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The Batalin—Vilkovisky Algebra in the String
Topology of Classifying Spaces

Katsuhiko Kuribayashi and Luc Menichi

Abstract. For almost any compact connected Lie group G and any field F,, we compute the Batalin-
Vilkovisky algebra H**4™ G (LBG; F ») on the loop cohomology of the classifying space introduced
by Chataur and the second author. In particular, if p is odd or p = 0, this Batalin-Vilkovisky algebra
is isomorphic to the Hochschild cohomology HH* (H+(G), H+(G)). Over F», such an isomor-
phism of Batalin-Vilkovisky algebras does not hold when G = SO(3) or G = G,. Our elaborate
considerations on the signs in string topology of the classifying spaces give rise to a general theo-
rem on graded homological conformal field theory.

1 Introduction

Let M be a closed oriented smooth manifold and let L M denote the space of free loops
on M. Chas and Sullivan [4] have defined a product on the homology of LM, called
the loop product, H.(LM) @ H, (LM ) — H,_qim m(LM). They showed that this loop
product, together with the homological Batalin-Vilkovisky operator A: H,(LM) —
H.1(LM), make the shifted free loop space homology H..(LM) := Hyqim m(LM)
into a Batalin-Vilkovisky algebra, or BV-algebra. Over Q, when M is simply con-
nected, this BV-algebra can be computed using Hochschild cohomology [11]. In
particular, if M is formal over Q, there is an isomorphism of BV-algebras between
H.(LM) and
HH*(H"(M;Q), H* (M;Q)),

the Hochschild cohomology of the symmetric Frobenius algebra H* (M; Q). Over a
field ¥y, if p # 0, this BV-algebra H, (LM) is hard to compute. It has been computed
only for complex Stiefel manifolds [41], spheres [34], compact Lie groups [19,35], and
complex projective spaces [5,18].

Let G be a connected compact Lie group of dimension d and let BG be its clas-
sifying space. Motivated by Freed, Hopkins, and Teleman twisted K-theory [13] and
by a structure of symmetric Frobenius algebra on H, (G), Chataur and the second
author [6] proved that the homology of LBG, the free loop space with coeflicients in a
field K, admits the structure of a d-dimensional homological conformal field theory.
(More generally, if G acts smoothly on M, Behrend, Ginot, Noohi, and Xu [1, Theorem
14.2] proved that H.(L(EG xg M)) is a (d — dim M)-homological conformal field
theory.) In particular, the operation associated with a cobordism connecting one-
dimensional manifolds called the pair of pants, defines a product on the cohomology
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of LBG, called the dual of the loop coproduct, H* (LBG) ® H*(LBG) -~ H*~¢(LBG).
Chataur and the second author showed that the dual of the loop coproduct, together
with the cohomological BV-operator A: H*(LBG) - H*'(LBG), make the shifted
free loop space cohomology H*(LBG) := H**¢(LBG) into a BV-algebra up to signs.
Over IF,, Hepworth and Lahtinen [20] extended this result to non-connected com-
pact Lie groups and more difficult, they showed that this d-dimensional homological
conformal field theory, in particular this algebra H* (LBG), has a unit. One of our re-
sults aims to solve the sign issues and to show that, indeed, H* (LBG) is a BV-algebra
(Corollary C.3).

In fact, one of the highlights in this manuscript is to show that more generally, the
dual of a d-homological field theory has, after a d degree shift, the structure of a BV-
algebra (Theorems B.1 and C.1). Our elaborate considerations on the signs give many
explicit computations on H* (LBG) as mentioned below. Surprisingly, these compu-
tations enable us to determine the signs on the product of the prop in Theorem B.1;
that is, such local computations in string topology of BG give rise to a general theorem
on graded homological conformal field theory.

Lahtinen [30] computed some non-trivial higher operations in the structure of
this d-dimensional homological conformal field theory on the cohomology of BG
for some compact Lie groups G. In this paper, we compute the most important part
of this d-dimensional homological conformal field theory, namely the BV-algebra
H*(LBG;F,) for almost any connected compact Lie group G and any field F,. Ac-
cording to our knowledge, this BV-algebra H*(LBG;F,) has never been computed
on any example.

Very recently, Grodal and Lahtinen [15] showed that the mod p cohomology of
a finite Chevalley group admits a module structure over this algebra H*(LBG;F)),
where G is the p-compact group of C-rational points associated with the finite group.
This result appears in the program to attack Tezuka’s question [45] about an isomor-
phism compatible with the cup products between this group cohomology and this
free loop space cohomology of BG. Thus our explicit computations are also strongly
relevant to the program.

Our method is completely different from the methods used to compute the BV-
algebra H, (LM) in the known cases recalled above. Suppose that the cohomology
algebra of BG over IF,,, H*(BG;F,), is a polynomial algebra Fy[y1,..., yn] (few
connected compact Lie groups do not satisfy this hypothesis). Then the cup prod-
uct on H*(LBG; F,) was first computed by the first author [28](see [24] for a quick
calculation). Tamanoi [42] explained the relation between the cap product and the
loop product on H,(LM). Dually, in Theorem 2.2 we give the relation between the
cup product on H*(LBG) and the BV-algebra H*(LBG). Knowing the cup prod-
uct on H*(LBG), this relation gives the dual of the loop coproduct on H*(LBG)
(Theorem 3.1). But now, since the cohomological BV-operator A (see Appendix E)
is a derivation with respect to the cup product, A is easy to compute. So finally, on
H*(LBG) we have computed the cup product and the BV-algebra structure at the
same time. This has never been done for the BV-algebra H, (LM).

If there is no top degree Steenrod operation Sq, on H*(BG;F,) or if p is odd or
p = 0, applying Theorem 3.1, we give an explicit formula for the dual of the loop

https://doi.org/10.4153/CJM-2018-021-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-021-9

The Batalin-Vilkovisky Algebra in the String Topology of Classifying Spaces 845

coproduct ® in Theorem 4.1 and we show in Theorem 6.2 that there is an isomor-
phism of BV-algebras between H* (LBG;F,,) and HH* (H..(G;F,), H.(G;F;)), the
Hochschild cohomology of the symmetric Frobenius algebra H, (G;[F)).

The case p = 2 is more intriguing. When p = 2, in general we do not give an
explicit formula for the dual of the loop coproduct ® (however, see Theorem 5.4
for a general equation satisfied by ®). But for a given compact Lie group G, ap-
plying Theorem 3.1, we are able to give an explicit formula. As examples, we com-
pute the dual of the loop coproduct when G = SO(3) (Theorem 5.7) or G = G,
(Theorem 5.1). We show (Theorem 6.3) that the BV-algebras H*(LBSO(3);F,) and
HH*(H.(SO(3);F,), H.(SO(3);F,)), the Hochschild cohomology of the symmet-
ric Frobenius algebra H, (SO(3);F,), are not isomorphic, although the underlying
Gerstenhaber algebras are isomorphic. Such a curious result was observed [34] for
the Chas-Sullivan BV-algebras H, (LS%F,).

However, for any connected compact Lie group such that H*(BG;[F)), is a poly-
nomial algebra, we show (Corollary 4.3 and Theorem 5.8) that as graded algebras

H*(LBG;F,) = H.(G;F,) ® H*(BG;F,) 2 HH*( H.(G;F,), H.(G;Fp)).

Such isomorphisms of Gerstenhaber algebras should exist (Conjecture 6.1).

We now give the plan of the paper

Section 2: We carefully recall the definition of the loop product and of the loop
coproduct, insisting on orientation (Theorem 2.1), and we prove Theorem 2.2.

Section 3: When H*(X) is a polynomial algebra, following [24, 28], we give the
cup product on H*(LX). Therefore, (Theorem 3.1) the dual of the loop coproduct is
completely given by Theorems 2.1 and 2.2.

Section 4 is devoted to the simple case when the characteristic of the field is differ-
ent from two or when there is no top degree Steenrod operation.

Section 5: The field is F,. We give some general properties of the dual of the loop
coproduct (Lemma 5.3, Theorem 5.4). In particular, we show that it has a unit (The-
orem 5.5). As examples, we compute the dual of the loop coproduct on

H*(LBSO(3);F,) (Theorem 5.7),
H*(LBGy; F,) (Theorem 5.1).

Up to an isomorphism of graded algebras, H* (LX;IF,) is just the tensor product of
algebras

H*(X;F,) ® H..(QX;F,) =F,[V]® A(sV)" (Theorem 5.8).
As examples, we compute the BV-algebra
H***(LBSO(3);F,) = A(u_y,u_») ® Fy[vs,v3] (Theorem 5.13)
and the BV-algebra
H**"™(LBGy;F,) = A(u_s,u_s,u_g) ® Fa[vy,vs,v7] (Theorem 5.14).

Section 6: After studying the formality and the coformality of BG, we compare
the associative algebras, the Gerstenhaber algebras, the BV-algebras H*(LBG) and
HH*(H.(G), H.(G)) under various hypothesis.

Section 7: Independently of the rest of the paper, we show that the loop product on
H,(LBG;F,) is trivial if and only if the inclusion of the fibre : () BG < LBG induces
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a surjective map in cohomology, if and only if H* (BG;F)) is a polynomial algebra, if
and only if BG is IF,-formal (when p is odd).

Appendix A: We solve some sign problems in the results [6]. In particular, we
correct the definition of integration along the fibre and the main dual theorem con-
cerning the prop structure on H* (LX).

Appendix B: H* (LX) is equipped with a graded associative and graded commu-
tative product ©.

Appendix C: In fact, H* (LX) equipped with ® and the BV-operator A is a BV-alge-
bra since the BV identity arises from the lantern relation.

Appendix D: This BV identity comes from seven equalities involving Dehn twists
and the prop structure on the mapping class group.

Appendix E: We compare different definitions of the BV-operator A: H* (LX) —
H*Y(LX).

Appendix F: We compute the Gerstenhaber algebra structure on the Hochschild
cohomology HH*(S(V),S(V)) of a free commutative graded algebra S(V') (Theo-
rem E3). In particular, we give the BV-algebra structure on the Hochschild cohomol-
ogy HH*(A(V), A(V)) of a graded exterior algebra A(V).

2 The Dual of the Loop Coproduct

In this paper, for simplicity, all the results are stated for a connected compact Lie group
G. But they are also valid for an exotic p-compact group. Indeed, following [6], we
only require that G is a connected topological group (or a pointed loop space) with
finite-dimensional cohomology H *(G;Fp). This is the main difference from [20],
where Hepworth and Lahtinen required the smoothness of G.

Let K be a field. Let X be a simply-connected space satisfying the condition that
H*(QX;K) is of finite dimension. Then there exists a unique integer d such that
H'(QX;K) = 0 for i > d and HY(QX;K) = K. In order to describe our results,
we first recall the definitions of the product Dlcop on H**¢(LX;K) and of the loop
product on H,_;(LX;K) in [6].

Let F be the pair of pants regarded as a cobordism between one ingoing circle and
two outgoing circles. The ingoing map in: S' < F and outgoing map out: S' [[S! < F
give the correspondence

o .
LX <) (F, X) OO Lx

where map(in, X) and map(out, X) are orientable fibrations. After orienting them,
the integration along the fibre induces a map in cohomology

map(in, X)': H**(map(F, X)) — H*(LX)
and a map in homology

map(out, X)y: H,(LX)®* — H,,4(map(F, X)).
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See Appendix A for the definition of the integration along the fibre. By definition, the
loop product is the composite

H, (map(in, X)) o map(out, X): H,_4(LX) ® Hy_4(LX)
— Hpyg-a(map(F, X)) — Hpig-a(LX).
By definition, the dual of the loop coproduct, denoted Dlcop, is the composite
map(in, X)' o H*(map(out, X)): H?*4(LX) ® HT"¥ (LX)
— HP*1*24 (map(F, X)) — HPY1"(LX).

The pair of pants F is the mapping cylinder of ¢ [] 7z: S' [T(S' 1 S') —» S' v S' where
c: §' - §'v §!is the pinch map and 7: S'[]S! — S' v S! is the quotient map.
Therefore the wedge of circles S' v S! is a strong deformation retract of the pair of

pants F. The retractr: F 5§t s! corresponds to lowering his pants and tucking up
his trouser legs at the same time:

(R

Figure 1: The homotopy between the pairs of pants and the figure eight.

Thus we have the commutative diagram

X map(in,X) map(F,X) map(out,X) LX2
Com NTmap(r,X)

LX xx LX

where Comp is the composition of loops and q is the inclusion. If X were a closed
manifold M of dimension d, Comp and g would be embeddings. And the Chas-
Sullivan loop product is the composite

H,(Comp)ogqi: Hpq(LM) ® Hy,q(LM)
— Hpygea(LM xp LM)) — Hpgoa(LM).
while the dual of the loop coproduct is the composite
Comp' oH*(q): HP™(LM) ® H1™*(LM)
—> HP*972 (LM xp LM) —> HP*979(LM).

Therefore, although Comp and g are not fibrations, by an abuse of notation, we will
sometimes say that in the case of string topology of classifying spaces [6], the loop
product on H,_4 (LX) is still H,(Comp) o g, while Dlcop is Comp' ocH*(gq).
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The shifted cohomology H* (LX) := H**? (LX) together with the dual of the loop
coproduct Dlcop defined in [6] is a BV-algebra, in particular a graded commutative
associative algebra, only up to signs, for two reasons.

o First, the integration along the fibre defined in [6] usually does not satisfy the
usual property with respect to the product. We have corrected this sign mistake in
Appendix A.

« Second, as explained in Appendix A, this is also due to the non-triviality of the
prop det Hy (F, dgu; Z)®? (if d is odd).

Nevertheless, we have Theorem C.1. In particular, we have that H* (LX) equipped
with the operator A induced by the action of the circle on LX (see our definition
in Appendix E) is a BV-algebra with respect to the product © defined by a ® b =
(-1)4(4-1aD Dlcop(a ® b) for a ® b € H*(LX) ® H*(LX); see Corollary C.3.

In order to investigate Dlcop more precisely, we need to know how the fibration
map(in, X) is oriented. As explained in [6, §11.5], we must choose a pointed homo-
topy equivalence f: F/d;, — S'. Then the fibre map, (F/din, X) of map(in, X) is
oriented by the composite

to HY(map, (f,X)): HY(map, (F/din, X)) — HY(QX) — K,

where 7 is the chosen orientation on QX. In this paper, we choose f such that we
have the following homotopy commutative diagram

incl

map, (F/0in, X) map(F, X)
maP*(f’X)T“ %Tmap(r,X)
Ox ; LX xx LX

where incl is the inclusion of the fibre of map(in, X) and j is the map defined by
j(@) = (0, 07").

Theorem 2.1 Leti: QX — LX be the inclusion of pointed loops into free loops. Let
S be the antipode of the Hopf algebra H* (Q.X). Let T: H*(QX) — K be the chosen
orientation on QX. Let a € HP (LX) and b € H1(LX) such that p + q = d. Then with
the above choice of pointed homotopy equivalence f: Fdy, — S\,

aob=(-1)"Pr(HP(1)(a)uSoHI(1)(b)) g (Lx)-

i‘d proj . . . . . . 1gd
Proof LetF —— E — Bbean oriented fibration with orientation 7: H* (F) — K.

