z)
and id1 ∈ H0(Bdiò+(F0,1+1 , ∂)) be the identity morphisms of the object 1 in the two
props. _en νid⊗d

1 ⊗ id1(F0,1+1) = IdH∗(LX).

Proposition A.6 (Cf. [6, Corollary 28 ii), Symmetry]) Let Cϕ be the twist cobordism
of S1∐ S1. Let τ ∈ detH1(Cϕ , ∂out;Z), τ ∈ H0(Bdiò+(Cϕ , ∂)), and

τ ∈ End(H∗(LX)⊗2)

be the exchange isomorphisms of the three props. _en ντ⊗d⊗τ(Cϕ) = τ.

Let F be a cobordism. Let κF be the generator of H0(Bdiò+(F , ∂)) represented by
the connected component of Bdiò+(F , ∂). Wemaywrite κ instead of κF for simplicity.
If χ(F) = 0, then H1(F , ∂out;Z) = {0} has a unique orientation class. _is class
corresponds to the generator 1 ∈ detH1(F , ∂out;Z) = Λ−χ(F)H1(F , ∂out;Z) = Z.

_e identity morphim id1 and the exchange isomorphism τ of the prop

detH1(F , ∂out;Z)
correspond to these unique orientation classes of

H1(F0,1+1 , ∂out;Z) and H1(Cϕ , ∂out;Z).
_e identity morphism id1 and the exchange isomorphism τ of the prop

H∗(Bdiò+(F , ∂))
are just κF0,1+1 and κCϕ .

B Commutativity and Associativity of the Dual to the Loop
Coproduct

_e connected cobordism of genus g with p incoming circles and q outgoing circles
is denoted Fg ,p+q . In particular, F0,2+1 is the pair of pants.

_eorem B.1 Let d ≥ 0. Let H∗ (upper graded) be an algebra over the (lower graded)
prop detH1(F , ∂out;Z)⊗d ⊗Z H0(Bdiò+(F , ∂)). Let s ∈ detH1(F0,2+1 , ∂out;Z)⊗d be a
chosen orientation. Let Dlcop ∶= νs⊗κ(F0,2+1). Let m be the product deûned by

a ⊙ b = (−1)d(i−d)Dlcop(a ⊗ b)

876

https://doi.org/10.4153/CJM-2018-021-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-021-9


_e Batalin–Vilkovisky Algebra in the String Topology of Classifying Spaces

for a ⊗ b ∈ H i ⊗ H j . Let H∗ ∶= H∗+d . _en (H∗ ,⊙) is a graded associative and
commutative algebra.

Proof Using Propositions A.3, A.4, and A.5,

Dlcop ○(Dlcop⊗1) = νs○(s⊗id1)⊗κ○(κ⊗id1)(F0,2+1 ○ (F0,2+1∐ F0,1+1)),
Dlcop ○(1⊗Dlcop) = νs○(id1 ⊗s)⊗κ○(id1 ⊗κ)(F0,2+1 ○ (F0,1+1∐ F0,2+1)).

_e cobordisms F0,2+1 ○(F0,2+1∐ F0,1+1) and F0,2+1 ○(F0,1+1∐ F0,2+1) are equivalent.
When we identify them, κ ○ (κ ⊗ id1) = κ ○ (id1 ⊗κ). Also F0,2+1 ○ Cϕ = F0,2+1 and
κ ○ τ = κ.

Let β ∈ detH1(F0,2+1 , ∂out;Z) the generator such that β⊗d = s. _e composi-
tions of the Z-linear prop detH1(F , ∂out;Z) are isomorphisms. _erefore, they send
generators to generators. Moreover, detH1(F , ∂out;Z) ∶= Λ−χ(F)H1(F , ∂out;Z) is
an abelian group on a single generator of lower degree −χ(F). So β ○ (β ⊗ id1) =
εassβ ○ (id1 ⊗β) and β ○ τ = εcomβ for given signs εass and εcom ∈ {−1, 1}. _erefore

s ○ (s ⊗ id1) = β⊗d ○ (β ⊗ id1)⊗d = (−1)
d(d−1)

2 ∣β∣2(β ○ (β ⊗ id1))⊗d = εdasss ○ (id1 ⊗s),
s ○ τ = β⊗d ○ τ⊗d = (β ○ τ)⊗d = (εcomβ)⊗d = εdcomβ⊗d = εdcoms.

_erefore, by Proposition A.1

Dlcop ○(Dlcop⊗1) = εdassDlcop ○(1⊗Dlcop),
Dlcop ○τ = εdcomDlcop .

_is means that for a, b, c ∈ H∗(LX),

(a ⊙ b) ⊙ c = εdass(−1)da ⊙ (b ⊙ c),
b ⊙ a = εdcom(−1)(∣a∣−d)(∣b∣−d)+da ⊙ b,

since

(a ⊙ b) ⊙ c = (−1)d ∣b∣+d Dlcop ○(Dlcop⊗1)(a ⊗ b ⊗ c),
a ⊙ (b ⊙ c) = (−1)d(∣a∣+∣b∣)Dlcop(a ⊗Dlcop(b ⊗ c))

= (−1)d ∣b∣Dlcop ○(1⊗Dlcop)(a ⊗ b ⊗ c).
Godin [14, Proof of Proposition 21] showed geometrically that εass = −1 for the prop

detH1(F , ∂in;Z). To determine the signs εass and εcom for the prop detH1(F , ∂out;Z),
we prefer to use our computations of ⊙.
Consider a particular connected compact Lie group G of a particular dimension

d and a particular ûeldK of characteristic diòerent from 2 such that H∗(BG;K) is a
polynomial, for example G = (S1)d or K = Q. _en H∗(LBG;Q) is an algebra over
our prop and we can apply _eorem 3.1 (ii) or Corollary 4.2. Taking a = x1 ⋅ ⋅ ⋅ xN ,
b = 1, and c = x1 ⋅ ⋅ ⋅ xN , we obtain 1 = εdass(−1)d and 1 = εdcom(−1)d . So if we chose d
odd, εass = εcom = −1 and ⊙ is associative and graded commutative.

