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K-STABLE DIVISORS IN P1×P1×P2 OF DEGREE (1,1,2)
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TAKUZO OKADA

Abstract. We prove that every smooth divisor in P1 × P1 × P2 of degree

(1,1,2) is K-stable.
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§1. Introduction

Smooth Fano threefolds have been classified by Iskovskikh, Mori, and Mukai into 105

families, which are labeled as №1.1, №1.2, №1.3, . . ., №10.1. See [3] for the description of

these families. Threefolds in each of these 105 deformation families can be parametrized

by a nonempty rational irreducible variety. It has been proved in [3], [11], [12] that the

deformation families

№2.23,№2.26,№2.28,№2.30,№2.31,№2.33,№2.35,№2.36,№3.14,

№3.16,№3.18,№3.21,№3.22,№3.23,№3.24,№3.26,№3.28,№3.29,

№3.30,№3.31,№4.5,№4.8,№4.9,№4.10,№4.11,№4.12,№5.2

do not have smooth K-polystable members, and general members of the remaining 78

deformation families are K-polystable. In fact, for 54 among these 78 families, we know all

K-polystable smooth members [2]–[6], [9], [14], [16]. The remaining 24 deformation

families are
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№1.9,№1.10,№2.5,№2.9,№2.10,№2.11,№2.12,№2.13,

№2.14,№2.15,№2.16,№2.17,№2.18,№2.19,№2.20,№2.21,

№3.2,№3.3,№3.4,№3.5,№3.6,№3.7,№3.8,№3.11.

The goal of this paper is to show that all smooth Fano threefolds in the family №3.3 are

K-stable. Smooth members of this deformation family are smooth divisors in P1×P1×P2

of degree (1,1,2). To be precise, we prove the following result.

Main Theorem. Let X be a smooth divisor in P1×P1×P2 of degree (1,1,2). Then X

is K-stable.

§2. Smooth Fano threefolds in the deformation family №3.3

Let X be a divisor in P1
s,t×P1

u,v×P2
x,y,z of tridegree (1,1,2), where ([s : t], [u : v], [x : y : z])

are coordinates on P1
s,t×P1

u,v×P2
x,y,z. Then X is given by the following equation:

[
s t

][ a11 a12
a21 a22

][
u

v

]
= 0,

where each aij = aij(x,y,z) is a homogeneous polynomials of degree 2. We can also define

X by

[
x y z

]⎡⎣ b11 b12 b13
b21 b22 b23
b31 b32 b33

⎤⎦⎡⎣ x

y

z

⎤⎦= 0,

where each bij = bij(s, t;u,v) is a bi-homogeneous polynomial of degree (1,1).

Suppose that X is smooth. Then X is a smooth Fano threefold in the deformation family

№3.3. Moreover, every smooth Fano threefold in this deformation family can be obtained

in this way. Observe that −K3
X = 18, and we have the following commutative diagram:

P1
s,t×P1

u,v

�����
���

���
���

���
�

�����
���

���
���

���
�

P1
s,t P1

u,v

X

π3

��

ω

��

π2

����������������������

π1

����������������������

φ1

������
����

����
����

�
φ2

�����
����

����
����

��

P1
s,t×P2

x,y,z

��

�����
���

���
���

���
P1
u,v×P2

x,y,z

��

������
����

����
����

P2
x,y,z

where all maps are induced by natural projections. Note that ω is a (standard) conic bundle

whose discriminant curve ΔP1×P1 ⊂ P1
s,t×P1

u,v is a (possibly singular) curve of degree (3,3)

given by
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det

⎡⎣ b11 b12 b13
b21 b22 b23
b31 b32 b33

⎤⎦= 0.

Similarly, the map π3 is a (nonstandard) conic bundle whose discriminant curve ΔP2 is a

smooth plane quartic curve in P2
x,y,z, which is given by a11a22 = a12a21. Both maps φ1 and

φ2 are birational morphisms that blow up the following smooth genus 3 curves:{
sa11+ ta21 = sa12+ ta22 = 0

}
⊂ P1

s,t×P2
x,y,z,{

ua11+va12 = ua21+va22 = 0
}
⊂ P1

u,v×P2
x,y,z.

Finally, both morphisms π1 and π2 are fibrations into quintic del Pezzo surfaces.

Let H1 = π∗
1(OP1(1)), let H2 = π∗

2(OP1(1)), let H3 = π∗
3(OP2(1)), and let E1 and E2 be

the exceptional divisors of the morphisms φ1 and φ2, respectively. Then

−KX ∼H1+H2+H3,

E1 ∼H1+2H3−H2,

E2 ∼H2+2H3−H1.