By definition or by naturality with respect to pull-backs, the integration along the fibre
proj' is in degree d the composite

H (incl)
e

H*(E) HY(F) 5 K -1 H(B)
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where 7 is the unit of H* (B). Therefore Dlcop is given by the commutative diagram

HY(LX x LX)

H* map(out,X H? (1x1)
H(q)
d X H* (incl
HY (map(F, X)} 204 (1x x 1X) 0D e (0x x 0X)

lHd(incl) H(j) lH‘i(Idenv)

map(in,X)' Hd(map*(F/ain)) ———= HY(QX) =——— HY(QX x QX)
H map,, (f.X) H'(8)

T

H°(LX) K

where incl: QX x QX < LX xx LX is the inclusion and Inv: QX — QX maps a loop
w to its inverse w~!. Therefore,

DlCOp(a@b):T(Hp(l)(a)USOHq(I)(b))lH*(LX). [ |
We define a bracket {-, - } on H*(LX) with the product ® and the BV-operator
A: H*(LX) - H* (LX) by
{a,b} = (-D)'A(a 0 b) - (-1)"lA(a) © b - a © A(b)

for a,b in H*(LX). By Theorem C.3, this bracket is exactly a Lie bracket. The fol-
lowing theorem is an analogue for the string topology of classifying spaces [6] to the
theorems of Tamanoi [42] for Chas-Sullivan string topology [4]. This analogy is quite
surprising and complete. For our calculations, in the rest of the paper, we use only
parts (i)-(iii) of this theorem. Let ev: LX — X be the evaluation map defined by
ev(y) = y(0) fory e LX.

Theorem 2.2 (Cup products in string topology of classifying spaces) Let X be a simply-
connected space such that H,(QX;K) is finite-dimensional. Let P, Q € H*(X), and a
and b € H*(LX).

(i) (Cf. [42, Theorem A (1.2)]) The dual of the loop coproduct
©: H* (LX) ® H* (LX) — H* (LX)
is a morphism of left H*(X) ® H*(X)-modules:
(H*(ev)(P)ua) o (H*(ev)(Q)ub)
= (-1)Ue=DIRI* (ev)(P) U H* (ev)(Q) U (a ® b).

(ii) (See [42, Theorem A (1.3)]) The cup product with Ao H* (ev)(P) is a derivation
with respect to the algebra (H* (LX), ®):

AoH*(ev)(P)u(aob)=(AocH"(ev)(P)ua)ob
+ (-1)PFDUel=d) g & (A o H* (ev)(P) U b).
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(iii) Let r > 0. Let Py, ..., P, be r elements of H*(X). Denote by X; := Ao
H*(ev)(P;). Then

(H*(ev)(P)ua) © (H*(ev)(Q)UXjU--- U X, Ub) = (-1){lel=DUQxl-+1X])
x > x£H*(ev)(P)UH"(ev)(Q)uX, 'u---uX, " u((X]'U---uX Ua)ob),

0<j1,mnjir<l
where & is the sign (~1)7+ i+ T C=IOIX Gl il Xial),
(iv) (See [42, Theorem A(1.4) ]) The cup product with Ao H* (ev) (P) is a derivation
with respect to the bracket
Ao H*(ev)(P)u{a,b}
={AoH"(ev)(P)Ua,b} + (-1) POl 5 A0 H* (ev)(P) Ub}.
(v) (See [42, formula p. 1220, line -9]) The following formula gives a relation for the
cup product of H* (ev) (P) with the bracket
{H*(ev)(P)ua,b}
= H*(ev)(P) u {a, b} + (-1)/PIIe=4"D g o (A o H* (ev)(P) U b).

(vi) (See[42, Theorem B]) The direct sum H*(X) @ H* (LX) is a BV-algebra where
the dual of the loop coproduct ®, the bracket, and the A operator are extended by

Poa:=H"(ev)(P)ua, PoQ:=PuQ
{P,a} = (-)PlAoc H* (ev)(P)ua,  {P,Q}:=0,
A(P):=0.

(vii) (See [42, Theorem C]) Suppose that the algebra (H* (LX), ®) has a unit L.
Let s': H*(X) — H**%(LX) be the map sending P to H*(ev)(P) UL Thens'isa
morphism of BV-algebras with respect to the trivial BV-operator on H* (X)) and

H*(ev)(P)ua=s'(P)oa and (-1)PIAocH*(ev)(P)ua = {s'(P),a}.

To prove parts (i) and (ii), it is shorter to use the following lemma. This lemma is
just the cohomological version of [4, Theorem 8.2] when we replace the correspon-

C
dence LM x LM <> LM x5 LM ——2 LM by its opposite

Comp q
LX «—— LX xx LX — LX x LX.

Similarly, it would have been shorter for Tamanoi to prove [42, Theorem A (1.2), (1.3)]
using [4, Theorem 8.2].

Lemma 23 Leta = Y a3 ® ay € H*(LX x LX) and A € H*(LX) such that
H*(Comp)(A) = H*(q)(a). Then for any z), z, € H* (LX),

AU (z102,) = Y (-1)EFEDIel(g U z) 0 (a, U z,).
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Proof Integration along the fibre, Comp', is a morphism of left H*(LX )-modules
with the correct signs (see our definition of integration along the fibre in cohomology
in Appendix A). Therefore

Comp' (H* (Comp) (4) U y) = (~1)4 L Comp'(y).
Letz:=2®2z; € H(LX x LX). Since H*(q) is a morphism of algebras,
(-1)%“I Dlcop(a u z) = (1) Comp' oH*(g)(a U 2)
= (1) Comp' (H" (Comp) (4) U H"(q)(2))
= AuComp' oH*(q)(z) = A uDlcop(z).
Then the previous equation is
Au (1) 2 0 2,

= Z(_l)d(\a1\+\az|)(_l)d(\al\ﬂzllfd)(_l)laszl\(al Uz) 0 (azUz).
|

Proof of Theorem 2.2 (i) We have the commutative diagram

Com
LX <2 [ XxxLX —1 — LXxLX

S| e

X—XxX
&

Therefore by applying Lemma2.3to a := H*(evx ev)(P®Q), A := H*(doev)(PRQ),
z1 := a, and z, := b, we obtain (i).

(ii) By [42, Proof of Theorem 4.2 (4.5)]

Comp* (Ao H*(ev)(P)) =H*(q)(AoH"(ev)(P) x1+1x Ao H*(ev)(P)).
So we can apply Lemma 2.3 to a := Ao H*(ev)(P) x1+1x A o H*(ev)(P) and
A:= Ao H*(ev)(P).

(iii) The case r = 0 is just (i). Now, by induction on r,

(H*(ev)(P)ua)o (H*(ev)(QQuXju---uX,.1u (X, ub))
= (—1)al=DUQRIXi] - +Xra]) S xH*(ev)(P)UH*(ev)(Q)
0< 15005 jr—151
uX, o u XU (X e u X ua) © (X, U b))
But by (ii),
(le‘ un-qu’jl‘ ua)o®(X,ub)

1
- Z (_1)|Xr|(|u|_d)+jr+(1_jr)|Xr|Z;;ll Xl x=ir ((lel u--u XU a)ob).
jr=0
(iv) By using Theorem 2.2 (ii), the same argument as in [42, Proof of Theorem 4.5]
deduces the derivation formula on the bracket.
(v) Again, the arguments are identical to those given by Tamanoi [42, end of proof
of Theorem 4.7].
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(vi) As explained by Tamanoi [42, proof of Theorem 4.7], (i), (iv), and (v) are
equivalent to the Poisson and Jacobi identities in the Gerstenhaber algebra

H*(X) @ H* (LX).

By definition of the bracket, this Gerstenhaber algebra is a BV-algebra [42, proof of
Theorem 4.8].
(vii) Since H*+4(LX) is an H* (X)-algebra, (Theorem 2.2 (i)), the map

s't H(X) » H*%(LX), P+~ H*(ev)(P)ul,

is a morphism of unital commutative graded algebras (we denote this map s' because
this map should coincide with some Gysin map of the trivial section s: X — LX [6].
Indeed, by H* (LX)-linearity, s'(P) = s'o H* (s) o H* (ev) (P) = (-1)*PIH* (ev)(P) U
s'(1).

Since the cup product with Ao H* (ev)(P) is a derivation with respect to the dual of
the loop coproduct, Ao H*(ev)(P) Ul = 0. Since H* (LX) is a BV-algebra, A(T) = 0.
Therefore, since A is a derivation with respect to the cup product,

A(s'(P)) = Ao H*(ev)(P) ul + (-1)PIH* (ev)(P) U A(T) = 0 + 0.
Now we can conclude using the same arguments as in [42, proof of Theorem 5.1]. W

Remark 2.4. Suppose that the algebra H*(LX) is generated by H*(X) and
A(H*(X)). Then by Theorem 2.2 (iii) when b = 1, we see that the dual of the loop
coproduct © is completely given by the cup product, by the A operator, and by its re-
striction on H* (LX) ® 1. In the following section, we show that this is the case when
H*(X) is a polynomial (see Remark 3.2).

3 The Cup Product on Free Loops and the Main Theorem

Let X be a simply-connected space with polynomial cohomology: H*(X) is a poly-
nomial algebra K[y, ..., yn]. The cup product on the free loop space cohomology
H*(LX;K) was first computed by the first author [28, Theorem 1.6]. We now explain
how to recover simply this computation following [24, p. 648].

Let o: H*(X) - H*"'(QX) be the suspension homomorphism and o( ;) be the
suspension image of y;. By Borel’s theorem [38, Chapter VII. Corollary 2.8(2)], which
can be easily proved using the Eilenberg-Moore spectral sequence associated with the
path fibration QX < PX — X since E}”* = A(o(y1),...,0(yn))

H'(QX;K) = A(a(n),...,0(yn)),

where Ao (y;) denotes an algebra with a simple system of generators o(y;) (Here
an algebra with a simple system of generators x; is a graded commutative algebra,
denoted Ax;, such that the products of the form x; x;, ---x;, with1 < i3 < iy <.+ <
ir < Nand r > 0 form a linear basis of the algebra [38, Definition p. 367]). If ch(K) #
2, Aa(y;) is just the exterior algebra Ao (y;).

Let A: H*(LX) — H*7'(LX) be the operator induced by the action of the cir-
cle on LX (Appendix E). Let D := A o H*(ev) denote the module derivation in [28].
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Since A is a derivation with respect to the cup product, Disa (H* (ev), H* (ev))-deri-
vation [28, Proposition 3.3]. Since A and H*(ev) commutes with the Steenrod op-
erations, D also commutes with them [28, Proposition 3.3]. Since the composite
H*(1) o D is the suspension homomorphism ¢ [24, Proposition 2(1)], H*(¢) is sur-
jective and so by the Leray-Hirsch theorem,

H* (LX5K) = H' (X) ® AD(1). ... D)

as H*(X)-algebra. Modulo 2, it follows from above that H*(LX;F,) is the polyno-
mial algebra F,[H* (ev)(y:), Dy;] quotiented by the relations

(Dyi)* = D(Sq” " yy).
In particular, we have A(H*(ev)(y;)) = Dy; and A(Dy;) = 0, since Ao A = 0.
Therefore, we know the cup product and the A operator on H* (LX; K). The following
theorem shows that we also know the dual of the loop coproduct.

Theorem 3.1 Let X be a simply-connected space such that H* (X; K) is the polynomial
algebra K[ y1,..., yn]. Denote again by y;, the element of H* (LX), H* (ev)(y;), and
by xi, Ao H*(ev)(y;). Often, the cup product aub on H* (LX) is now simply denoted
ab. With respect to this cup product, as algebras we have
H* (LX) =K[y1,...,yn] ® A(X1,. .., xXN).
Let d be the degree of x1 - - - xn. Then the dual of the loop coproduct
®: H (LX) ® H (LX) — H"9(LX)

is given inductively (Remark 3.2) by the following four formulas.

(i) Foranyaandbe H*(LX), forall1<i <N,

a©xib=(-1)Fl=Dy (a0b) - (-1)lax; 0 b

(ii) Let {i,..., i1} and {j1,..., jm} be two disjoint subsets of{l ., N} such that

{iveo s ity U s osjmy = {L,..., N}. If we orient 7: H*(QX) - K by

ToH* (1)(x1...x8) =1,
— (_I)Nm+m

m

&, where ¢ is the signature of the permutation

( 1 I+ m)
TR T

(iii) Let {iy,...,i;} and {j1,..., jm} betwo disjoint subsets of {1,..., N} such that
{in.. it} U{jiso s jmt #{1,..., N}. Then x;, -+~ xi, © xj, -+~ xj, = 0.

(iv) © is a morphism of left H*(X) ® H*(X)-modules: for P,Q € H*(X) and
a,b e H*(LX), one has (-1)1Qe=9) pg Qb = PQ(a ® b).

then x;, -+ xi, ® xj, -+ X;

Proof Note that if y; is of odd degree, then 2 = 0 in K. (i) and (iv) are particular
cases of Theorem 2.2 (i) and (ii). Since x;, -+ x;, ® xj, -+ x;,, is of degree less than d,
for degree reasons, we have (iii).

(ii) Since H*(1)(x;) = H*(1) o Ao H*(ev)(y;) is the suspension of y;, denoted
o(yi), by Theorem 2.1,

xiy e xig @ xjy - x5, = ()N (0 (yi) 0 (yi) U S(0(yi) o (yy,)) L
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Since o(y;) is a primitive element, S(o(y;)) = —o(y;). Since the antipode
S: H*(QX) > H*(QX)
is also a morphism of commutative graded algebras,
Xiy %y @ x5, xj, = (DN er(a(p) - a(yN)). [

Remark 3.2. We now explain why the four formulas of Theorem 3.1 determine induc-
tively the dual of the loop coproduct ®. For P € H*(X) and {i1, ..., i; } a strict subset
of {1,..., N}, by (ii), (iii), and (iv), Px;, - -- x;, ®1 = 0 and Px; - -- xy ®1 = P. Therefore,
we know the restriction of © on H* (LX) ® 1. Since the algebra H* (LX) is generated
by H*(X) and A(H* (X)), the product © is now given inductively by (i) and (iv) (see
Remark 2.4).

The restriction of ®: H*(LX) ® 1 — H*(X) looks similar to the intersection mor-
phism 1: H,(LM) - H,(QM) for a manifold M given by the loop product with the
constant pointed loop.

4 Case p Odd or No Sq,

Let Sq, be the operator H*(BG;F,) — H*(BG;F,) defined by Sq,(x) = Sq**¢* ' x
for x € H*(BG;TF,).
Suppose that H*(BG; K) is a polynomial algebra K[y, ..., yny] and that
(H): Sq1=0o0nH*(BG) if K = F, or the characteristic of K is
different from 2.
(Since Sq;(PQ) = P*Sq,(Q) + Sq,(P)Q? it suffices to check that Sq,(y;) = 0 for
all i.) Then it follows from Section 3 (or [26, Remark 3.4]) that

H*(LBG;K) = A(x1,...,x8) @ K[y1,.. ., ]

as an algebra where x; := A o H*(ev)(y;). Then we have the following.