Remark B.2. When d is even, the d-th power of the prop detH1(F , ∂in;Z) is isomor-
phic to the d-th power of the trivial prop with a degree shi� −χ(F).
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More precisely, let P be the prop such that P(p, q) ∶= ⊕Fp+q s
−χ(Fp+q)Z,

s−χ(F
′)1 ○ s−χ(F)1 = s−χ(F

′○F)1,

and s−χ(F)1⊗ s−χ(F
′)1 = s−χ(F∐ F

′)1. _is prop P is the the trivial prop with a degree
shi� −χ(F).
For any cobordism F, let ΘF ∶ s−χ(F)Z → detH1(F , ∂in;Z) be a chosen isomor-

phism. _en Θ⊗d
F ∶ P⊗d → detH1(F , ∂in;Z)⊗d is an isomorphim of props if d is even.

_is prop P⊗d is the d-th power of the trivial prop with a degree shi� −χ(F) and is
not isomorphic to the trivial prop with a degree shi� −dχ(F).

Proof _e following upper square always commutes, while the lower square com-
mutes if d is even.

(s−χ(F′)Z)⊗d ⊗ (s−χ(F)Z)⊗d
Θ⊗d

F′ ⊗Θ⊗d
F //

τ
��

detH1(F′ , ∂∉;Z)⊗d ⊗ detH1(F , ∂in;Z)⊗d

τ
��

(s−χ(F′)Z⊗ s−χ(F)Z)⊗d
(ΘF′⊗ΘF)⊗d

//

○⊗d

��

(detH1(F′ , ∂in;Z) ⊗ detH1(F , ∂in;Z))⊗d

○⊗d

��
(s−χ(F′○F)Z)⊗d

(ΘF′○F)⊗d
// detH1(F′ ○ F , ∂in;Z)⊗d

Replacing ○ by the tensor product ⊗ of props, we have proved that Θ⊗d
F is an iso-

morphism of props if d is even.

Observe that the dual of the loop coproduct Dlcop on H∗(LX) satisûes the same
commutative and associative formulae as those of the Chas–Sullivan loop product on
the loop homology ofM [42, Remark 3.6], [29, Proposition 2.7]. So we wonder if the
prop detH1(F , ∂out;Z) is isomorphic to the prop detH1(F , ∂in;Z).

Corollary B.3 Let X be a simply connected space such that H∗(ΩX;K) is ûnite-
dimensional. _e shi�ed cohomologyH∗(LX) ∶= H∗+d(LX) is a graded commutative,
associative algebra endowed with the product ⊙ deûned by

a ⊙ b = (−1)d(i−d)Dlcop(a ⊗ b),
for a ∈ H i(LX) and b ∈ H j(LX).

C The Batalin–Vilkovisky Identity

For any simple closed curve γ in a cobordism F, let us denote by γ the image of the
Dehn twist Tγ by the Hurewicz map Θ

π0(diò+(F , ∂))
∂−1

Ð→
≅

π1(Bdiò+(F , ∂))
ΘÐ→ H1(Bdiò+(F , ∂)).

In this appendix, we prove the following theorem.

_eorem C.1 Let H∗ be an algebra over the prop

detH1(F , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(F , ∂)).
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Consider the graded associative and commutative algebra (H∗ ,⊙) given by_eoremB.1.
Let α be a closed curve in the cylinder F0,1+1 parallel to one of the boundary components.
Let ∆ = νid1 ⊗α(F0,1+1). _en (H∗ ,⊙, ∆) is a BV-algebra.

When d = 0, Wahl [46, Remark 2.2.4] and Kupers [27, 4.1, p. 158] gave an incom-
plete proof that we complete. Moreover, we pay attention to signs.

We conjecture that _eoremC.1 is true if we replace the prop detH1(F , ∂out;Z) by
the (isomorphic?) prop detH1(F , ∂in;Z). A d-homological conformal ûeld theory
should have a structure of a BV-algebra. _e dual of a d-homological conformal ûeld
theory should be a d-homological conformal ûeld theory. All this is well known if
we do not take into accounts the signs hidden in the prop detH1(F , ∂in;Z). But the
problem is to do a correct proof with signs.