This gives E1+E2 ∼ 4H3, which also follows from E1+E2 = π∗
3(ΔP2). We have

−KX ∼Q

3

2
H1+

1

2
H2+

1

2
E2 ∼Q

1

2
H1+

3

2
H2+

1

2
E1.

In particular, we see that α(X) � 2
3 . Note that E1

∼= E2
∼=ΔP2 ×P1.

The Mori cone NE(X) is simplicial and is generated by the curves contracted by ω, φ1,

and φ2. The cone of effective divisors Eff(X) is generated by the classes of the divisors E1,

E2, H1, and H2.

Lemma 1. Let S be a surface in the pencil |H1|. Then S is a normal quintic del Pezzo

surface that has at most Du Val singularities, the restriction π3|S : S→ P2
x,y,z is a birational

morphism, and the restriction π2|S : S → P1
u,v is a conic bundle. Moreover, one of the

following cases holds:

• The surface S is smooth.

(A1) The surface S has one singular point of type A1.

(2A1) The surface S has two singular points of type A1.

(A2) The surface S has one singular point of type A2.

(A3) The surface S has one singular point of type A3.

Furthermore, in each of these five cases, the del Pezzo surface S is unique up to an

isomorphism.

Proof. This is well known [7], [8].

Remark 2. In the notations and assumptions of Lemma 1, suppose that the surface S

is singular, and let � : S̃→ S be its minimal resolution of singularities. Then the dual graph

of the (−1)-curves and (−2)-curves on the surface S̃ can be described as follows:
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(A1) if S has one singular point of type A1, then the dual graph is

◦
����

����
����

����
����

����

• • •
• • •

•

������������

������������

(2A1) if S has two singular points of type A1, then the dual graph is

◦ • ◦
• • • •

(A2) if S has one singular point of type A2, then the dual graph is

•
• • ◦ ◦

��������

����
����

•

(A3) if S has one singular point of type A3, then the dual graph is

◦ ◦ ◦ •
•

Here, as in the papers [7], [8], we denote a (−1)-curve by •, and we denote a (−2)-curve

by ◦.

Lemma 3. Let S1 be a surface in |H1|, let S2 be a surface in |H2|, and let P be a point

in S1∩S2. Then at least one of the surfaces S1 or S2 is smooth at P.

Proof. Local computations.

Corollary 4. In the notations and assumptions of Lemma 3, suppose that the conic

S1 ·S2 is reduced. Then at least one of the surfaces S1 or S2 is smooth along S1∩S2.

Lemma 5. Let P be a point in X, let C be the scheme fiber of the conic bundle ω that

contains P, and let Z be the scheme fiber of the conic bundle π3 that contains P. Then C

or Z is smooth at P.

Proof. Local computations.

Lemma 6. Let C be a fiber of the morphism π3, and let S be a general surface in |H3|
that contains C. Then S is smooth, K2

S = 4, and −KS ∼ (H1+H2)|S, which implies that

−KS is nef and big. Moreover, one of the following three cases holds:

(1) The conic C is smooth, −KS is ample, and the restriction ω|S : S → P1
s,t×P1

u,v is a

double cover branched over a smooth curve of degree (2,2).

(2) The conic C is smooth, the divisor −KS is not ample, the conic ω(C) is an

irreducible component of the discriminant curve ΔP1×P1, the conic C is contained

in Sing(ω−1(ΔP1×P1)), and the restriction map ω|S : S → P1
s,t×P1

u,v fits the following

commutative diagram:
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S

α

����
��
��
�� ω|S

			
		

		
		

		
	

S
β



 P1
s,t×P1

u,v

where α is a birational morphism that contracts two disjoint (−2)-curves, and β is a

double cover branched over a singular curve of degree (2,2), which is a union of the

curve ω(C) and another smooth curve of degree (1,1), which intersect transversally at

two distinct points.

(3) The conic C is singular, −KS is ample, and the restriction ω|S : S → P1
s,t×P1

u,v is a

double cover branched over a smooth curve of degree (2,2).

Proof. The smoothness of the surface S easily follows from local computations. If −KS

is ample, the remaining assertions are obvious. So, to complete the proof, we assume that

−KS is not ample. Then the restriction ω|S : S → P1
s,t×P1

u,v fits the commutative diagram

S

α

����
��
��
�� ω|S

			
		

		
		

		
	

S
β



 P1
s,t×P1

u,v

where α is a birational morphism that contracts all (−2)-curves in S, and β is a double

cover branched over a singular curve of degree (2,2). Let 	 be a (−2)-curve in S. Then

(H1+H2) · 	=−KS · 	= 0,

so that ω(	) is a point in P1
s,t×P1

u,v. But π3(	) is a line in P2
x,y,z that contains the point

π3(C). This shows that the curve 	 is an irreducible component of a singular fiber of the

conic bundle ω. Therefore, we see that ω(	) ∈ΔP1×P1 . This implies that the conic bundle

ω maps an irreducible component of the conic C to an irreducible component of the curve

ΔP1×P1 because S is a general surface in the linear system |H3| that contains the curve C.