Theorem 4.1  Under hypothesis (H), an explicit form of the dual of the loop coproduct
®: H(LBG;K) ® H*(LBG;K) - H*"4m G (LBG;K) is given by

e +e+m+u+lu+Nm
Xi -~ Xj,b=(-1)

X 4 O Xy Xjy * o Xk, ab

if{il""’il}u{jl’“"jm}:{1""’N}andxil”'xiza@le"'xjmb:OOtherWise,
where {iy,...,i1} 0 {ji,- > jm} = {ki»---» ku}, a, b € H (BG),
e i e
(-1) ‘Sgn(k1~~kuj1~-k1~~-ku--.jm)’
NG i1"'ilj1"'E"'E4"'jm
o s R Ry

1 -
Here X means that the element x disappears from the presentation.
Over R, Behrend, Ginot, Noohi, and Xu [1,17.23] had the same formula without any
signs for their dual hidden loop product * on H* ([G/G]). With our signs, © is graded
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associative and graded commutative (Corollary B.3). In [1, 17.23], * is commutative,
but not graded commutative. For example, by [1, 17.23],

X1 XN_1*X2 " XN =X *XN=X2" "XN * X1 " XN—1»
although x; ---xy_1 and x; - - - xy are of odd degree in H**¢(LBG).

Proof of Theorem 4.1 To prove Theorem 4.1, by Theorem 3.1 (iv) it suffices to show
the formula for the element x;, --- x;, ® xj, --- x;,,, namely where a = b = 1.
Since xj =0, Xj, -+ X; X, @ Xj, --- Xf, -~ Xj,, = 0. So by Theorem 3.1 (i),

Xy |—d)

x Xy X X e —_—
xil...xilele...xjm:(—1)' k1|(| n o xkl(xil.“‘xil®xj1".xk1."xjm)'

By induction on u,

I-d —_
xiy o, @, oo xg, = (<) o g (e, © X, F e KR X, ).
By Theorem 3.1 (ii) and (iii),

xil...inijl...xkl...xk ..

u

i (~1)NOn=wyem—ure” 56 05 0 id UGy jmt = {L...,N},
0 otherwise.

.xj

m

Corollary 4.2  Under hypothesis (H), the graded associative commutative algebra
(H*(LBG), ®) of Corollary B.3 is unital.

Proof We see that x; - xy is the unit. Theorem 4.1 yields that
X XN O Xj o xj, b=

sgn(]:l - ]'") sgn(}: JI:]]) (~1)mrmEmNENm L b

]1...]m
e aox —sn(l N)
i X LN ESEO G N

ieeedgleeedyeeedr-oN 2 N2
1l 1 I )(_1)N+l+l +N Xi e xi a.

sn( )T
|

Theorem 4.3  Under hypothesis (H), H* (LBG) = H**4m 6 (LBG;K) is isomorphic
as BV algebras to the tensor product of algebras

H* (BGK)® H..(GK) 2 K[y, ..., yn] @ A(x), ..., xY%)
equipped with the BV-operator A given by A(x} Ax}) = A(yiy;) = A(x]) = A(yi) =0
forany i, j and
0 ifi%]j

A(y"@)va):{l ifi=].
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Proof Since H*(G) is the Hopf algebra Ax; with x; = ¢(y;) primitive, its dual is the
Hopf algebra Ax;". By Corollary B.3 and Corollary 4.2, we see that the shifted coho-
mology H* (LBG) is a graded commutative algebra with unit x; - -- x. This enables
us to define a morphism of algebras ® from

H*(BG;K) @ H..(G;K) = K[y1, ..., yu] ® A(x), ..., xY)

to
H*(LBG) =K[y1,-. ., ¥n] ® A(x1,...,%N)

@(1®x]Y):(—1)1'*11@(xl/\.../\g?j/\.../\xN),
Oa®l)=a® (x1 A AxN)

for any a in K[ V]. By induction on p, using Theorem 4.1, we have
O(a® (x; A Axj))=£a® (XA AXG A AXG A AXN)

for any a € K[ V']. Therefore the map @ is an isomorphism.

The isomorphism © sends 1 ® A(x),...,xy) to 1 ® A(xy,...,xy) and sends
K{y,..., yn]®1toK[y1,..., yn]®x;--- xy. Since Aisnull on 1® A(xy, ..., xy) and
Ky, ..., yn]®x1---xn, AisnullonI®A(xy, ..., x%) and K[y, . . ., yn ] ®1; we have
the first equalities. Moreover, we see that ©(y; ® x;') = (-1 yixi A AT A AXN
and hence A®(y; ®x}) = 0if i # j. The equalities A((=1)"""yixi A---AXiA---AxN) =
x1 A+ A xy = ©(1) enable us to obtain the second formula. [ |

5 Mod 2 Case

In the case where the operation Sq, is non-trivial on H* (BG;F,), the loop coproduct
structure on H*(LBG; F,) is more complicated in general. For example, we compute
the dual of the loop coproduct on H* (LBGy; ), where G is the simply-connected
compact exceptional Lie group of rank 2. Recall that

H*(LBGy;F,) 2 A(x3, X5, %6) ® Fz[}/4>)’6,)’7]

4 2
X3 +X5Y7 + x3y6)

= 7y [x3, x5] ®F2[}’4,)/6,)/7]/(x§ +x3y7 + X2y

as algebras over H*(BG,; ;) = Fy[y4, 6, y7], where degx; = i and degy; = j;
see [28, Theorem 1.7].

Theorem 5.1 The dual to the loop coproduct
Dlcop: H*(LBGy;F,) ® H* (LBGy;F,) — H* ' (LBG,; )
is commutative and the only non-trivial forms restricted to the submodule

A(x:’n xS)xG) ®A(X3,X5, x6)
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are given by

Dlcop(x3x5x6 ® 1) = Dlcop(x3x5 ® x6) = Dlcop(x3x6 ® X5)
= Dlcop(xsxs ® x3) =1,
Dlcop(x3x5x6 ® x3) = Dlcop(x3x5 ® x3%6) = X3,
Dlcop(x3x5x6 ® x5) = Dlcop(x3x5 ® x5%6) = Xs,
Dlcop(x3x5x6 ® xg) = Dlcop(x3xs ® x5x6) = X6 + Vs>
Dlcop(x3x5x6 ® X3X5) = X3Xs,
Dlcop(x3x5x6 ® X3X) = X3X6 + X3 V6>
Dlcop(x3x5x6 ® X5X6) = X5X6 + X5 V6 + Va V7

Dlcop(x3Xs5x6 ® X3X5X6) = X3X5X6 + X3X5 V6 + X3Va V7 + }’g-
The proof of Theorem 5.1 will be given after the proof of Theorem 5.7.

Lemma 5.2 Letk:{l,...,q} = {1,...,N}, j~ k; beamap such that for1 <i <N,
the cardinality of the inverse image k™' ({i}) is less than or equal to 2. In H* (LX;TF,) =
Fao[y1,.. > yn] ® A(x1, ..., xN), the cup product satisfies the equality

Xk, = > Py, i

0<l<cardinal of {ki,....kq},
1<iy<<i) <N

xkl .

where P; . ;, are elements of F2[y1,..., yN].

Proof Supposebyinduction that thelemma is true for g—1. If the elements ki, . .. , k4
are pairwise distinct, take {i1,...,i;} = {ki,...,kq}. Otherwise by permuting the
elements xg,, ..., Xk, suppose that k;1 = k.

N
i, = Ao H" (ev) 054" (1) = il
i=1

where Py, ..., Py areelements of F5[y1,..., yn]. Soxg, -+~ xx, = Zf-\il Xp, Xk, Xi Pi.
Since kg = k41, by hypothesis, kg in{ky, ..., k4_>}. Therefore the cardinal of

{ki, ... kg2, i}
is less or equal to the cardinal of {k;, ..., kq}. By our induction hypothesis,
Xiey o Khy, Xi = Z P, . iXi e xip. |

0<l<cardinal of {ki,....,kq-2,i},
1<iy<-<ij<N

Lemma 5.3 Letk:{l,...,q+r} = {1,...,N}, j~ kj be a non-surjective map such

that for all1 < i < N, the cardinality of the inverse image k™" ({i}) is less than 2. Then
) =0.

Dlcop(xk, -+~ Xk, ® X, Xk

q+1 q+r

Proof We do an induction on 7 > 0.
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Case r = 0: By Lemma 5.2, since the cardinal of {ky, ..., k4 }is less than N,

Dlcop(xg, -+ x,, ®1) = > Dlcop(P;,
0<I<N,
1<iy<<i) <N

i Xi X ® 1)’

.....

where P;;, are elements of F5[y1,..., yn]. By Theorem 3.1 (iii), (iv), since I < N,

Dlcop(P;,

))))) i Xip X, ® 1) =0.

Suppose now by induction that the lemma is true for r — 1. Then by Theorem 3.1 (i),
Dlcop(xk, -+ Xk, ® Xy Xkyyy ) = Xk DICOP(Xg, =+ Xk, ® Xkppy " Xk, )

+ Dlcop(xg, -+ Xk, ® Xk Xkyy,)

=X ., U0+0. |

q+1

LetI={iy,...,i;} c{l,...,N}. In A(xy, ..., xx), denote the generator x; Ux;, U
---Ux;, by x5. Since we consider the algebra over IF,, the cup product is commutative,
so we do not need to assume that i; < iy <--- < i].

Theorem 5.4 Let I and ] be two subsets of {1,...,N}. Then

{chop(xlme@xm]) iflu]={1,...,N},

Dleop(x1 @ x;) = otherwise

In particular {x1,x;} = A(Dlcop(x1 ® x5)) = A(Dlcop(x105 ® x1n7)) = {X10)> X1ny }-

Proof Leti,...,i; denote the elements of the relative complement I - J, ji,..., jm
denote the elements of the relative complement J — I, and k;, .. ., k,, denote the ele-
ments of the intersection I N J.

By Lemma 5.3, Dlcop(x;, ... xj Xk, ... Xk, ® Xj, ... Xj, Xk, -..Xk,) = 0. So by The-
orem 3.1 (i),

Dlcop (i, -« %, Xk, =+ Xiey © Xjy =+ X, Xjey -~ Xk, )

= xj, U0+ Dlcop(xy, -+ X, Xj, Xg, =+~ Xk, ® Xj, =+ Xj, Xk, =+~ Xk, )-

By induction on m, this is equal to Dlcop(x;, -+ X Xj, =+ * X, Xk, =+~ Xk, ® Xk, =+ X, )-
So we have proved that Dlcop(x; ® x;) = Dlcop(xj; ® xjqj). By Lemma 5.3, if
ITuJ+{l1,...,N}, then Dlcop(x; ® x;) = 0. [ |

Theorem 5.5 Let X be a simply-connected space such that H* (X;F,) is the polyno-
mial algebra Fy[y1,. .., yn]. The dual of the loop coproduct admits

Dlcop(x;---xn ® X1 --- xn) € HY (LX; )
as a unit.

Lemma 5.6 Letac H*(LX;F,).

(i) For1<i< N, x; uDlcop(a®a) =0.
(ii) Foranybe H*(LX;F,),

Dlcop(Dlcop(a ® a) ® b) = b u Dlcop(Dlcop(a ® a) ®1).

https://doi.org/10.4153/CJM-2018-021-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-021-9

The Batalin-Vilkovisky Algebra in the String Topology of Classifying Spaces 859

Proof (i) By Theorem 3.1 (i),
Dlcop(a ® ax;) = x; Dlcop(a ® a) + Dlcop(ax; ® a).

Since Dlcop is graded commutative [6], Dlcop(a ® ax;) = Dlcop(ax; ® a). So
x; Dlcop(a ® a) = 0.
(ii) By (i) and Theorem 3.1 (i),

Dlcop(Dlcop(a ® a) ® bx;) = x; Dlcop(Dlcop(a ® a) ® b) + 0.
Therefore by induction,

Dlcop(Dlcop(a ® a) ® x;, -+ xi;) = x4, - - x4, Dlcop(Dlcop(a ® a) ®1).
Using Theorem 3.1 (iv), we obtain (ii). [ |
Proof of Theorem 5.5 Since Dlcop is graded associative [6] and using Theorem 3.1
(ii) twice,

Dlcop(Dlcop(x;...xy ® x1...xN5) ® 1) = Dlcop(x; ... xy ® Dlcop(x;...xxy ®1))
=Dlcop(x;...xy®1) =1.
Therefore using Lemma 5.6 (ii),
Dlcop(Dlcop(x; -+ xy®x1 -+ xn) ® b)
= b u Dlcop(Dlcop(x; -+ xny ® x1-++xN) ®1)
=bul=b. |

The simplest connected Lie group with non-trivial Steenrod operation Sq; in the
cohomology of its classifying space is SO(3).

Theorem 5.7  The cup product and the dual of the loop coproduct on the mod 2 free
loop cohomology of the classifying space of SO(3) are given by
H*(LBSO(3),F2) = A(X], XZ) ® Fz [yz,yg,]
2
N X{ + X2
2 Fy [, x2] ®F2[}’2,y3]/(x§ Fxays y3x1)

as algebras over H*(BSO(3);F,) = F1[y2, y3], where degx; = i and deg y; = j.

Dlcop(x1x2 ® 1) = Dlcop(x; ® x2) =1,
Dlcop(x1x2 ® x1) = x1,
Dlcop(x1x2 ® x2) = X2 + Y2,

Dlcop(x1x2 ® x1X2) = X1%2 + X1¥2 + V3.

Proof The cohomology H*(BSO(3);TF,) is the polynomial algebra on the Stiefel-
Whitney classes y, and y; of the tautological bundle y° [37, Theorem 7.1], [38, III Co-
rollary 5.10]. By Wu’s formula [38, III.Theorem 5.12(1)], Sq1 y2 = y3and qu Y3 = V2 ¥s.
Now the computation of the cup product and of the dual of the loop coproduct follows
from Theorem 3.1. u
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In the following proof, we detail the computation of the cup product and the dual
of the loop coproduct following Theorem 3.1 for a more complicated example of Lie

group.

Proof of Theorem 5.1.  Observe that Sq* y4 = ys, Sq* ¥ = y7 [38, VIL.Corollary 6.3]
and hence Sq3 Y4 = Sq1 qu y4 = y7. From [28, Proof of Theorem 1.7], qu Y6 = YaY7
and Sq° 7 = y6y7. Therefore the computation of the cup product on H* (LBGy;F,)
follows from Theorem 3.1: x% = x4, X2 = X3 y7 + y4X¢, and x2 = x5 y7 + ysXs.

Lemma 5.3 implies that monomials with non-trivial loop coproduct are only the
ones listed in the theorem.

By Theorem 3.1 (ii),

Dlcop(x3x5x6 ® 1) = Dlcop(x3x5 ® x¢) = Dlcop(x3x6 ® x5) = Dlcop(xs5x6 ® x3) = 1.
By Lemma 5.3, Dlcop(x3xZ ® 1) = 0. By Theorem 3.1 (i),
Dlcop(x3x5X6 ® xg) = xg Dlcop(x3x5x6 ® 1) + Dlcop(x3x5x¢ ®1).
Since x3x5x2 = x3X5(X5y7 + Y6Xs ), by Theorem 3.1 (iv),
Dlcop(x3x5x¢ ® 1) = y; Dlcop(x3x2 ® 1) + ys Dlcop(x3x5x%6 ®1) = y;, U0 + ys U1

So finally Dlcop(x3x5xs ® X¢) = X6 + V-

By Theorem 5.4, Dlcop(x3x6 ® x5X6) = Dlcop(x3x5xs ® X6 ).

Since x3x2Xs = X523 + X6 Y6 V7 + X3X5Y7Y4 + X3X6 Vs Y4 by Theorem 3.1 (i) and
Lemma 5.3,

Dlcop(x3x5X6 ® x5x6) = x5 Dlcop(x3x5X6 ® x¢) + Dlcop(x3x2x6 ® x¢)
= x5(x6 + Y6) + Y2 U0+ Y6y, U0+ y774 UL+ ygy4 UO.
The other computations are left to the reader. ]
We would like to emphasize that at the same time Theorem 5.1 gives the cup prod-
uct and the dual of the loop coproduct on H* (LBG;;F,). As mentioned in the intro-

duction, if we forget the cup product, then the following theorem shows that the dual
of the loop coproduct is really simple.