_e shi�ed cohomology algebra (H∗ ,⊙) equipped with the operator ∆ is a BV-
algebra if and only if ∆ ○ ∆ = 0 and if the Batalin–Vilkovisky identity holds; that is,
for any elements a, b, and c in H∗,

∆(a ⊙ b ⊙ c) = ∆(a ⊙ b) ⊙ c + (−1)∥a∥a ⊙ ∆(b ⊙ c) + (−1)∥b∥∥a∥+∥b∥b ⊙ ∆(a ⊙ c)
− ∆(a) ⊙ b ⊙ c − (−1)∥a∥a ⊙ ∆(b) ⊙ c
− (−1)∥a∥+∥b∥a ⊙ b ⊙ ∆(c),

where ∥α∥ stands for the degree of an element α in H∗, namely ∥α∥ = ∣α∣ − d.
Since Bdiò+(F0,1+1) is BZ, α ○ α ∈ H2(Bdiò+(F0,1+1)) = {0}. _erefore ∆ ○ ∆ =

±νid1 ⊗α○α(F0,1+1) = 0
_e Batalin–Vilkovisky identity will arise up to signs from the lantern relation [46,

Remark 2.2.4], [27, 4.1, p. 158].

Proposition C.2 ( [22], [8, §5.1]) Let a1 , . . . , a4 and x , y, z be the simple closed curves
described in [27, Figure 6.89]. _en one has Ta1Ta2Ta3Ta4 = TxTyTz in the mapping
class group of the sphere with four holes, F0,3+1, where Tγ denotes the Dehn twist around
a simple closed curve γ in the surface.

In order to prove _eorem C.3, we represent each term of the Batalin–Vilkovisky
identity in terms of elements of the prop with a homological conformal ûeld theoreti-
cal way. _is means using the horizontal (coproduct) composition ⊗ and the vertical
composition ○ on the prop. We start with the most complicated element b⊙∆(a⊙ c).
By Propositions A.3, A.4, A.5, and A.6,

Dlcop ○[Id⊗(∆ ○Dlcop)] ○ (τ ⊗ Id)
= νs⊗κ(F0,2+1) ○ [νid1 ⊗ id1(F0,1+1) ⊗ (νid1 ⊗α(F0,1+1) ○ νs⊗κ(F0,2+1))]

○ (ντ⊗τ(Cϕ) ⊗ νid1 ⊗ id1(F0,1+1))
= ±νs○[id1 ⊗s]○(τ⊗id1)⊗κ○[id1 ⊗(α○κ)]○(τ⊗id1)(F0,2+1○(F0,1+1∐ F0,2+1)○(Cϕ∐ F0,1+1))

Here ± is the Koszul sign (−1)∣s∣∣α∣ = (−1)d , since only s and α have positive degrees.
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We choose s′ = s ○ (s ⊗ id1). In the proof of _eorem B.1, we have seen that εass =
εcom = −1 and hence s ○ (s ⊗ id1) = (−1)d s ○ (id1 ⊗s) and s ○ τ = (−1)d s. _erefore,

s ○ (id1 ⊗s) ○ (τ ⊗ id1) = (−1)d s ○ (s ⊗ id1) ○ (τ ⊗ id1)
= (−1)d s ○ [(s ○ τ) ⊗ (id1 ○ id1)] = s′ .

Since κ○[id1 ⊗(α○κ)]○(τ⊗ id1) coincides with z by Proposition D.1, we have proved
that Dlcop ○(Id⊗(∆○Dlcop))○(τ⊗ Id) = (−1)dνs′⊗z(F0,3+1). Similar computations
show that

Dlcop ○(Id⊗(∆ ○Dlcop)) =

± νs○[id1 ⊗s]⊗ κ○[id1 ⊗(α○κ)](F0,2+1 ○ (F0,1+1 tsl∐ F0,2+1)) = νs′⊗x(F0,3+1),
Dlcop ○((∆ ○Dlcop) ⊗ Id) =

± νs○[s⊗id1]⊗ κ○[(α○κ)⊗id1](F0,2+1 ○ (F0,2+1∐ F0,1+1)) = (−1)dνs′⊗y(F0,3+1),
∆ ○Dlcop ○(Dlcop ○ Id) =

νs○[s⊗id1]⊗ α○κ○(κ⊗id1)(F0,2+1 ○ (F0,2+1∐ F0,1+1)) = νs′⊗a4(F0,3+1),
Dlcop ○(∆⊗Dlcop) =

± νs○[id1 ⊗s]⊗ κ○[α⊗κ](F0,2+1 ○ (F0,1+1∐ F0,2+1)) = νs′⊗a1(F0,3+1),
Dlcop ○(Id⊗Dlcop) ○ (Id⊗∆⊗ Id) =

νs○[id1 ⊗s]⊗ κ○(id1 ⊗κ)○(id1 ⊗α⊗id1)(F0,2+1 ○ (F0,1+1∐ F0,2+1)) = (−1)dνs′⊗a2(F0,3+1)
Dlcop ○(Dlcop⊗∆) =

νs○[s⊗id1]⊗ κ○[κ⊗α](F0,2+1 ○ (F0,1+1∐ F0,2+1)) = νs′⊗a3(F0,3+1).
_erefore, using the deûnition of the product ⊙, straightforward computations show
that

∆((a ⊙ b) ⊙ c) = (−1)d ∣b∣+dνs′⊗a4(F0,3+1)(a ⊗ b ⊗ c),

∆(a) ⊙ b ⊙ c = (−1)d ∣b∣+dνs′⊗a1(F0,3+1)(a ⊗ b ⊗ c),

(−1)∥a∥a ⊙ ∆(b) ⊙ c = (−1)d ∣b∣+dνs′⊗a2(F0,3+1)(a ⊗ b ⊗ c),

(−1)∥a∥+∥b∥a ⊙ b ⊙ ∆(c) = (−1)d ∣b∣+dνs′⊗a3(F0,3+1)(a ⊗ b ⊗ c),

∆(a ⊙ b) ⊙ c = (−1)d ∣b∣+dνs′⊗y(F0,3+1)(a ⊗ b ⊗ c),

(−1)∥a∥a ⊙ ∆(b ⊙ c) = (−1)d ∣b∣+dνs′⊗x(F0,3+1)(a ⊗ b ⊗ c),

(−1)∥b∥∥a∥+∥b∥b ⊙ ∆(a ⊙ c) = (−1)d ∣b∣+dνs′⊗z(F0,3+1)(a ⊗ b ⊗ c) .