Theorem 5.8 Let X be a simply-connected space such that H*(X;F,) is the poly-
nomial algebra F,[V]. Then with respect to the dual of the loop coproduct, there is
an isomorphism of graded algebras between H***(LX; ) and the tensor product of
algebras H* (X;F,) @ H_.(QX;F,) 2 Fr[V]® A(sV)Y.

Lemma 5.9 Let X be a simply-connected space such that H* (X;F,) = F,[V]. Let
X1,...,xn be a basis of sV.

(i) Suppose that {iy,..., i1} U{j1,. > jm}={1...,N}. Let
{kl,...,ku} = {il,...,il}ﬂ{jl,...,jm}.

Then H* (1) o Dlcop(x;, -+ Xi, ® Xj, -+ X}, ) = Xj, =+ Xk, -
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(ii) Let ®: H_,(QX) = A(sV)¥ > H*4(QX) = A(sV) be the linear isomor-
phism defined by ® (xj A+ Ax} ) =X U+ UXj U+ UX; U+~ Uxy. Here " denotes
the dual and — denotes omission. Then the composite

@ 'o H*(1): H**(LX) — H**(QX) — H_.(QX)

is a morphism of graded algebras preserving the unit.

Proof of Lemma 5.9 (i) Suppose that |xj,| > -+ > |x,|. There exist polynomials
Py,...,Py €Fy[y1,..., yn], possibly null, such that

N
xﬁl =AoH"(ev)o Sql)’kllfl(ykl) = inpi.
i=1
If P; is of degree 0, since |x;| > |xg, |, x; is not one of the elements xy, ..., xk, and so
by Lemma 5.3, Dlcop(x;, -+~ X, =+ X, X ® Xj, -+ Xp, -+ X;,,) = 0.
If P; is of degree > 1, by Theorem 3.1 (iv),
H* (1) o Dlcop(Pix;, -+ X, =+ X, Xi ® Xj, =+ X, =+~ Xj,, ) = 0.
Therefore H*(¢) o Dlcop(x;, -+~ X, -+ Xi, X3, ® xj, -+ Xg, -+ %j,,) = 0. Now the same
proof as the proof of Theorem 4.1 shows (i).

(ii) Since H* (QX;F,) is generated by the x; := 6(y;),1< i < N, which are prim-
itives, H, (QX;F,) is commutative and by [36, Proposition 4.20], all squares vanish
in H,(QX;F,). Therefore H,(QX;F,) is the exterior algebra Aa(y;)".

LetI = {i},...,i;} ¢ {1,..., N}. Recall from Theorem 5.4 that in A(x1,...,XN),
x; denotes the generator x; U x;, U --- U x;,. Denote also in the exterior algebra
A(xy,...,xx) by x/ the element x} Ax}, A---Ax} . Then with this notation, ®(x; ) =
x1e, where I€ is the complement of I'in {1,..., N}. Let

Comp': H*(QX) ® H*(QX) — H*(QX)
be the multiplication defined by Comp'(x; ® x;) = xjnyif [UJ = {1,...,N} and 0
otherwise. By (i) and Lemma 5.3, H*(1): H**4(LX) - H**9(QX) commutes with
the products Dlcop and Comp'. Since X(up)e = Xenge, 2 H_, (QX) — H™(QX)

commutes with the exterior product and Comp'.
By Theorem 5.5, Dlcop(x; ... XN ® X1 ... xy) is the unit of Dlcop. By (i),

©® ' o H*(1) o Dlcop(x;...xy ® X1+ xn) = @ (x---xy) = L.
Therefore ® ' o H* (1) also preserves the unit. [ |
Proof of Theorem 5.8 Denote the unit of H**¥(LX;F,) (Theorem 5.5) by
I:=Dlcop(x1...xy ® X1...XN).

By Theorem 2.2 (vii), the map s': H*(X) - H**4(LX), a = H*(ev)(a)l, is a mor-
phism of unital commutative graded algebras.
By Lemma 5.3, we have Dlcop(x;...X; ... xy ® X1...X;...xy) = 0. So let

o: H(QX) — H** (LX)

be the unique linear map such thatfor1 < i < N, o(x1... %+ XN) = X1+ X; - XN
and such that 0 0 @: H_,(QX) = A(sV)Y - H**¢(LX) is a morphism of unital
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commutative graded algebras. For1 < i < N, ® ' o H*(1) 0 6 0 ®(x}) = x}. By

Lemma 5.9, the composite @' o H*(1): H**¥(LX) - H***(QX) 5 H_.(QX)isa
morphism of graded algebras. So the composite @ o H* (1) 05 0@ is the identity map
and o is a section of H*(1). So by the Leray-Hirsch theorem, the linear morphism
of H*(X)-modules H*(X) ® H*(QX) - H*(LX),a® g » H*(ev)(a)o(g), is an
isomorphism.

The composite

'®go D1
¢ H*(X) ® H_. (0X) ~22°% H+4 (LX) ® H* (LX) — H** (LX)

is a morphism of commutative graded algebras with respect to the dual of the loop
coproduct. By Theorem 3.1 (iv) and since I is the unit for Dlcop,

9(a®g) = Dlcop(H* (ev) (a)I @ 0 0 ©(g)) = H* (ev) ()0 o O(g).
Therefore, ¢ is an isomorphism. ]

Example 5.10 With respect to the dual of the loop coproduct, there is an isomor-
phism of algebras between H***(LBSO(3); F,) and

H,*(SO(;}!),Fz) ® H*(BSO(:))),]Fz) = /\(u,l, u,z) ® Fz[Vz,V3:|.

Proof By Theorem 5.5, Dlcop(xjx; ® X1X2) = X1 + X1 Y2 + ¥3 is the unit for the dual
of the loop coproduct on H***(LBSO(3);F,). By Lemma 5.3,

Dlcop(x; ® x1) = Dlcop(x, ® x;) = 0.

Solet g: A (u_y,u_y) ® Fy[vy,v3] > H**3(LBSO(3); F,) be the unique morphism
of algebras such that ¢(u_5) = x1, (u_1) = x2, (v2) = y2(x1%2 + x1¥2 + ¥3), and
@(v3) = y3(x12 + X192 + ¥3). ‘ , .
For all i, j > 0, we see that (viv]) = yiyi(x1x2 + x1y2 + y3), @(u_qu_ovivy) =
yiyl, o(u_vivl) = x,yiyl, and @(u_pvivl) = x,yiyl. Therefore ¢ sends a linear
basis of A(u_1,u_p) ® F,[v,,v3] to a linear basis H***(LBSO(3);F,). So ¢ is an
isomorphism. ]

Example 5.11 With respect to the dual of the loop coproduct, there is an isomor-
phism of algebras between H****(LBG,;F,) and

H_*(Gz;Fz) ® H*(BGz;Fz) = /\(u_3,u_5,u_6) ®F2[V4,V6,V7].

Proof By Theorem 5.5, Dlcop(x3Xs5xs ® X3X5Xs) = X3X5X6 + X3X5 Y6 + X3 Y4 V7 + Y2
is the unit for the dual of the loop coproduct on H***(LBG,;F,). By Lemma 5.3,

Dlcop(xsx6 ® x5x6) = Dlcop(x3x6 ® x3x6) = Dlcop(x3x5 ® x3x5) = 0.

Solet ¢: A (u_s,u_s,u_g) ® Fa[vs,ve,v7] > H***(LBG,;F,) be the unique mor-
phism of algebras such that ¢(u_3) = x5x6, ¢(1_5) = x3x6, P(U_g) = X3%5, ¢(v4) =
Va4 (X3X5X6 + X3X5 Y6 + X34 Y7 + ¥2), 9(v6) = y6(X3X5X6 + X3X5 Y6 + X3 Y4 Y7 + ¥2), and
9(v7) = y7(x3X5X6 + X3X5 Y6 + X3YaY7 + V7).

For all i, j, and k > 0, we see that
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‘P(V4V6V7) )’4}’6)’7 (xaxsxs T X3X5)6 + X3Ya)7 + )’7)

(p(u 3U_5U_ 6V4V6 ):y4y6y7’
9(u_su_svivivE) = (x6 + ys) yiyiyk,
9(u_su_svivivs) = xsyiyiyh,
9(u_su_evivivk) = xsyiylyk,

p(u_svivlvh) = xsxeyiyLys,
9(u_svivivk) = xsxeyiyiyh
p(u- 6V4V6V7) = x3x5}’4)’6)’7‘

Therefore ¢ sends a linear basis of A(u_3, u_s,u_s) ® F,[v4, vs, v7] to a linear basis
H**(LBGy;F,). So ¢ is an isomorphism. -

Lemma 5.12 Let (A,®) be a commutative unital associative graded algebra. Let
x € Asuch that x ® x = 1. Let y: A — A be the linear morphism mapping a to x © a.
Then y is an involutive isomorphism such that for any a, b in A, w(a) © y(b) =a o b.

Proof y(a)oy(b)=(x0a)o(x0b)=(x0x)0(a0b)=10(a0b)=acb. R

Second proof of Theorem 5.8 This proof gives another (better?) algebra isomor-
phism. By commutativity and associativity of Dlcop and Theorem 5.5, applying
Lemma 5.12, y: H*(X) ® H**4(QX) - H**?(LX) defined by

v(a® xg, -+ xx, ) = Dlcop(x1--- x5 ® axg, -+ Xk, )
is an involutive isomorphism such that
Dlcop(y(a ® x1) ® y(b ® x7)) = Dlcop(ax; ® bx;)

for any subsets I and J of {1,..., N}.
CaseIuJ={1,...,N}. By Theorem 5.4,

Dlcop(ax; ® bxy) = Dlcop(x; ... xy ® abxjny) = y(ab ® xiny)
= y(ab ® Comp'(x; ® x7)).
CaseIUJ #{1,...,N}. By Theorem 5.4,
Dlcop(ax; ® bx;) =0 and Comp'(x; ® x;) = 0.
Therefore y is a morphism of graded algebras. One can show that
(W18 0(x)).¥(190(x)))} 0.

That is why this isomorphism might be better. u
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Theorem 5.13  As a BV-algebra,
H***(LBSO(3); Fy) = A(u_y,u_y) ® Fy[va, v3]
where for all i,j > 0,
A(vévg) =0,

O NPT U B |
A(u_iu_avyvy) = iUu_avy vy + ju_1vyvy

IO LIRS O P = SR ¥ B S S iJ
A(u_yvyvl) = iu vy vy + jvavy + juovy i + ju_ju_avivy,

B NI BT i i1 . el gl
A(u_gvivl) = ivy Wl + (i + ju_aviv) + iu_quyvs vl + jugvitel

In particular, 1 ¢ Im A.

K. Kuribayashi and L. Menichi

Proof Theorem 5.7 gives the BV-algebra H***(LBSO(3);F,), since A is a derivation
with respect to the cup product. In the proof of Example 5.10, the isomorphism of
algebras ¢: A (u_j,u_y) ® Fa[v2,v3] = H***(LBSO(3); F;) of Theorem 5.8 is made

explicit on generators. We now transport the operator A using ¢.
In degree 1, the A operator is given by A(u_ju_,v5) = 0 and

A(u_pv3) = A(u_1vy) = 1+ u_ovy + u_ju_,vs.
Theorem 5.14  As a BV-algebra,
H*+14(LBG2;F2) = /\(u,3, U_s, I/l,6) ® Fz[V4, V6> V7]

where for all i, j, k > 0, A(ViVéV;() =0,

Auw-susu-ovivgrd) = iusu-vi7vivk + jusugvivy s
+ ku_3u_5vivév;<—1 4 ku—3u_su_6vivéﬂv§_l,
Ausu_evivevh) = iusu_svi vl +iusu_su_eviv]'vh
+ ju_eviviTVE 1+ ku_gvivivEy
A qvivlk) = i v vk + ju s vy TV ju s v v

. i+1
+ ju_su_su_gviTvivh

A(u_su_svivivk) = iu_svitvlvk

+(j+1+k)usu_gvyvivh

. i-1_j+
VgV + 1U_s5U_6Vy Vg

k

j. k-1

+ku_svyvgv;
1

k . i -1 k
Vg + JU_3V Ve Vy

iodoky e il ok il jl ok i1 k+l
A(u_evyvgvy ) = iU_sVy VgV; + ju_svy Vg V7 + ju_su_svyve vy
. i k+l i j k-1
+ (j+ k) u_su_su_evivivE ¢ kvivivk
Pl ke i1, j
+ku_eviv T WET ¢ ku_su_gvitvlvk,

idoky _ il ]
A(u_svyvyvy ) = ivy

+iu_su_su_evy vivE??

. 41, j-1
+ ju_su_eviTvl T vAt!

k| i-1, j+1 k
VeVy +il_eVy Vg V5

i+1, j+1_k

i J. k+1

+ (i +k)u_su_gvyvgvy

i -1 k+1

+ju_svyvg vy

i+l j k

+(j+ k) u_su_svy vivy

j+1 k-1

- i
+(JH k) usu_su_gvy vy vy +ku_svyvy vy,
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i-1, j+1 k -1 j+ i J-1 k
A(u_ 51/41/61/7) iu_3uU_sv, Vg YWk L iu_ju_su_gvi vy 2k + jvave vy

, 1
+ G+ k) u_evivivE + ju_su_evitlvl vk

1 j+1
+ ju_su_su_gviviTVE2 4 ku syivitykl

In particular, 1 ¢ Im A.

Proof Theorem 5.1 gives the BV-algebra H**#(LBG,;F,), since A is a derivation
with respect to the cup product. In the proof of Example 5.11, the isomorphism of
algebras ¢: A (u_3,u_s,u_g) ® Fa[vy,ve,v7] - H* ™ (LGy;F,) of Theorem 5.8 is
made explicit on generators. We now transport the operator A using ¢.
In degree 1, the A operator is given by A(u_su_gvZ) = 0,
A(u_su_su_gvivy) = Au_stu_gv,) = _s3t_svs + U_3U_sU_gV3Ve,
A(U_3U_gVaV) = U_gVe + U_st_gVaV7 + U_3U_5Va + U_3U_sU_gVsVe,
A(u_61/7) = A(u_5V6) = A(u_3v4) =14 U_gve + U_s5U_gV4V7

+ u_3u_5u_6v§. |
Note that 9! o Ao ¢(y; ® x) = 7' (x; -+ x) is independent of i.
6 Relation to Hochschild Cohomology
Let K be any field. Let G be a connected compact Lie group of dimension d.

Conjecture 6.1 ( [6, Conjecture 68]) There is an isomorphism of Gerstenhaber alge-
bras H***(LBG) > HH*(S.(G), S+ (G)).

Suppose that H*(BG;K) is a polynomial algebra K[V] = K[y1,..., yn]. It fol-
lows from [40, Theorem 9, p. 572], [31, Proposition 8.21] that BG is K-formal. Then
BG is K-coformal and H, (G;K) is the exterior algebra A(sV)". Indeed, since BG
is K-formal, the Cobar construction QH, (BG) is weakly equivalent as algebras to
S+(G). Let A; denote the exterior algebra As™(y}). Then EZ, the Eilenberg-Zilber
map, and ¢, the counit of the adjunction between the Bar and the Cobar construction,
give the quasi-isomorphims of algebras

QH,(BG) = Q(®BA )<7®QBA %]@)A AsT'VY.

= i=1

Alternatively, since BG is K-formal, we can use the implication (2) = (1) in [2, The-
orem 2.14]. Therefore, we have the isomorphism of Gerstenhaber algebras

HH*(8:(G),S+(G)) 2 HH* (H.(G;K), H.(G;K)) = HH*(A(sV)Y, A(sV)Y).
By Theorem E3 (i) and (ii) as graded algebras,
HH*(A(sV)Y,A(sV)Y) 2 A(sV)Y @ K[V] 2 H_.(GK) ® H (BG; K).

So in Theorem 5.8, we have checked only Conjecture 6.1 for the algebra structure
when K = [F,. When K = F,, we would like also to check Conjecture 6.1 also for the
Gerstenhaber algebra structure.
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The following theorem shows that the conjecture is true for the Gerstenhaber al-
gebra structure when K is a field of characteristic different from 2.

Theorem 6.2  Under hypothesis (H), the free loop space cohomology of the classifying
space of G, H**4im G (LBG; K) is isomorphic as BV-algebra to the Hochschild cohomol-
ogy of H.(G;K), HH*(H.(G;K); H.(G;K)). In particular, the underlying Gersten-
haber algebras are isomorphic.

Proof By hypothesis, H*(BG) =2 K[ V] = K[ y;] as algebras. Then
H.(G) 2 A(sV)" = Ax]
as algebras.
Let ¥: sV — (sV)" be the canonical isomorphism of the graded vector space sV
into its bidual. By definition, ¥(sv)(¢) = (-1)/#Is"lg(sv) for any linear form ¢ on

sV.
By Theorem E3 (iii), we have the BV-algebra isomorphism

HH*(H.(G); Hi(G)) 2 A(sV)Y @ K[s ' (sV)"V],
where forany v € Vand ¢ € (sV)Y,

A(A® s (v) (@ 1)) = (- (s), 9} = —¥(sv)(9) = —(-1)?Ip(sv)

and where A is trivial on A(sV)" and on K[s7}(sV)"V].
The isomorphism of algebras

deK[s"¥]: A(sV)Y @ K[V] — A(sV)" @ K[s7' (sV)""]

is an isomorphism of BV-algebras if foranyv € Vand ¢ € (sV)", A((1®v)(9p®1)) =
—(-1)l#l¥lg(sv) and if A is trivial on A(sV)¥ and on K[V].

Taking v = y; and ¢ = 0(y;)" = x;, we obtained that A(y; ® x;) =1if i = jand 0
otherwise, as in Theorem 4.3. ]

Theorem 6.3 For G = SO(3) or G = Gy, the free loop space modulo 2 cohomology of
the classifying space of G, H**4™ ¢ (LBG; F, ) is not isomorphic as a BV-algebra to the
Hochschild cohomology of H.(G;F,), HH* (H.(G;F,); H. (G;F3)), although when
G = SO(3), the underlying Gerstenhaber algebras are isomorphic.

The main result of [34] is that the same phenomenon appears for Chas—Sullivan
string topology even in the simple case of the two-dimensional sphere S2.

Definition 6.4 Let Abeanaugmented graded algebra. Let F(A) := Aand F"(A) :=
A-A--- Aforn > 1be the augmentation filtration [36, 71]. We say that A is Haus-
dorff [31, Lemma 3.10] if N,y F*(A) = {0}.

Lemma 6.5 Let A and B be a morphism of graded algebras between two Hausdorff
augmented graded algebras such that the only indecomposable elements of A and B,
Q(A) and Q(B), are the zero vectors. Let f: A — B be a morphism of graded algebras.
Then f preserves the augmentations. Let d € N be a non-negative integer. Suppose
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moreover that B = Bs_g, i.e., B is concentrated in degrees greater than or equal to —d
and B is graded commutative. Then f is surjective if and only if Q(f) is surjective.

Proof Whend =0, Ay = {0}, and By = {0}, this lemma is Proposition 3.8 of [36],
but the proof cannot be easily generalized. Therefore, we provide a proof.
Denote by Q: A - Q(A) := % the quotient map. The sequence

(K@)i—l —_ — Z@)n—i) _)—@n Qe

A = Q(A)®" —0

is exact. Alternatively, since over a field K, A= A- A® Q(A),

—®n Q®n

'eAd-Ae A" ) — A" L5 Q(A)®" — 0

00— +7:1(K®1_
is a short exact sequence. Therefore, the iterated multiplication of A induces a natural
map Q(A)®" - F"(A)/F"*'(A) that is obviously surjective.

Let x € A = F'(A) with x # 0. Since N,,ey F"(A) = {0}, there exists 7 > 1 such that
x € F'(A) and x ¢ F™"(A). Therefore x is the product of r elements of A, x; --- x,
such that Q(x;) ® --- ® Q(x,) # 0. By hypothesis, Q(A)o = {0}. So x; and f(x;) are
of degrees different from 0. So f(x;) € B. And f(x) = IT; f(x;) € B: we have proved
that f preserves the augmentations.

Let y € F"(B) with y # 0. Similarly, y is the product of r > n elements of B,
¥1-++ ¥, such that all the Q(y;) are non-zero. Since Q(B)o = {0}, the y; are all of
degrees different from 0. Since B is graded commutative, B._; = {0} and y # 0,
there are at most d elements y; of negative degree in the product y;--- y,. So there
is at least r — d elements y; of positive degree. Therefore, the degree of y is at least
d x (-1) + (r — d) x 1; we have proved that the non-zero elements of F”(B) are all of
degree greater than or equal to n — 2d.

Assume that Q(f) is surjective. Then Q(f)®": Q(A)®" - Q(B)®" is also sur-
jective. Since the following square is commutative by naturality,

Q(A)®" —— F"(A)[F™*1(A)
Q(f)®ni lGrnf
Q(B)®" —— F"(B)/F"*'(B),

the map induced by f, Gr, f, is also surjective. In a fixed degree, consider the com-
mutative diagram

0 —— F"1(A) F"(A) F"(A)/F"(A) ——=0
fIF"“(A)i ile"(A) J{Gmf
0 —— F"*!(B) F"(B) F"(B)/F"(B) —=0

with exact rows. Suppose by induction that the restriction of f to F**1(A), f|[F"*1(A),
is surjective. Then by the five Lemma, f|F"(A), is also surjective. Since F"(B) is
concentrated in degrees greater than or equal to n — 2d, in a fixed degree, for large #,
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F™(B) is trivial and we can start the induction. Therefore f = f|F°(A) is surjective.
|

Proof of Theorem 6.3 Since H,(G) is an exterior algebra, by Example E2 (ii), 1 €
Im A in the BV-algebra HH*(H.(G); H«(G)). On the contrary, by Theorems 5.13
and 5.14, the unit 1 does not belong to the image of A in the BV-algebra

H*erim G(LBG, FZ)

So the BV-algebras HH* (H.(G); H,(G)) and H**4m G (LBG;TF,) are not isomor-
phic.

The BV-algebra HH*(H.(SO(3)), H.(SO(3))) was explicitly computed in the
proof of Theorem 6.2 and is isomorphic to the tensor product of algebras A (x_;, x_;)®
Fa[y2, y3] with A(x_py3) =1, A(x_2y2) = 0, A(x_1y2) =1, A(x_1y3) = 0,and A is
trivial on A(x_5, x_;)®1and on 1®F,[ y,, y3]. The BV-algebra H***(LBSO(3); [F,)
A(u_y,u_1) ® Fa[vz,v3] is given explicitly by Theorem 5.13.

Let ¢: A(x_2,%x_1) ® F2[y2, 3] > A(u_2,u_;) ® F5[v,, v3] be any morphism of
graded algebras. Since A(x_2,x_1) ® F2[y2, y3] and A(u_z,u_1) ® Fy[vz,v3] are of
the same finite dimension in each degree, ¢ is an isomorphism if and only if ¢ is
surjective. By Lemma 6.5, ¢ is surjective if and only if Q(¢) is surjective. Therefore,
¢ is an isomorphism of algebras if and only if

o(x2) =u_p, @(xq) =u_g +eu_u_svy,
o(y2) =v2 + au_,vs + bu_ju_ovav3 + cu_vs,

2 3 2
©(y3) =v3 + AU_VaV3 + Bu_ju_oV; + yu_ju_v; + Su_1vs,
where ¢, a, b, ¢, a, 3, y, § are eight elements of IF,. Since
2 2
(u=2)*=0 and (u_;+eu_ju_yvy)° =0,

the above four formulas always define a morphism ¢ of algebras.

By the Poisson rule, a morphism of algebras between Gerstenhaber algebras is a
morphism of Gerstenhaber algebras if and only if the brackets are compatible on the
generators.

Note that, modulo 2, in a BV-algebra, for any elements z and ¢, {z + t,z + t} =
{z,z} + {t,t} and {z,z} = A(z?). Therefore it is easy to check that

p({x-2,x2}) =0={g(x-2), p(x-2)}, p({x-1,x11) =0={p(x1), 9(x-1)},
e({y292}) =0={o(y2), 9(y2) }, e({y3,73}1) =0={9(y3), 0(y3)}.

Note that Ap(x_;) = eu_p, Ap(x-3) = 0, Ap(y2) = (b + ¢)(u_pv3 + u_1v3), and
Ap(y3) = au_yvy + avy + (a + p)u_svi + au_ju_,v,vs.
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Therefore

¢({x-2,y2}) =0,
{p(x-2),9(y2)} = 1+ Ju_y + (b + c)u_u_svs,
o({x1,021) =1,
{p(x-1),0(32)} =1+ (1 + e)u_yva + (ec+ 1+ b+ c)u_qu_yv3,
o({x-2,x1}) = 0={p(x2), p(x-1)},
¢({x-2,y3}) = 1,
{p(x-2),0(y3)} =1+ 1+ a)u_rvy + (1 + a)u_ju_,vs,
¢({x-1,y3}) =0,
{p(x-1),0(y3) = (Q+a+e+a)u_vy + (e+1+a+&)u_yv;
+(e8+a+y+eq)uu_,v3,
¢({r2,y3}) =0,
{9(72):0(y3)} = Dp(y2)9(y3) + Al@(y2)9(13)) + 9(r2) A9(y3)
= (b+c)(ugvi+u_vyvs + (a+ 8)u_ju_,vivy)
+A((a+a)uovyvs + (b+ca+ B)uju_svvi + 8u_1v;)
+9(y2)80(ys)
=(a+a+0+a)vi+(a+a+d+a+y+an)u,v;
+((b+c)(a+d)+a+a+8+a+aa+ba+ca+cy)

+(b+c+a+ca)uqvavs+(b+c+b+ca+B)uvs.

Therefore, by symmetry of the Lie brackets, ¢ is a morphism of Gerstenhaber algebras
ifandonlyife =b=c=a =1 =0anda = y = §. Conclusion: we have found
only two isomorphisms of Gerstenhaber algebras between H***(LBSO(3);F,) and
HH*(H.(SO(3)),H.(SO(3))). [ |

7 Triviality of the Loop Product When H*(BG) Is Polynomial

This section is independent of the rest of the paper. Recall that the dual of the loop
coproduct introduced by Sullivan for manifolds H* (LM) ® H*(LM) — H**4(LM)
is (almost) trivial [44]. In this section, we prove that the loop product for classifying
spaces of Lie groups H, (LBG) ® H.(LBG) — H,,;(LBG) is trivial if the inclusion
of the fibre in cohomology H*(j): H*(LBG;K) - H*(G;K) is surjective (Theo-
rem 7.1). We also explain that the condition that H*(j): H*(LBG;K) - H*(G;K)
is surjective is equivalent to our hypothesis H*(BG) polynomial (Theorem 7.3).

Theorem 7.1 Let BG be the classifying space of a connected Lie group G. Suppose that

the map induced in cohomology H* (LBG; K) - H*(G;K) is surjective. Then the loop
product on H,(LBG; K) is trivial, while the loop coproduct is injective.
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This result is a generalization of [12, Theorem D] in which it is assumed that the un-
derlying field is of characteristic zero. If Char K # 2, the triviality of the loop product
was first proved by Tamanoi [43, Theorem 4.7 (2)]. David Chataur and the second au-
thor conjectured that the loop coproduct on H, (LBG) always has a counit. Assuming
that the loop coproduct on H.(LBG) has a counit, obviously the loop coproduct is
injective and it follows from [43, Theorem 4.5 (i)] that the loop product on H, (LBG)
is trivial.

The injectivity described in Theorem 7.1 follows from a consideration of the Eilen-
berg-Moore spectral sequences associated with appropriate pullback diagrams. In
fact, the induced maps Comp' and H(q) in the cohomology are epimorphisms; see
Proposition 7.2.

Let QX < LX — X be the free loop fibration. The following proposition is key to
proving Theorem 7.1.

Proposition 7.2 Let X be a simply-connected space. Suppose that
H*(1): H* (LX) — H*(QX)
induced by the inclusion is surjective. Then one has the following.
(i) The map H*(q) induced by the inclusion q: LX xx LX — LX x LX is an epimor-
phism.
(ii) Suppose moreover that X is the classifying space of a connected Lie group G. Then
for the map Comp: LBG xpg LBG — LBG, Comp' is an epimorphism.

Proof of Theorem 7.1. By Proposition 7.2 (i) and (ii), we see that the dual to the loop
coproduct Dlcop := Comp' oH*(g) on H*(LBG) is surjective. Since g' is

H*(LBG x LBG)-linear
and decreases the degrees, q' o H*(q) = 0. By Proposition 7.2 (i), H* (g) is an epimor-

phism. Therefore g' is trivial and the dual of the loop product Dlp := g' o H* (Comp)
on H*(LBG) is also trivial. [ |

Proof of Proposition 7.2. Consider the two Eilenberg—Moore spectral sequences as-
sociated with the free loop fibration mentioned above and with the pull-back diagram

LX xx LX — > LX x LX

evl ievxev

X— 9% _xXxX

Since H* (LX) isafree H* (X )-module by the Leray-Hirsch theorem, these two Eilen-
berg-Moore spectral sequences are concentrated on the 0-th column. So the two
morphisms of graded algebras

H(1)) ® n:H(IX) @ K-— H*(QX),
H*(X) H*(X)

H*(q) ® H'(ev): (H*(LX)®H*(LX)) ® H*(X)—> H*(LX xx LX)
H*(x)@z H*(x)@z
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are isomorphisms. In particular, H*(q) is an epimorphism and we have an isomor-
phism of graded vector spaces between H*(LX xx LX) and H* (LX) ® H*(QX).
Consider the Leray-Serre spectral sequence {Ef **,d,} of the homotopy fibration

Comp
QOX->LX xx LX — LX.

Since H* (LX xx LX) is isomorphic to H* (LX) ® H*(QX), by [38, [IL.Lemma 4.5
()], {E;**,d,} collapses at the E,-term. Then for X = BG, the integration along the
fibre Comp': H* (LBG xpg LBG) — H*~4m G (LBG) is surjective. [ |

Let G be a connected Lie group and K a field of arbitrary characteristic. Let
F: G 5 LBG — BG be the free loop fibration.

Theorem 7.3  The induced map H*(j): H*(LBG;K) - H*(G;K) is surjective if
and only if H* (BG; K) is a polynomial algebra.