_e lantern relation gives rise to the equality

νs′⊗a4(F0,3+1) + νs′⊗a1(F0,3+1) + νs′⊗a2(F0,3+1) + νs′⊗a3(F0,3+1)

= νs′⊗x(F0,3+1) + νs′⊗y(F0,3+1) + νs′⊗z(F0,3+1),
since the Hurewicz map is a morphism of groups. _us,

∆(a⊙ b⊙ c)+∆(a)⊙ b⊙ c +(−1)∥a∥a⊙∆(b)⊙ c +(−1)∥a∥+∥b∥a⊙ b⊙∆(c)
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= ∆(a ⊙ b) ⊙ c + (−1)∥a∥a ⊙ ∆(b ⊙ c) + (−1)∥b∥∥a∥+∥b∥b ⊙ ∆(a ⊙ c).

Corollary C.3 Let G be a connected compact Lie group of dimension d. Consider
the graded associative and commutative algebra (H∗(LBG),⊙) given by Corollary B.3.
Let ∆ be the operator induced by the action of the circle on LBG (see our deûnition
in Appendix E). _en the shi�ed cohomology H∗(LBG) carries the structure of a BV-
algebra.

Proof By Proposition E.1 and by [6, Proposition 60]), ∆ = νid1 ⊗α(F0,1+1).

D Seven Prop Structure Equalities on the Homology of Mapping
Class Groups Proving the Batalin–Vilkovisky Identity

Recall that for any simple closed curve γ in a cobordism F, we write γ for the image
of the Dehn twist Tα by the Hurewicz map Θ

π0(diò+(F , ∂))
∂−1

Ð→
≅

π1(Bdiò+(F , ∂))
ΘÐ→ H1(Bdiò+(F , ∂)).

Here ∂ is the connecting homomorphism associated wwith the universal principal
ûbration.

Let α be a closed curve in the cylinder F0,1+1 parallel to one of the boundary com-
ponents. Let a1 , . . . , a4 and x , y, z be the simple closed curves in F0,3+1 described
in [27, Figure 6.89]. In what follows, we denote by ○ the vertical product in the prop

⊕
F

H∗(Bdiò+(F , ∂);K),

which acts (up to signs) on H∗+dim G(LBG;K). _e goal of this appendix is to show
the following equalities needed in the proof of the BV-identity given in Appendix C.

Proposition D.1

z = κ ○ [id1 ⊗(α ○ κ)] ○ [τ ⊗ id1], x = κ ○ [id1 ⊗(α ○ κ)], y = κ ○ [(α ○ κ) ⊗ id1],
a4 = α ○ κ ○ (κ ⊗ id1), a1 = κ ○ [α ⊗ κ],
a2 = κ ○ (id1 ⊗κ) ○ (id1 ⊗α ⊗ id1), a3 = κ ○ [κ ⊗ α].

Let F̃ denote the group diò+(F , ∂) (or the mapping class group of a surface F with
boundary ∂). Recall that κF or simply κ denotes the generator of H0(BF̃) that is
represented by the connected component of BF̃.

Proposition D.2 Let F and F′ be two cobordisms. In (i) and (ii), suppose that F and
F′ are gluable. Let ○∶ F̃× F̃′ → F̃ ○ F′ be the map induced by gluing on diòeomorphisms.
Let idF ∈ F̃ be the identity map of F. For D in π0(F̃) and D′ in π0(F̃′),
(i) Θ∂−1(idF ○ D′) = κF ○Θ∂−1D′,
(ii) Θ∂−1(D ○ idF′) = Θ∂−1D ○ κF′ ,
(iii) Θ∂−1(idF ⊔ D′) = κF ⊗Θ∂−1D′.
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Proof We consider the diagram
π0(F̃) × π0(F̃′)

φ≅
��

π0(F̃′)

i2
66

π0(i2)
// π0(F̃ × F̃′)

π0(○) // π0(F̃ ○ F′)

π1(B(F̃′))

Θ
��

≅ ∂

OO

π1(B(i2))
//

π1(i2) ((

π1(B(F̃ × F̃′))

Θ

  

≅ ∂

OO

π1(ξ)≅
��

π1(B(○))
// π1(BF̃ ○ F′)

Θ

��

≅ ∂

OO

H1(BF̃′)

k2
�� H1(i2) ((

π1(BF̃ × BF̃′)

Θ
��

H0(BF̃) ⊗H1(BF̃′) ×
// H1(BF̃ × BF̃′) H1(B(F̃ × F̃′))H1(ξ)

≅oo
H1(B(○))

// H1(BF̃ ○ F′)

Here φ is the natural isomorphism, × is the cross product,

ξ ∶ B(F̃ × F̃′) ≈Ð→ B(F̃) × B(F̃′)
is the canonical homotopy equivalence, k2 is the isomorphism deûned by k2(x) =
κF ⊗ x, and i2 denotes various inclusions on the second factor. Note that by the deû-
nition of the prop structure, the bottom line coincides with

○∶ H0(BF̃) ⊗H1(BF̃′) Ð→ H1(BF̃ ○ F′).
_e commutativity of the diagram shows (i).

Replacing i2 and k2 by inclusions on the ûrst factor, we obtain (ii). Replacing ○∶ F̃×
F̃′ → F̃ ○ F′ by the map F̃ × F̃′ → F̃∐ F′, (D,D′) ↦ D ⊔ D′, we obtain (iii).

Proof of Proposition D.1 Let F = (F0,1+1∐ F0,2+1) ○ (Cϕ∐ F0,1+1). We can iden-
tify F0,3+1 with F0,2+1 ○ (F0,1+1∐ F0,1+1) ○ F. Let emb2 ∶ F0,1+1 ↪ F0,3+1 be the second
embedding due to this identiûcation. _e composite of the curve α and of emb2,
S1 αÐ→ F0,1+1↪

emb2ÐÐ→ F0,3+1, coincides with the curve z. Taking the same tubular neigh-
borhood around α and z, the Dehn twists of α and z, Tα and Tz , coincide on this
tubular neighborhood. Outside of this tubular neighborhood, Tα and Tz coincide
with the identity maps of F0,1+1 and of F0,3+1, idF0,1+1 and idF0,3+1 . _erefore

Tz = idF0,2+1 ○(idF0,1+1 ⊔Tα) ○ idF .

By virtue of Proposition D.2 (i)–(iii),we have

z ∶= Θ∂−1Tz = Θ∂−1(idF0,2+1 ○(idF0,1+1 ⊔Tα) ○ idF)
= κF0,2+1 ○Θ∂−1((idF0,1+1 ⊔Tα) ○ idF)
= κF0,2+1 ○Θ∂−1(idF0,1+1 ⊔Tα) ○ κF
= κF0,2+1 ○ (κF0,1+1 ⊗Θ∂−1Tα) ○ κF
= κF0,2+1 ○ [id1 ⊗α] ○ κF .
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_e prop structure on the 0-th homology gives κF = [id1 ⊗κF0,2+1] ○ [τ ⊗ id1]. Finally,
the prop structure on the homology of mapping class groups gives

z = κF0,2+1 ○ [id1 ⊗α] ○ [id1 ⊗κF0,2+1] ○ [τ⊗ id1] = κF0,2+1 ○ [id1 ⊗(α ○κF0,2+1)] ○ [τ⊗ id1].

In a similar fashion, we have the other six equalities.

E The Cohomological Batalin–Vilkovisky Operator ∆

_e goal of this appendix is to give our deûnition of the Batalin–Vilkovisky operator
∆ in cohomology and to compare it to others’ deûnitions given in the literature.

Let Γ ∶ S1 × LX → LX be the S1-action map. _en in this paper the Batalin-
Vilkovisky operator ∆ ∶ H∗(LX) → H∗−1(LX) is deûned [28, Proposition 3.3] by
∆ ∶= ∫S 1 ○Γ∗, where ∫S 1 ∶ H∗(S1 × LX) → H∗−1(LX) denotes the integration along
the ûbre of the trivial ûbration S1 × LX ↠ LX.
By our example in Appendix A (see also up to the sign [28, Proof of Proposition

3.3]), ∫S 1 f ×b = (−1)∣ f ∣⟨ f , [S1]⟩b. Up to some signs, this is the slant with [S1] (cf. [24,
Deûnition 1]).

_erefore for any β ∈ H∗(LX), the image of β by ∆, ∆(β), is the unique element
such that (see [42] up to the sign − )

Γ∗(β) = 1 × β − {S1} × ∆(β),

where {S1} is the fundamental class in cohomology deûned by ⟨{S1}, [S1]⟩ = 1.
So ûnally, we have proved that with our deûnition of integration along the ûbre,

since we deûne the BV-operator ∆ using integration along the ûbre as [28, Proposi-
tion 3.3], our ∆ is exactly the opposite of the one deûned by [42], [24, p. 648]. In
particular, observe that ∆ satisûes ∆2 = 0 and is a derivation on the cup product on
H∗(LX) [42, Proposition 4.1].

In Appendix C, we needed another characterisation of our Batalin–Vilkovisky op-
erator ∆.

Proposition E.1 _e BV-operator ∆ ∶= ∫S 1 ○Γ∗ is the dual (=transposition) of the
composite

H∗(LX) [S 1]×−ÐÐÐ→ H∗+1(S1 × LX) Γ∗Ð→ H∗+1(LX).