Proof The “if” part follows from the usual Eilenberg—Moore spectral sequence ar-
gument. In fact, suppose that H*(BG; K) 2 K[ V]. Then the Eilenberg-Moore spec-
tral sequence for the universal bundle ': G - EG — BG allows one to deduce that
H*(G;K) = A(sV). By using the Eilenberg-Moore spectral sequence for the fibre
square ( [26, Proof of Theorem 1.2] or [28, Proof of Theorem 1.6])

LBG —— = BG!
BG BG x BG,

we see that H* (LBG; K) 2 H*(BG; K)®A(sV) asan H*(BG) = K[V ]-algebra. This
implies that the Leray-Serre spectral sequence (LSSS) for J collapses at the E,-term
and hence H* (j) is surjective. See the beginning of Section 3 for an alternative proof
that uses module derivations.

Suppose that H*(j) is surjective. We further assume that Char K = 2. By the
argument in [28, Remark 1.4] or [21, Proof of Theorem 2.2], we see that the Hopf al-
gebra A = H*(G;K) is cocommutative and so primitively generated, i.e., the natural
map P(A) - Q(A) is surjective. By [28, Lemma 4.3], this yields that H*(G;K)
A(x1,...,xN), where x; is primitive for any 1 < i < N. The same argument as in the
proof of [38, Chapter 7, Theorem 2.26(2)] allows us to deduce that each x; is transgres-
sive in the LSSS {E,, d, } for 3. To see this more precisely, we recall that the action of
G on EG gives rise to a morphism of spectral sequence

{u;}:{E;d,} — {E, @ H(G;K),d, ® 1}
for which
¢y =1eu*: H(BG;K) ® H*(G;K) — H*(BG;K) ® H*(G;K) ® H*(G; K),

where p: G x G — G denotes the multiplication on G [38, Chapter 7, §2].
Suppose that there exists an integer i such that x; is transgressive for j < i, but not
x;. Then we see that for some r < degx; +1, d,(x;) # 0and dj(x;) = 0if p < 7. We
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write d,(x;) =Y, b1 @ xy, -~ "Xl > where each b; is a non-zero element of H* (BG;K)
and 1<, < N for any ! and u. The equality y;d,(x;) = (d, ® 1)y (x;) implies that

Zbl@xh“"‘lsl-l‘@xls, =d, ®1(1®x;®1+1®1®x;)
]
22b1®xl1“'xlsl ®1,
1

which is a contradiction. Observe that x; and x;, are primitive. Thus it follows that
x; is transgressive for any 1< i < N.

In the case where CharK = p # 2, since H* () is surjective by assumption, it fol-
lows from the argument in [28, Remark 1.4] that H*(G; Z) has no p-torsion. Observe
that to obtain the result, the connectedness of the loop space is assumed. By virtue
of [38, Chapter 7, Theorem 2.12], we see that H* (BG;K) is a polynomial algebra. This
completes the proof. ]

Theorem 7.4 gives another characterisation of our hypothesis that H* (BG) is poly-
nomial.

Theorem 7.4  Let G be a connected Lie group. Then the following three conditions are
equivalent.

(i) H*(BG;K) is a polynomial algebra on even degree generators.
(i) BG is K-formal and H*(BG;K) is strictly commutative.
(iil) The singular cochain algebra S*(BG;K) is weakly equivalent, as algebra, to a
strictly commutative differential graded algebra A.

Strictly commutative means that a> = 0 if a € A°%¢ (K can be a field of character-
istic two). We conjecture that over a field of characteristic two, this theorem remains
valid if we omit “on even degree generators” in (i), “and H* (BG; K) is strictly com-
mutative” in (ii) and “strictly” in (iii).

Proof (i) = (ii). Suppose that H*(BG;K) is a polynomial algebra. Then by the
beginning of Section 6, BG is K-formal.

(ii) = (iii). Formality means that we can take A = (H*(BG;K), 0) in (iii).

(iii) = (i). Let Y be a simply connected space such that $* (Y;K) is weakly equiva-
lent as algebras to a strictly commutative differential graded algebra A. Let (AV, d) be
a minimal Sullivan model of A. Consider the semifree-(AV, d) resolution of (K, 0),
(AV ® T'sV, D) given in [16, Proposition 2.4] or [33, Lemma 7.2]. Then the tensor
product of commutative differential graded algebras

(K,0) ® (AV®TsV,D)=(IsV,D)
(AV,d)
has a trivial differential D = 0 [16, Corollary 2.6]. Therefore we have the isomorphisms
of graded vector spaces
H*(QY) 2 Tor’ V(K K) 2 Tor®™V4) (K, K) = H,(I'sV,D) 2 TsV.

If H*(QY) is of finite dimension, then the suspension of V, sV must be concentrated
in odd degree and so V must be in even degree and d = 0; thus Y is K-formal and
H*(Y) is polynomial in even degree. [ |
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A Review of [6] With Sign Corrections

In this appendix, we review the results of Chataur and the second author [6]. And we
correct a sign mistake.

A.1 Integration Along the Fibre in Homology With Corrected Sign

Let F - E 2 B be an oriented fibration with B path-connected, i.e., the homology
H.(F;K) is concentrated in degree less than or equal to n, 71;(B) acts on H,(F;K)
trivially, and H,(F;K) = K. In what follows, we write H,(X) for H,(X;K). We
choose a generator w of H,(F;K), which is called an orientation class. Then the
integration along the fibre proj;’: H,(B) = H..,(E) is defined by the composite

H(B) —> Hy(B) ® H,(F) = E2, —» E%, = F/F*"' = F* ¢ H,,,(E),

where 77 sends the x € H,(B) to the element (-1)*"x®w € H,(B)®H, (F)and {F'}s0
denotes the filtration of the Leray-Serre spectral sequence {E}, ,,d"} of the fibration
F - E 22 B. This Koszul sign (-1)*" does not appear in the usual definition of
integration along the fibre recalled in [6, 2.2.1].

A.2 Products

ro‘l
Let F/ - E' 2L B’ be another oriented fibration with orientation class &’ € H, (F).
We will choose w ® w’ € Hy,,.,s(F x F') as an orientation class of the fibration

, Proj x proj’
—

FxF —ExE Bx B,

By [39, Theorem 3, p. 493], the cross product x induces a morphism of spectral se-
quences between the tensor product of the Serre spectral sequences associated with
proj and proj’ and the Serre spectral sequence associated with proj x proj’. Therefore
the interchange on H.(B) ® H,(F) ® H.(B") ® H,/(F') between the orientation
class w € H,(F) and elements in H,(B") yields the formula given (without proof)
in [6, §2.3]

(projx proj )1 (a x b) = (1)1 projf (a) x proji*’ (b).
Note that with the usual definition of integration along the fibre recalled from [6,

2.2.1], the Koszul sign (-1)%'ll must be replaced by the awkward sign (-1)¢ll®l.
Therefore there is a sign mistake in [6, §2.3].

A.3 Integration Along the Fibre in Cohomology With Corrected Sign

incl proj

Let F - E — B be an oriented fibration with orientation 7: H"(F) - K. By
definition, proj’.: H**"(E) — H*(B) is the composite

H"™"(E) —» ES" ¢ ES" = H'(B) ® H"(F) “*25% H¥(B),

where (id®7) (b ® f) = (-1)"*lbz(f). This Koszul sign (-1)"®l does not appear in
the usual definition of integration along the fibre recalled from [3, p. 268].
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By [3, IV.14.1], proj. (H* (proj) (B) u &) = (-1)/#I" B U projt () for « € H*(E) and
B € H*(B). This means that the degree —n linear map proj.: H*(E) - H*™"(B)
is a morphism of left H* (B)-modules in the sense that f(xm) = (=1)/I¥lx f(m) as
stated in [9, p. 44].

A.4 Example: Trivial Fibrations

Let w € H,(F;K) be a generator. Define the orientation 7: H"(F) — K as the image
of w by the natural isomorphism of the homology into its double dual, y: H, (F;K) —
Hom(H" (F;K),K). Explicitly, 7( f) = (=1)"/(f, ), where (-, - is the Kronecker
bracket.

Let proj,: B x F - B be the projection on the first factor. Then for any f € H*(F)
and b € H*(B), proji (b x f) = (-1)/ltlpz(f). Let proj,: F x B - B be the pro-
jection on the second factor. Since proj, is the composite of proj; and the exchange
homeomorphism, by naturality of integration along the fibre,

projy (f x b) = proji, (-6 x £) = br(f) = (-1)"VI(f, w)b.
A.5 Main Dual Theorem With Signs

The main theorem of [6] states that H, (LX) is a d-dimensional (non-unital non co-
unital) homological conformal field theory, i.e., H, (£ X) is an algebra over the tensor
product of graded linear props

@ det H(F, 3in; Z)®¢ ®7 H, (Bdiff " (F, 9); K).
Fpiq

See [6, §3 and 11] for the definition of this prop: here F (respectively F;.,) denotes
a non-necessarily connected cobordism (with p incoming circles and q outcoming
circles). The prop det Hi(F, din;Z) manages the degree shift and the sign of each
operation. In [6], Chataur and the second author did not pay attention to this prop
det H1(F, din; Z) (and neither did [1, p. 120], it seems). Therefore, in order to get the
signs correct, we need to review all the results of [6] by taking this prop into account.
Explicitly, we have maps

9(Fyip): det Hi(Fyip, ins Z)® ®7 H. (Bdiff " (Fyyp,0)) ® H, (LX) ®1
— H,(LX)®F

that assign 9°®¢(Fg,,)(v) tos® a®v.

Therefore (cf. [6, §6.3]), its dual H*(LX) is an algebra over the opposite prop
©r,,, det Hi(F, 0in; Z)°P ®d @7 H, (Bdiff " (F, 2))°P, which is isomorphic to the prop
®r,,, det Hy (F, dous Z)®? ®z H. (Bdift " (F, 9)), since

det H](Fp+q, aout; Z) = det Hl(Fq+pa ain; Z)
and diff " (Fpq, 0) = diff " (Fg.p, 9). Explicitly, the degree 0 map since
V(Fpiq): det Hy(Fgsp, 9in; Z)®? ®7 H, (Bdiff " (Fysp, 9)) ® H* (LX)®P
— H*(LX)®1
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sends the element s ® a ® « to
V2 (Fpig)(@) =" (959 (Fgup))(a) = (-1)1elHeD g 0 9@ (F ).

Note that here we have defined the transposition of a map f as ‘ f(«) = (-1)1*l/lgo f.
This yields the following five propositions: A.1, A.3, A4, A.5.

Proposition A.1 (Cf. [6, Proposition 24]) Let F and F' be two cobordisms with the
same incoming boundary and the same outgoing boundary. Let ¢: F - F’ be an ori-
entation preserving diffeomorphism, fixing the boundary, i.e., an equivalence between
the two cobordisms F and F'. Let cy: diff " (F,9) — diff " (F’, 9) be the isomorphism

of groups, mapping f to ¢ o f o ¢~". Then for
s ® a € det H, (F, dout; Z)®? ®; H, (Bdiff* (F, d)),
@4 (F) = VdetH1(¢,80m;Z)®d(s)®H*(Bc¢)(a)(F/)'

Remark A.2. In Proposition A.l, suppose that F = F’. By a variant of [6, Proposi-
tion 19], H1(¢, dout; Z) is of determinant +1. Since the natural surjection

diff*(F,9)) — mo(diff* (F, 9))

is a homotopy equivalence [7] and 7o (cg) is the conjugation by the isotopy class of
¢, H.(Bcg) is the identity. So the conclusion of Proposition A.l is just v*¢(F) =
Vs®a (F) .

Using Proposition A.l, it is enough to define the operation v(F) for a set of repre-
sentatives F of oriented classes of cobordisms (therefore, the direct sum over a set ®g
in the above definition of the prop has a meaning). Conversely, if v(F) is defined for
a cobordism F, then using Proposition A.1, we can define v(F’) for any equivalent
cobordism F’ using an equivalence of cobordism ¢: F — F’. Two equivalences of
cobordism ¢, ¢": F — F’ define the same operation v(F'), since

det H; (¢, dout) o det Hy (¢, dour) " = det Hy (¢ 0 ¢, 9pur) = 1d

and H, (Bcy) o H.(Bcy) ™" = H.(Bcgog-1) = Id by Remark A.2.
Proposition A.3 (Cf. [6, Proposition 30, Monoidal]) Let F and F' be two cobordisms.
For

s® a € det Hy(F, 9ou; Z)®? ®7 H, (Bdiff* (F,9)),
and

t® b e det Hy(F', ou; Z)®“ ®7 H. (Bdift " (F', 3)),
we have v(5®t)®(“®b)(F HF)= (—1)“”“'1}58’“ (F) ® v'®(F").
Proposition A.4 (Cf.[6, Proposition 31, Gluing]) Let F,.4 and Fy., be two compos-
able cobordisms. Denote by Fq.,, o F,, 4 the cobordism obtained by gluing. For

s1® my € det Hy(Fpig, douts Z)®¢ ®7 H. (BAiff* (Fpi g, 9)),

and
S, ® my € det Hl(Fq+y, aout;Z)®d ®z7 H, (Bdiff+(Fq+r, 8)),
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we have v2®™2(Fy,,) o vi®™ (F,, ) = (-1)Im:llsily(szes)@(mem) (g o F, ). Here
o: Hy(Bdiff " (Fgyr, 0)) ® H, (Bdiff " (Fyiq,0)) —> H.(Bdiff "(Fgur © Fpiq,9)),
and mapping m, ® my to my o my is induced by the gluing of F, 4 and F.,.
Asnoted in [20], with their notion of h-graph cobordism, Chatour and Menichi [6]

never used the smooth structure of the cobordisms. So, in fact, our cobordisms are
topological. Therefore the cobordism F,, o F,., obtained by gluing is canonically

defined [25,1.3.2]. Note that by [7,17] the inclusion diff " (F, 8) & Homeo* (F,d) is a
homotopy equivalence since 7y (diff " (F, 9)) 2 7o (Homeo™ (F, d)) [8, p. 45].

Proposition A.5 (Cf. [6, Corollary 28 i), Identity]) Let id; € det H;(Fp 141, Oout; Z)
and id, € Ho(Bdiff " (Fo,141,0)) be the identity morphisms of the object 1 in the two

props. Then pid @i (Fy141) = Idg (13-
Proposition A.6 (Cf. [6, Corollary 28 ii), Symmetry]) Let Cy be the twist cobordism
of S'TIS". Let T € det Hy(Cy, dout; Z), T € Ho(Bdiff " (Cy, 9)), and
7 e End(H*(LX)®?)

be the exchange isomorphisms of the three props. Then v7®d®T(C¢) =T

Let F be a cobordism. Let xr be the generator of Hy(Bdiff " (F, 0)) represented by
the connected component of Bdiff " (F, 9). We may write k instead of kr for simplicity.
If ¥(F) = 0, then Hy(F,dou;Z) = {0} has a unique orientation class. This class

corresponds to the generator 1 € det H (F, dout; Z) = A‘X(F)Hl(F, Odouts Z) = Z.
The identity morphim id; and the exchange isomorphism 7 of the prop

det Hy(F, dout; Z)
correspond to these unique orientation classes of
HI(F0,1+1) Oouts Z) and Hl(C¢n Oouts Z)-
The identity morphism id; and the exchange isomorphism 7 of the prop
H,(Bdiff*(F,9))

are just kg,,,, and xc, .