Proof For any space X, let µX ∶ H∗(X;K) → H∗(X;K)∨ be the map sending α to
the form on H∗(X;K), ⟨α, ⋅ ⟩. Here ⟨ ⋅ , ⋅ ⟩ is the Kronecker bracket. By the universal
coeõcient theorem for cohomology, µX is an isomorphism. Consider the two squares

H∗(LX) Γ∗ //

µLX

��

H∗(S1 × LX) ∫S1 //

µS1×LX
��

H∗−1(LX)

µLX

��
H∗(LX)∨

(Γ∗)∨
// H∗(S1 × LX)∨

([S 1]×−)∨
// H∗−1(LX)∨ .
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_e le� square commutes by naturality of µX . For any α ∈ H∗(S1), β ∈ H∗(LX), and
y ∈ H∗(LX),

( µLX ○ ∫
S 1
)(α × β)(y) = µLX((−1)∣α∣∣[S

1]∣⟨α, [S1]⟩β)(y)

= (−1)∣α∣∣[S
1]∣⟨α, [S1]⟩⟨β, y⟩

and

([S1] × −)∨(µS 1×LX(α × β))(y) = (−1)∣α×β∣∣[S
1]∣µS 1×LX(α × β) ○ ([S1] × −)(y)

= (−1)∣α∣∣[S
1]∣+∣β∣∣[S 1]∣⟨α × β, [S1] × y⟩.

Since ⟨α×β, [S1]×y⟩ = (−1)∣β∣∣[S 1]∣⟨α, [S1]⟩⟨β, y⟩, the right square commutes also.

F Hochschild Cohomology Computations

Proposition F.1 Let A be a graded (or ungraded) algebra equipped with an isomor-
phism of A-bimodules Θ ∶ A ≅→ A∨ between A and its dual of any degree ∣Θ∣. Denote by
tr ∶= Θ(1) the induced graded trace on A. Let a ∈ Z(A) be an element of the center of
A. Let d ∶ A → A be a derivation of A. Obviously a ∈ C0(A,A) = Hom(K,A) deûned
by a(1) = a and d ○ s−1 ∈ C1(A,A) = Hom(sA,A) are two Hochschild cocycles. _en
in the BV-algebra HH∗(A,A) ≅ HH∗+∣Θ∣(A,A∨),

(i) ∆([a]) = 0,
(ii) ∆([d ○ s−1]) is equal to [a], the cohomology class of a, if and only if for any

a0 ∈ A, (−1)1+∣d ∣ tr ○d(a0) = tr(aa0).
(iii) In particular, the unit belongs to the image of ∆ if and only if there exists a

derivation d ∶ A→ A of degree 0 commuting with the trace: tr ○d(a0) = tr(a0) for any
element a0 in A.

Proof By deûnition of ∆, the following diagram commutes up to the sign (−1)∣Θ∣ for
any p ≥ 0.

Cp(A,A)
Cp(A,Θ) //

∆
��

Cp(A,A∨) Ad // Cp(A,A)∨

B∨

��
Cp−1(A,A)

Cp−1(A,Θ)
// Cp−1(A,A∨)

Ad
// Cp−1(A,A)∨ .

Taking p = 0, we obtain (i).
_e image of the cocycle d ○ s−1 ∈ C1(A;A) by Ad ○C∗(A; Θ) is the form Θ̂(d) on

C1(A;A) = A⊗ sA deûned by

Θ̂(d)(a0[sa1]) = (−1)∣sa1 ∣∣a0 ∣(Θ ○ d)(a1)(a0) = (−1)∣sa1 ∣∣a0 ∣tr(d(a1)a0),
(cf. [34, Proof of Proposition 20]). For any a0 ∈ A,

(−1)∣Θ∣+1+∣d ∣B∨(Θ̂(d))(a0) = (Θ̂(d) ○ B)(a0[ ⋅ ]) = Θ̂(d)(1[sa0]) = tr ○ d(a0).
_e image of the cocycle a ∈ C0(A;A) by Ad ○C∗(A; Θ) is the form on A, mapping a0
to (Θ ○ a)([ ⋅ ])(a0) = Θ(a)(a0) = tr(aa0). _erefore, ∆(d ○ s−1) = a if and only if
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for any a0 ∈ A, (−1)∣Θ∣+1+∣d ∣ tr ○d(a0) = (−1)∣Θ∣tr(aa0). Since there is no coboundary
in C0(A,A), this proves (ii).

Example F.2 (a) Let A = Λx−d be the exterior algebra on a generator of lower
degree −d ∈ Z. If d ≥ 0, then A = H∗(Sd ;K). Denote by 1∨ and x∨ the dual basis
of A∨. _e trace on A is x∨. Let d ∶ A → A be the linear map such that d(1) = 0 and
d(x) = x. Since d(x ∧ x) = 0 and dx ∧ x + x ∧ dx = 2x ∧ x = 2 × 0 = 0, even
over a ûeld of characteristic diòerent from 2, d is a derivation commuting with the
trace. _erefore by _eorem F.1, 1 ∈ Im∆ in HH∗(A;A). When K = F2, compare
with [34, Proposition 20].

(b) Let V be a graded vector space. Let A ∶= Λ(V) be the graded exterior algebra
on V . If V is in non-positive degrees, then A is just the cohomology algebra of a
product of spheres. Let x1 , . . . , xN be a basis of V . _e trace of A is (x1 ⋅ ⋅ ⋅ xN)∨. Let
d1 be the derivation on Λx1 considered in the previous example. _en d ∶= d1⊗ id is a
derivation on Λx1 ⊗ Λ(x2 , . . . , xN) ≅ ΛV . Obviously d commutes with the trace. So
1 ∈ Im∆.

(c) Let A = K[x]/xn+1, n ≥ 1 be the truncated polynomial algebra on a generator
x of even degree diòerent from 0. If x is of upper degree 2, then A = H∗(CPn ;K). _e
trace of A is (xn)∨. Let d ∶ A → A be the unique derivation of A such that d(x) = x
(the case n = 1 was considered in Example F.2 (a)). _en d(x i) = ix i . For degree
reason, d is a basis of the derivations of degree 0 of A. _en λd commutes with the
trace if and only if λn = 1 in K. _erefore 1 ∈ Im∆ in HH∗(A;A) if and only n is
invertible in K (cf. [47] modulo 2 and with [48] otherwise).

_eorem F.3 Let V be a graded vector space (non-negatively lower graded or concen-
trated in upper degree ≥ 1) such that in each degree, V is of ûnite dimension.

(i) Let A = (S(V), 0) be the free strictly commutative graded algebra on V, i.e.,
A = ΛV odd ⊗ K[V even] is the graded tensor product on the exterior algebra on V odd

(the odd degree elements) and on V even (the even degree elements) [9, p. 46]. _en the
Hochschild cohomology of A, HH∗(A,A), is isomorphic as Gerstenhaber algebras to
A⊗ S(s−1V∨). For φ, a linear form on V and v ∈ V, {1⊗ s−1φ, v ⊗ 1} = (−1)∣φ∣φ(v).
_e Lie bracket is trivial on (A⊗ 1)⊗(A⊗ 1) and on (1⊗S(s−1V∨))⊗(1⊗S(s−1V∨)).

(ii) Suppose that K is a ûeld of characteristic 2. _en we can extend (i) in the fol-
lowing way: let U and W be two graded vector spaces such that U ⊕ W = V, i.e.,
we no longer assume that U = V odd and W = V even. Let A = ΛU ⊗ K[W]. _en
HH∗(A,A) is isomorphic as Gerstenhaber algebra to A⊗K[s−1U∨]⊗Λ(s−1W∨), and
the Lie bracket is the same as in (i).

(iii) Suppose that V is concentrated in odd degres or that K is a ûeld of character-
istic 2. Let A = ΛV be the exterior algebra on V. _en the BV-algebra extending the
Gerstenhaber algebra HH∗(A,A) ≅ A⊗K[s−1V∨] has the trivial BV-operator ∆ on A
and on K[s−1V∨].

Proof (i) Recall that the Bar resolution B(A,A,A) = A⊗TsA⊗A ≃Ð→→ A is a resolution
of A as A⊗ Aop-modules. When A = (S(V), 0), there is another smaller resolution
(A⊗ Γ(sV) ⊗ A,D) ≃↠ A. Here Γ(sV) is the free divided power graded algebra on
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sV and D is the unique derivation such that D(γk(sv)) = v ⊗ γk−1(sv) ⊗ 1 − 1 ⊗
γk−1(sv)⊗v [32]. Since Γ(sV) consists of the invariants of T(sV) under the action of
the permutation groups, there is a canonical inclusion of graded algebras [16, p. 278]

i ∶ Γ(sV) ↪ T(sV) ↪ T(sA).
_ismap i maps γk(sv) to [sv ∣ ⋅ ⋅ ⋅ ∣ sv]. Since both (A⊗Γ(sV)⊗A,D) and B(A,A,A)
are A⊗ A-free resolutions of A, the inclusion of diòerential graded algebras

A⊗ i ⊗ A ∶ (A⊗ Γ(sV) ⊗ A,D) ≃↪ B(A,A,A)
is a quasi-isomorphism. So by applying the functor HomA⊗A(−,A),

Hom(i ,A)∶ C∗(A,A) ≃↠ (Hom(Γ(sV),A), 0)
is a quasi-isomorphism of complexes. _e diòerential on

HomA⊗A((A⊗ Γ(sV) ⊗ A,D), (A, 0))
is zero since f ○ D(γk1(sv1) ⋅ ⋅ ⋅ γkr(svr)) = 0. _e inclusion i ∶ Γ(sV) ↪ T(sA) is a
morphism of graded coalgebras with respect to the diagonal [16, p. 279]

∆[sa1∣ ⋅ ⋅ ⋅ ∣sar] =
r

∑
p=0

[sa1∣ ⋅ ⋅ ⋅ ∣sap] ⊗ [sap+1∣ ⋅ ⋅ ⋅ ∣sar].

_erefore the quasi-isomorphism of complexes

Hom(i ,A)∶ C∗(A,A) ≃↠ (Hom(Γ(sV),A), 0)
is also a morphism of graded algebras with respect to the cup product on the Hoch-
schild cochain complex C∗(A,A) and the convolution product on Hom(Γ(sV),A).

_emorphism of commutative graded algebras j ∶ A⊗Γ(sV)∨ → Hom(Γ(sV),A)
mapping a⊗ ϕ to the linear map j(a⊗ ϕ) from Γ(sV) to A deûned by j(a⊗ ϕ)(γ) =
ϕ(γ)a is an isomorphim. By [16, (A.7)], the canonical map (sV)∨ → Γ(sV)∨ ex-
tends to an isomorphism of graded algebras k ∶ S(sV)∨ ≅→ Γ(sV)∨. _e composite

Θ ∶ (sV)∨ s∨→ V∨ s−1

→ s−1(V∨), mapping x to Θ(x) = (−1)∣x ∣s−1(x ○ s), is a chosen
isomorphism between (sV)∨ and s−1(V∨). Note that Θ−1 is the opposite of the com-
posite (s−1)∨ ○ s. Finally, the composite