B Commutativity and Associativity of the Dual to the Loop
Coproduct

The connected cobordism of genus g with p incoming circles and g outgoing circles
is denoted Fy ;4. In particular, Fy ;4 is the pair of pants.

Theorem B.1 Letd > 0. Let H* (upper graded) be an algebra over the (lower graded)
prop det Hy (F, dout; Z)®? ®7 Ho (Bdiff " (F, 9)). Let s € det H;(Fo 241, dout; Z)®? be a
chosen orientation. Let Dlcop = v*®*(Fy ».1). Let m be the product defined by

aob=(-1)*“"9 Dlcop(a ® b)
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fora®b e H ® H. Let H* := H**%, Then (H*,®) is a graded associative and
commutative algebra.

Proof Using Propositions A.3, A.4, and A.5,
DICOP O(DICOp ®1) _ vso(s@id1)®xo(x®id1) (F0)2+1 o (F0,2+1 I_I FO,1+1)):
DlCOp 0(1 ® DICOP) = Vso(idl ®s)®xo(id @x) (F0,2+1 o (FO,H—I ]_I F0)2+1)).

The cobordisms F 541 © (Fo,241 LI Fo,1+1) and Fy 211 0 (Fo,141 [ Fo,241) are equivalent.
When we identify them, x o (k ® id;) = « o (id; ®«). Also Fy 41 0 Cg = Fy 241 and
KoT=Kk.

Let B € det Hy(Fo 241, dou; Z) the generator such that ¢ = s. The composi-
tions of the Z-linear prop det H;(F, dout; Z) are isomorphisms. Therefore, they send
generators to generators. Moreover, det Hi(F, dout; Z) = A YEVH (F, 0qu; Z) is
an abelian group on a single generator of lower degree —x(F). So o (f®id;) =
€assf o (id; ®B) and o T = ecomf for given signs €,5 and ecom € {-1,1}. Therefore
so(s®idy) = f29 o (B®id))® = (-1)“T B (Bo (B®id)))®? = e 50 (id, ®s),

SoT= ﬁ®d ° T®d = (ﬁ © T)®d = (‘Ecomﬁ)‘gd = egomﬂ‘gd = sgoms'

Therefore, by Proposition A.1

Dlcop o(Dlcop ®1) = 2. Dlcop o(1 ® Dlcop),
Dlcop o = % Dlcop.
This means that for a, b, c € H* (LX),
(aob)oc=el (-1)ao (boc),
boa= sfom(—1)(|"|"d)(|b|_d)+da ob,
since
(a©b)oc=(-1)%"*Dlcop o(Dlcop®1)(a ® b & c),
a® (boc)=(-1)*11) Dlcop(a ® Dicop(b ® c))
= (-1)**I Dlcop o(1® Dlcop) (a ® b ® c).

Godin [14, Proof of Proposition 21] showed geometrically that e, = —1 for the prop
det Hi(F, 0in; Z). To determine the signs &,5s and ecom for the prop det Hy (F, dout; Z),
we prefer to use our computations of ©.

Consider a particular connected compact Lie group G of a particular dimension
d and a particular field K of characteristic different from 2 such that H*(BG;K) is a
polynomial, for example G = (S')? or K = Q. Then H*(LBG; Q) is an algebra over
our prop and we can apply Theorem 3.1 (ii) or Corollary 4.2. Taking a = x;--- xn,
b=1and c = x---xy, we obtain 1 = ¢4 (~-1)% and 1 = &% _(~1)?. So if we chose d
0dd, ;55 = €com = —1 and © is associative and graded commutative. [ |

Remark B.2. When d is even, the d-th power of the prop det H,(F, din;Z) is isomor-
phic to the d-th power of the trivial prop with a degree shift — y(F).
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More precisely, let P be the prop such that P(p, q) = ®p,,, s ¥ (Fpra) 7,
sTXED)] o s x(F) = gx(FloF)q

and s ¥ ()1 @ s7X(F)1 = s x(FLLF)] Thig prop P is the the trivial prop with a degree
shift —y(F).

For any cobordism F, let @: sHB 7 - det H;(F, 0in;Z) be a chosen isomor-
phism. Then ®%%: P®? — det H,(F, din; Z)®* is an isomorphim of props if d is even.
This prop P®9 is the d-th power of the trivial prop with a degree shift —y(F) and is
not isomorphic to the trivial prop with a degree shift —d y(F).

Proof The following upper square always commutes, while the lower square com-
mutes if d is even.
®d ®d
F

/ %00
(s¥F)7)8d @ (s~x(P)7)®d T T o det Hy(F',0¢; Z)® ® det Hy (F, 9in; )¢

(s ¥V 705 xB)7)®d o (det Hy(F',din;Z) ® det Hy(F, 0in; Z))®?

(®F1®®F)®d
o] B
—-x(F'oF)7\®d / . .7\®d
(s Z) oy det H(F' o F, 0in3Z)
Replacing o by the tensor product ® of props, we have proved that ®%¢ is an iso-
morphism of props if d is even. ]

Observe that the dual of the loop coproduct Dlcop on H* (LX) satisfies the same
commutative and associative formulae as those of the Chas-Sullivan loop product on
the loop homology of M [42, Remark 3.6], [29, Proposition 2.7]. So we wonder if the
prop det H(F, dout; Z) is isomorphic to the prop det H;(F, din; Z).

Corollary B.3  Let X be a simply connected space such that H.(QX;K) is finite-
dimensional. The shifted cohomology H* (LX) := H**%(LX) is a graded commutative,
associative algebra endowed with the product ® defined by

aob=(-1)*""YDlcop(a ®b),
forae H (LX) and b € H (LX).
C The Batalin-Vilkovisky Identity

For any simple closed curve y in a cobordism F, let us denote by y the image of the
Dehn twist T, by the Hurewicz map ®

1o (diff* (F, ) < m (Bdiff* (F,)) ~— H,(Bdiff* (F, ).
In this appendix, we prove the following theorem.

Theorem C.1 Let H* be an algebra over the prop
det Hy(F, dout; Z)®? ®7 H, (Bdiff " (F, 9)).
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Consider the graded associative and commutative algebra (H*, ®) given by Theorem B.1.
Let a be a closed curve in the cylinder Fo,141 parallel to one of the boundary components.
Let A = v ®%(Ey 1,1). Then (H*,®, A) is a BV-algebra.

When d = 0, Wahl [46, Remark 2.2.4] and Kupers [27, 4.1, p. 158] gave an incom-
plete proof that we complete. Moreover, we pay attention to signs.

We conjecture that Theorem C.1 s true if we replace the prop det H; (F, dout; Z) by
the (isomorphic?) prop det H;(F, 0in;Z). A d-homological conformal field theory
should have a structure of a BV-algebra. The dual of a d-homological conformal field
theory should be a d-homological conformal field theory. All this is well known if
we do not take into accounts the signs hidden in the prop det H;(F, 0iy; Z). But the
problem is to do a correct proof with signs.

The shifted cohomology algebra (H*, ®) equipped with the operator A is a BV-
algebra if and only if A o A = 0 and if the Batalin-Vilkovisky identity holds; that is,
for any elements a, b, and ¢ in H",

Alaoboc)=Aaob)oc+(-)Iaoa(boc)+ (-1t o A(a e c)
~A@)oboc-(-Dltlaoa)oc
— (a1l o b o A(e),

where ||a| stands for the degree of an element « in H*, namely ||| = |a| - d.

Since Bdiff " (Fy,141) is BZ, @ o @ € H,(Bdiff " (Fy1.1)) = {0}. Therefore Ao A =
:I:Vidl ®EOE(FO)1+1) =0

The Batalin-Vilkovisky identity will arise up to signs from the lantern relation [46,
Remark 2.2.4], [27, 4.1, p. 158].

Proposition C.2 ([22],[8,95.1]) Letay,...,aqandx, y,z be the simple closed curves
described in [27, Figure 6.89]. Then one has Ta, Ty, Ta, Ta, = T, T, T, in the mapping
class group of the sphere with four holes, Fy 3,1, where T, denotes the Dehn twist around
a simple closed curve y in the surface.

In order to prove Theorem C.3, we represent each term of the Batalin-Vilkovisky
identity in terms of elements of the prop with a homological conformal field theoreti-
cal way. This means using the horizontal (coproduct) composition ® and the vertical
composition o on the prop. We start with the most complicated element b® A(a®¢).

By Propositions A.3, A.4, A.5,and A.6,

Dlcop o[Id ®(A o Dlcop)] o (7 ® Id)

= SO (FO,ZH) ° [vidl ®id; (F0,1+1) ® (vidl ®E(FO,1+1) 0 1S®* (F0,2+1 ) )]
° (VT®T(C¢) ® Vidl ®id; (F0,1+1))
_ :!:Vso[idl ®s]o(T®id;)®xo[id; ® (aox)]o(T®id;) (F0,2+1°(F0,1+1 11 F0’2+1)0(C¢ 11 F0,1+1))

Here + is the Koszul sign (~1)FI% = (=1)4, since only s and @ have positive degrees.
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We choose s’ = s o (s ® id; ). In the proof of Theorem B.1, we have seen that ¢,55 =
€com = —1and hence s o (s ®id;) = (=1)%s 0 (id; ®s) and s o 7 = (~1)%s. Therefore,
so(id; ®s) o (r®id;) = (-1)9s 0 (s ®idy) o (T ®id))
= (-1)%so[(so ) ® (id; 0idy)] = 5".
Since ko[id; ®(aok)]o (7®id;) coincides with z by Proposition D.1, we have proved

that Dlcop o(Id ® (Ao Dlcop)) o (r®1d) = (~1)9v* ®%(Fy 3,1 ). Similar computations
show that

Dlcop o(Id ®(A o Dlcop)) =

i vso[idl ®s] ® ko[id; ®(&ox)] (F0,2+1 ° (F0,1+1tsl LI F0,2+1)) _ vs'®Y(F0’3+l)’
Dlcop o((A o Dlcop) ® Id) =

+ VSO[S@idI] @ ol (@or)®id:] (F0,2+1 o (F0,2+1 il F0,1+1)) = (—l)dV51®7(F0,3+1),
A o Dlcop o(Dlcopold) =

VSO[S®id1] ®aoro(xaid) (F0,2+1 © (F0,2+1 I_I F0,1+1)) = 1)S,®CT4(FO,3-¢—1),
Dlcop o(A ® Dlcop) =

4 vso[idl ®s] ® xo[a®«] (F0,2+1 o (F0,1+1 11 F0,2+1)) _ vs’®t71(F0’3+1))
Dlcop o(Id ® Dlcop) o (Id®A ® Id) =

vso[id1 ®s] @ xo(id; ®«)o(id; ®a®id, ) (F0,2+1 ° (F0,1+1 11 F0’2+1)) _ (—l)de,®TZ(F0,3+1)
Dlcop o(Dlcop ®A) =

yeolseidi]@xolxea] (Fo,2+1 0 (Fo,141 L1 Fo241)) = Vs’®73(Fo,3+1)-

Therefore, using the definition of the product @, straightforward computations show
that

A((a@b)@c) = (1) 0T (F ) (aobec),
Aa)oboc= (1)1 9m(E Y asbec),

(-D!la o A(b) ® ¢ = (-1)HP+y®% (R L Y (ae b ),
(-l ltlg o b o A(e) = ( l)d‘bHdVS,@a(Fo,wl)(a ®b®c),
Aaob)oc=(-1)"H 97 (R Y(aebec),

(-Dllao Ao c) = (1)1 (Fy 1 ) (a @b c),
()Pl & A(g © ¢) = (<1) 9 (B, Vagbac).

The lantern relation gives rise to the equality

l o— 7 o= P P
v O (Fo3a1) + v ® (Fos01) + v © (Fos41) + v % (Fo341)
_.sex s'®y s'®z
= v ®¥(Fo301) +v* ®(Fo341) +v' ®*(Fo311),
since the Hurewicz map is a morphism of groups. Thus,

Alaoboc)+A(a)oboc+(-)Iaoab)oc+(-)I*Htlaebe a(c)
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=Aaob)oc+(-Dllaoa(boc)+ (-1t o A(a e c).

Corollary C.3 Let G be a connected compact Lie group of dimension d. Consider
the graded associative and commutative algebra (H* (LBG), ®) given by Corollary B.3.
Let A be the operator induced by the action of the circle on LBG (see our definition
in Appendix E). Then the shifted cohomology H* (LBG) carries the structure of a BV-
algebra.

Proof By Proposition E.1 and by [6, Proposition 60]), A = v/ ®¥(F, 1,}). [ |

D Seven Prop Structure Equalities on the Homology of Mapping
Class Groups Proving the Batalin-Vilkovisky Identity

Recall that for any simple closed curve y in a cobordism F, we write y for the image
of the Dehn twist T, by the Hurewicz map @

1o (diff* (F, 9)) L m(BAiff* (F, 3)) -2 H, (BAIff* (F, ).

Here 0 is the connecting homomorphism associated wwith the universal principal

fibration.
Let a be a closed curve in the cylinder Fy ;4 parallel to one of the boundary com-
ponents. Let a;,...,a4 and x, y,z be the simple closed curves in Fy 34, described

in [27, Figure 6.89]. In what follows, we denote by o the vertical product in the prop
@ H, (Bdiff" (F,9); K),
F

which acts (up to signs) on H**4m G (LBG;K). The goal of this appendix is to show
the following equalities needed in the proof of the BV-identity given in Appendix C.

Proposition D.1

z=ko[idi®(aok)]o[r®id]], X=xro[idi®(aok)], Y=ro[(aok)®id],
as=0aoko(xk®id), a1 =ko[a®x],

a; = ko (id; ®x) o (id; ®a ® idy ), a3 =xo[k®al.

Let F denote the group diff " (F, @) (or the mapping class group of a surface F with

boundary 9). Recall that xr or simply x denotes the generator of Ho(BF) that is
represented by the connected component of BF.

Proposition D.2  Let F and F' be two cobordisms. In (i) and (ii), suppose that F and
F' aregluable. Leto: Fx E’ — F o F' be the map induced by gluing on diffeomorphisms.
Let idp € F be the identity map of F. For D in 1o(F) and D' in mo(F"),

(i) ®07'(idroD’) = kp o ®37'D’,

(ii) @@ (Doidp) = @37 'Dokp,
(iii) @' (idpu D') = kp ® ®07'D’.
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Proof We consider the diagram
o (F) x 7o (F")

= ¢

1o () o o (Fx ) " (Fo )

=9 =19 :Ta

m(B(F)) m(B(F x F')) —— m(BE o F')

—_—
m(B(iz)) m(B(0))
© m(iz) A
H,(BF") m(BF x BF') \° °

k> (C]

H,(BF) ® H,(BF') — H,(BF x BF') ﬁ Hy(B(F x F")) TS Hy(BFo F’)

Here ¢ is the natural isomorphism, x is the cross product,
& B(F x F') = B(F) x B(F")

is the canonical homotopy equivalence, k; is the isomorphism defined by k,(x) =
kr ® x, and i, denotes various inclusions on the second factor. Note that by the defi-
nition of the prop structure, the bottom line coincides with

o: Hy(BF) ® H;(BF") — H,(BF o F').

The commutativity of the diagram shows (i).
Replacing i, and k; by inclusions on the first factor, we obtain (ii). Replacing o: Fx
F’' > Fo F' by themap F x F’ - F[[ F', (D, D’) = D u D', we obtain (iii). [ |

Proof of Proposition D.1 Let F = (Fo 141 LI Fo,2+1) © (Cg LI Fo,141). We can iden-
tlfy F0)3+1 with F(]’2+1 ] (FQ,1+1 ]_I F0)1+1) oF. Let emb2: F0)1+1 > F0)3+1 be the second
embedding due to this identification. The composite of the curve « and of emb,,

st 5 FO,HI&) Fo,3+1, coincides with the curve z. Taking the same tubular neigh-
borhood around « and z, the Dehn twists of « and z, T, and T, coincide on this
tubular neighborhood. Outside of this tubular neighborhood, T, and T, coincide
with the identity maps of Fy 1, and of Fy 3,1, idf, ,,, and idg, ,,,. Therefore

T. = idg, ,, °(idp,,,, UTa) o idF.
By virtue of Proposition D.2 (i)-(iii),we have
Z:=007'T, = ©7'(idp, ,,, o(idg,,,, UTx) o idr)
= KFyryy © @0 ((id,,,, UTy) 0 idF)
= KEy,uy © @0 (idp,,,, UTy) 0 KF
= KEyyu © (KEyy ® @' Ty) 0 K

= KFy,,, © [1d1 ®a] 0 k.
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The prop structure on the 0-th homology gives k¢ = [id; ®«p,,,,] o [7 ® id;]. Finally,
the prop structure on the homology of mapping class groups gives

z= KFp 24 © [ldl ®a:| ° [ldl ®KF0,2+1:| ° [T ® ldl] = KFy 54 © [ldl ®(ao KFg 21 )] © [T ® ldl]
In a similar fashion, we have the other six equalities. ]

E The Cohomological Batalin-Vilkovisky Operator A

The goal of this appendix is to give our definition of the Batalin—Vilkovisky operator
A in cohomology and to compare it to others’ definitions given in the literature.

Let T: S' x LX — LX be the S'-action map. Then in this paper the Batalin-
Vilkovisky operator A: H*(LX) — H*7'(LX) is defined [28, Proposition 3.3] by
A = [ oT*, where [: H*(S' x LX) — H*7'(LX) denotes the integration along
the fibre of the trivial fibration $' x LX - LX.

By our example in Appendix A (see also up to the sign [28, Proof of Proposition
3.3)), [ fxb = (-1)I(£,[S'])b. Up to some signs, this is the slant with [S'] (cf. [24,
Definition 1]).

Therefore for any § € H* (LX), the image of by A, A(f3), is the unique element
such that (see [42] up to the sign — )

I*(B) =1x B {S"} x A(B),

where {S'} is the fundamental class in cohomology defined by ({S'},[S']) = 1.

So finally, we have proved that with our definition of integration along the fibre,
since we define the BV-operator A using integration along the fibre as [28, Proposi-
tion 3.3], our A is exactly the opposite of the one defined by [42], [24, p. 648]. In
particular, observe that A satisfies A* = 0 and is a derivation on the cup product on
H*(LX) [42, Proposition 4.1].

In Appendix C, we needed another characterisation of our Batalin-Vilkovisky op-
erator A.

Proposition E.1  The BV-operator A := [q, oI'* is the dual (=transposition) of the
composite

Ho(LX) BV B (8 % LX) B o (LX),
Proof For any space X, let ux: H*(X;K) - H.(X;K)" be the map sending « to
the form on H, (X;K), (a, -). Here (-, -} is the Kronecker bracket. By the universal

coefficient theorem for cohomology, yx is an isomorphism. Consider the two squares

H (LX) — %~ H*(§'x LX) INECNN H*Y(LX)

!‘in P‘slxl_xi l.“LX

H,(LX)Y —ay H,(S'x LX)Y TS H,(LX)".
* S x— v
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The left square commutes by naturality of ux. For any & € H*(S'), B € H* (LX), and
ye Ho(LX),

(vxo ) (@x B0 = pux((-) e, [S)8))
= (1)1 e, [$'])(B. )

and
(87 % )" (asrwa(x B () = () e (a B) o ([8'] ) ()
- (_1)Ia|\[31]l+\ﬁll[31]|(a x B, [Sl] x y).

Since (axf, [S']xy) = (=1)/PISN(a, [S1])(B, y), the right square commutes also. M

F Hochschild Cohomology Computations

Proposition F1 Let A be a graded (or ungraded) algebra equipped with an isomor-
phism of A-bimodules ®: A 5 A between A and its dual of any degree |®|. Denote by
tr := @(1) the induced graded trace on A. Let a € Z(A) be an element of the center of
A. Letd: A — A be a derivation of A. Obviously a € C°(A, A) = Hom(K, A) defined
bya(l) =aanddos™ € C1(A, A) = Hom(sA, A) are two Hochschild cocycles. Then
in the BV-algebra HH* (A, A) = HH**1®I(A, A),

(i) A([a]) =0,

(ii) A([d os™']) is equal to [a], the cohomology class of a, if and only if for any
ag € A, (1)l trod(ay) = tr(aay).

(iii) In particular, the unit belongs to the image of A if and only if there exists a
derivation d: A — A of degree 0 commuting with the trace: trod(ag) = tr(ao) for any
element ag in A.

Proof By definition of A, the following diagram commutes up to the sign (~1)!®! for
any p > 0.

CP(A,
er(A,A) PO er(a,AY) M e, (4, A)

Al l

Gpil(A, A) W Gpil(A, Av) T GP_I(A, A)v

Taking p = 0, we obtain (i).
The image of the cocycle d o s~ € C'(A; A) by Ad o C*(A; ®) is the form ©(d) on
C1(A;A) = A ® sA defined by
8(d)(ao[sa]) = (~)“Il(® o d)(ar)(ao) = (-1)FI®ltr(d(ar)ao),
(cf. [34, Proof of Proposition 20]). For any ag € A,
(1)1 (8(d))(a0) = (8(d) o B)(ao[-]) = &(d)(1[sac]) = tr o d(ao).

The image of the cocycle a € C°(A; A) by Ad o C*(A; ®) is the form on A, mapping a,
to (@oa)([-])(a0) = ®(a)(ag) = tr(aay). Therefore, A(d o s™') = a if and only if
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forany ag € A, (-1)I®+*l4l trod(ay) = (-1)!®ltr(aay). Since there is no coboundary
in C°(A, A), this proves (ii). [ |

Example F.2 (a) Let A = Ax_,; be the exterior algebra on a generator of lower
degree —d € 7. If d > 0, then A = H*(S%;K). Denote by 1V and x" the dual basis
of AV. The trace on A is x¥. Let d: A — A be the linear map such that d(1) = 0 and
d(x) = x. Sinced(x Ax) =0anddx Ax+xAdx =2x Ax =2x0 =0, even
over a field of characteristic different from 2, d is a derivation commuting with the
trace. Therefore by Theorem E1,1 € ImA in HH*(A; A). When K = F,, compare
with [34, Proposition 20].

(b) Let V be a graded vector space. Let A := A(V) be the graded exterior algebra
on V. If V is in non-positive degrees, then A is just the cohomology algebra of a
product of spheres. Let x1, ..., xy be a basis of V. The trace of Ais (x;---xx)". Let
d; be the derivation on Ax; considered in the previous example. Then d := d; ®id isa
derivation on Ax; ® A(x2,...,xy) 2 AV. Obviously d commutes with the trace. So
leImA.

(c) Let A =K[x]/x"*, n > 1be the truncated polynomial algebra on a generator
x of even degree different from 0. If x is of upper degree 2, then A = H*(CP"; K). The
trace of Ais (x")". Let d: A — A be the unique derivation of A such that d(x) = x
(the case n = 1 was considered in Example E2 (a)). Then d(x') = ix’. For degree
reason, d is a basis of the derivations of degree 0 of A. Then Ad commutes with the
trace if and only if An = 1in K. Therefore 1 € ImA in HH*(A; A) if and only n is
invertible in K (¢f. [47] modulo 2 and with [48] otherwise).

Theorem F.3  Let V be a graded vector space (non-negatively lower graded or concen-
trated in upper degree > 1) such that in each degree, V is of finite dimension.

(i) Let A = (S(V),0) be the free strictly commutative graded algebra on V, ie.,
A = AV°4 @ K[Ve¥en] is the graded tensor product on the exterior algebra on V°4
(the odd degree elements) and on V" (the even degree elements) [9, p. 46]. Then the
Hochschild cohomology of A, HH* (A, A), is isomorphic as Gerstenhaber algebras to
A®S(s'VY). For ¢, a linear formon V andv e V, {1®s'g,v®1} = (-1)¢lp(v).
The Lie bracket is trivial on (A®1) ® (A®1) and on (18S(s'VY))® (18 S(s7'VV)).

(ii) Suppose that K is a field of characteristic 2. Then we can extend (i) in the fol-
lowing way: let U and W be two graded vector spaces such that U ® W =V, ie,
we no longer assume that U = V°4 and W = V", Let A = AU ® K[W]. Then
HH* (A, A) is isomorphic as Gerstenhaber algebra to AQ K[s'UV]®@ A(s"'WV), and
the Lie bracket is the same as in (i).

(iil) Suppose that V is concentrated in odd degres or that K is a field of character-
istic 2. Let A = AV be the exterior algebra on V. Then the BV-algebra extending the
Gerstenhaber algebra HH* (A, A) & A® K[s' V"] has the trivial BV-operator A on A
and on K[s'VV].

Proof (i) Recall that the Bar resolution B(A, A, A) = AQ TSA®A > Aisaresolution
of Aas A® A°’-modules. When A = (S(V),0), there is another smaller resolution

(A®T(sV) ® A, D) » A. Here I'(sV) is the free divided power graded algebra on
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sV and D is the unique derivation such that D(y*(sv)) = v ® y* 1(sv) ®1-1®
y*1(sv)®v [32]. Since [ (s V') consists of the invariants of T'(s V') under the action of
the permutation groups, there is a canonical inclusion of graded algebras [16, p. 278]
i:T(sV) > T(sV) - T(sA).

This map i maps y*(sv) to [sv|---|sv]. Since both (A®T(sV)®A, D) and B(A, A, A)
are A ® A-free resolutions of A, the inclusion of differential graded algebras

A®i®A: (A®T(sV)®A,D) > B(A, A, A)
is a quasi-isomorphism. So by applying the functor Homuga (-, A),

Hom(i, A): €* (A, A) > (Hom(T(sV), A),0)
is a quasi-isomorphism of complexes. The differential on

HomA®A((A ® F(SV) ® A, D), (A, 0))

is zero since f o D(y*i(sv;)---y* (sv,)) = 0. The inclusion i: T(sV) = T(sA) is a
morphism of graded coalgebras with respect to the diagonal [16, p. 279]

r

Alsay|---|sa,] Z [sai|---|sap] ® [saps|---|sar].

Therefore the quasi-isomorphism of complexes
Hom(i, A): €*(A,A) > (Hom(T'(sV), A),0)

is also a morphism of graded algebras with respect to the cup product on the Hoch-
schild cochain complex €* (A, A) and the convolution product on Hom(T'(sV'), A).
The morphism of commutative graded algebras j: AQT(sV)Y - Hom(I'(sV), A)
mapping a ® ¢ to the linear map j(a ® ¢) from I'(sV) to A defined by j(a ® ¢)(y) =
¢(y)a is an isomorphim. By [16, (A.7)], the canonical map (sV)¥ — T(sV)" ex-
tends to an isomorphism of graded algebras k: S(sV)" 5 I(sV)Y. The composite

S

@: (sV)Y S vV L s(vY), mapping x to ©(x) = (-1)ls(x o s), is a chosen
isomorphism between (sV)¥ and s7}(V"). Note that ®! is the opposite of the com-
posite (s™')¥ o s. Finally, the composite

AeS(s (V) 22O 4o 5((sv)Y) 225 A (I(sV))" —L> Hom(T(sV), A)
is an isomorphism of graded algebras. So we have obtained an explicit isomorphism

of graded algebras I: HH*(A, A) 5 A®S(s(VY)). To compute the bracket, it is
sufficient to compute it on the generators on A ® S(s™'(V")). For m € A, let m ¢
C%(A,A) = Hom((sA)®°, A) defined by m([-]) = m. Obviously, I"'(m ® 1) is the
cohomology class of the cocycle . For any linear form ¢ on V, let ¢ € C'(A, A) =
Hom(sA, A) be the map defined by

n
o([sviva-va]) = Z(_l)"PHSVlemVi—l‘gD(vi)Vl“."}\i,,.vn'
i=1
Since the composite ¢ o s is a derivation of A, ¢ is a cocycle. Since

#([s]) = (-1)p(r)1,
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the composite @ o i is the image of 1 ® s ¢ by the composite
jo(A®k)®(A®S(0)): A®S(s (V")) — Hom(T(sV), A).

Therefore I™'(1® s™'¢) is the cohomology class of the cocycle ¢. By [10, p. 48-49],
we have
(a) the Lie bracket is null on C°(A, A) ® C°(A, A);
(b) the Lie bracket restricted to {-, - }: C'(A, A) ® C°(A, A) - C°(A, A) is given
by {g.a} = g(sa) forany g: sA > Aand a € A;
(c) the Lie bracket restricted to { -, - }: C'(A, A) ® C'(A, A) - C!(A, A) is given by

{f.&}([sa]) = fosogos(a) - ()M goso fos(a).
By (a), the Lie bracket is trivial on (A®1) ® (A®1). By (b),forp e V¥V andv eV,
{1esg,vel1} = (-1)?p(v)1e1

Let ¢ and ¢’ be two linear forms on V. Then

aosoaos([yl...vn]): Z ((_1)|<P||¢’|sij(¢,(P/)+£ij(q)/,¢))vl,,,1’,7....1;1....Vn’

I<j<i<n
where £;;(9, ¢') = (_1)“pl‘SV1'~-W—1|+|‘P’||SV1"'V]'*1‘(P(Vi)gol(vj)' Therefore,
Gosogios— (-7 os0G0s=0.

So by (c), the Lie bracket {1® s '¢p,1® s'¢'} = 0.

(iii) By Proposition E1 (i), A([m]) = 0 and so A is trivialon all m® 1€ A ® 1. Let
X1,...,xn be abasis of V. The trace of A is (x;---xn)". Therefore the trace vanishes
on elements of wordlength strictly less than N. For any ¢ € V", the derivation p o s
decreases wordlength by 1. So trog o s = 0. By Proposition E1 (i), A(1® s'¢) = 0.
Since the Lie bracket is trivial on (1® K[s'VV]) ® (1® K[s™'V"¥]), A is trivial on

1o K[s~'VV].
(ii) The proofis the same as in (i). For example, I'(sV') is the graded tensor product
of the free divided power algebra on sU and of the exterior algebra on sW. ]

Remark F4. Suppose that V is concentrated in degree 0. We have obtained a quasi-
isomorphism of differential graded algebras

C*(S(V),S(V)) = (S(V) ® A(s'VY),0).

In particular, the differential graded algebra C*(S(V),S(V)) is formal.
It is easy to see that if V' is of dimension 1, then the inclusion

(S(V) @ A(s7'VY),0) > €°(S(V),S(V))

is a quasi-isomorphism of differential graded Lie algebras. In particular, the differ-
ential graded Lie algebra C*(S(V'), S(V)) is formal. The Kontsevich formality theo-
rem says that over a field K of characteristic zero, the differential graded Lie algebra
C*(S(V),S(V)) is formal even if V is not of dimension 1 [23, Theorem 2.4.2].
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