A⊗ S(s−1(V∨)) A⊗S(Θ)ÐÐÐÐ→ A⊗ S((sV)∨) A⊗kÐÐ→ A⊗ (Γ(sV))∨ jÐ→ Hom(Γ(sV),A)
is an isomorphism of graded algebras. So we have obtained an explicit isomorphism
of graded algebras l ∶ HH∗(A,A) ≅→ A⊗ S(s−1(V∨)). To compute the bracket, it is
suõcient to compute it on the generators on A ⊗ S(s−1(V∨)). For m ∈ A, let m ∈
C0(A,A) = Hom((sA)⊗0 ,A) deûned by m([ ⋅ ]) = m. Obviously, l−1(m ⊗ 1) is the
cohomology class of the cocycle m. For any linear form φ on V , let φ ∈ C1(A,A) =
Hom(sA,A) be the map deûned by

φ([sv1v2 ⋅ ⋅ ⋅ vn]) =
n

∑
i=1

(−1)∣φ∣∣sv1v2 ⋅⋅⋅v i−1 ∣φ(v i)v1 ⋅ ⋅ ⋅ v̂ i ⋅ ⋅ ⋅ vn .

Since the composite φ ○ s is a derivation of A, φ is a cocycle. Since

φ([sv1]) = (−1)∣φ∣φ(v1)1,
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the composite φ ○ i is the image of 1⊗ s−1φ by the composite

j ○ (A⊗ k) ⊗ (A⊗ S(Θ))∶ A⊗ S(s−1(V∨)) Ð→ Hom(Γ(sV),A).

_erefore l−1(1 ⊗ s−1φ) is the cohomology class of the cocycle φ. By [10, p. 48–49],
we have

(a) the Lie bracket is null on C0(A,A) ⊗ C0(A,A);
(b) the Lie bracket restricted to { ⋅ , ⋅ } ∶ C1(A,A) ⊗ C0(A,A) → C0(A,A) is given

by {g , a} = g(sa) for any g ∶ sA→ A and a ∈ A;
(c) the Lie bracket restricted to { ⋅ , ⋅ } ∶ C1(A,A)⊗C1(A,A) → C1(A,A) is given by

{ f , g , }([sa]) = f ○ s ○ g ○ s(a) − (−1)(∣ f ∣+1)(∣g∣+1)g ○ s ○ f ○ s(a).

By (a), the Lie bracket is trivial on (A⊗ 1) ⊗ (A⊗ 1). By (b), for φ ∈ V∨ and v ∈ V ,

{1⊗ s−1φ, v ⊗ 1} = (−1)∣φ∣φ(v)1⊗ 1.

Let φ and φ′ be two linear forms on V . _en

φ○ s ○φ′ ○ s([v1 ⋅ ⋅ ⋅ vn]) = ∑
1≤ j<i≤n

((−1)∣φ∣∣φ
′∣ε i j(φ, φ′)+ ε i j(φ′ , φ))v1 ⋅ ⋅ ⋅ v̂ j ⋅ ⋅ ⋅ v̂ i ⋅ ⋅ ⋅ vn ,

where ε i j(φ, φ′) = (−1)∣φ∣∣sv1 ⋅⋅⋅v i−1 ∣+∣φ′∣∣sv1 ⋅⋅⋅v j−1 ∣φ(v i)φ′(v j). _erefore,

φ ○ s ○ φ′ ○ s − (−1)∣φ∣∣φ
′∣φ′ ○ s ○ φ ○ s = 0.

So by (c), the Lie bracket {1⊗ s−1φ, 1⊗ s−1φ′} = 0.
(iii) By Proposition F.1 (i), ∆([m]) = 0 and so ∆ is trivial on all m ⊗ 1 ∈ A⊗ 1. Let

x1 , . . . , xN be a basis of V . _e trace of A is (x1 ⋅ ⋅ ⋅ xN)∨. _erefore the trace vanishes
on elements of wordlength strictly less than N . For any φ ∈ V∨, the derivation φ ○ s
decreases wordlength by 1. So tr ○φ ○ s = 0. By Proposition F.1 (ii), ∆(1 ⊗ s−1φ) = 0.
Since the Lie bracket is trivial on (1 ⊗ K[s−1V∨]) ⊗ (1 ⊗ K[s−1V∨]), ∆ is trivial on
1⊗K[s−1V∨].

(ii)_e proof is the same as in (i). For example, Γ(sV) is the graded tensor product
of the free divided power algebra on sU and of the exterior algebra on sW .

Remark F.4. Suppose that V is concentrated in degree 0. We have obtained a quasi-
isomorphism of diòerential graded algebras

C∗(S(V), S(V)) ≃Ð→→ (S(V) ⊗ Λ(s−1V∨), 0).

In particular, the diòerential graded algebra C∗(S(V), S(V)) is formal.
It is easy to see that if V is of dimension 1, then the inclusion

(S(V) ⊗ Λ(s−1V∨), 0) ↪ C∗(S(V), S(V))

is a quasi-isomorphism of diòerential graded Lie algebras. In particular, the diòer-
ential graded Lie algebra C∗(S(V), S(V)) is formal. _e Kontsevich formality theo-
rem says that over a ûeld K of characteristic zero, the diòerential graded Lie algebra
C∗(S(V), S(V)) is formal even if V is not of dimension 1 [23, _eorem 2.4.2].
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