If C is singular, an irreducible component of the curve ΔP1×P1 is a curve of degree (1,0)

or (0,1), which is impossible [15, §3.8]. Therefore, we see that the conic C is smooth and

irreducible, and the curve ω(C)∼= C is an irreducible component of the discriminant curve

ΔP1×P1 . Since the conic bundle ω is standard [15], the surface ω−1(ω(C)) is irreducible and

nonnormal, which easily implies that the conic C is contained in its singular locus.

Choosing appropriate coordinates on P1
s,t×P1

u,v ×P2
x,y,z, we may assume that π3(C) =

[0 : 0 : 1], the conic C is given by x = y = sv− tu = 0, ([0 : 1], [0 : 1]) is a smooth point of

the curve ΔP1×P1 , and the fiber ω−1([0 : 1], [0 : 1]) is given by s = u = xy = 0. Then X is

given by

(a1su+ b1sv+ c1tu)x
2+(a2su+ b2sv+ c2tu+ tv)xy+

+ b4(sv− tu)xz+(a3su+ b3sv+ c3tu)y
2+ b5(sv− tu)yz+(sv− tu)z2 = 0

for some numbers a1, a2, a3, b1, b2, b3, b4, b5, c1, c2, c3. One can check that ΔP1×P1 indeed

splits as a union of the curve ω(C) and the curve in P1
s,t ×P1

u,v of degree (2,2) that is

given by
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a1b
2
5stu

2−a1b
2
5s

2uv+a2b4b5s
2uv−a2b4b5stu

2−a3b
2
4s

2uv+a3b
2
4stu

2− b1b
2
5s

2v2+

+ b1b
2
5stuv+ b2b4b5s

2v2− b2b4b5stuv− b3b
2
4s

2v2+ b3b
2
4stuv− b24c3stuv+ b24c3t

2u2+

+ b4b5c2stuv− b4b5c2t
2u2− b25c1stuv+ b25c1t

2u2+4a1a3s
2u2+4a1b3s

2uv+4a1c3stu
2−

−a22s
2u2−2a2b2s

2uv−2a2c2stu
2+4a3b1s

2uv+4a3c1stu
2+4b1b3s

2v2+4b1c3stuv−
− b22s

2v2−2b2c2stuv+4b3c1stuv+ b4b5stv
2− b4b5t

2uv+4c1c3t
2u2− c22t

2u2−2a2stuv−
−2b2stv

2−2c2t
2uv− t2v2 = 0.

The surface S is cut out on X by the equation y = λx, where λ is a general complex

number. Then the double cover β : S → P1
s,t ×P1

u,v is branched over a singular curve of

degree (2,2), which splits as a union of the curve ω(C) and the curve in P1
s,t×P1

u,v of degree

(1,1) that is given by

λ2b25tu−λ2b25sv+4λ2a3su+4λ2b3sv−2b4λb5sv+2λb4b5tu+

+4λ2c3tu+4λa2su+4λb2sv− b24sv+ b24tu+4λc2tu+4a1su+4b1sv+4c1tu+4λtv = 0.

Since λ is general and X is smooth, these two curves intersect transversally by two points,

which implies the remaining assertions of the lemma.

Note that the case (2) in Lemma 6 indeed can happen. For instance, if X is given by

(sv+ tu)x2+(su−sv+ tv)xy+(5sv−5tu)zx+3suy2+(sv− tu)zy+(sv− tu)z2 = 0,

then X is smooth, and general surface in |H3| that contains the curve π−1
3 ([0 : 0 : 1]) is a

smooth weak del Pezzo surface, which is not a quartic del Pezzo surface.

Lemma 7. Let C be a smooth fiber of the morphism ω, and let S be a general surface in

|H1+H2| that contains the curve C. Then S is a smooth del Pezzo surface of degree 2, and

−KS ∼H3|S.

Proof. Left to the reader.

§3. Applications of Abban–Zhuang theory

Let us use notations and assumptions of §2. Let f : X̃ →X be a birational map such that

X̃ is a normal threefold, and let F be a prime divisor in X̃. Then, to prove that X is K-stable,

it is enough to show that β(F) = AX(F)−SX(F) > 0, where AX(F) = 1+ordF(K ˜X/KX)

and

SX(F) =
1

−K3
X

∫ ∞

0

vol
(
f∗(−KX)−uF

)
du.

This follows from the valuative criterion for K-stability [11], [13].

Let C be the center of the divisor F on the threefold X. By [10, Th. 10.1], we have

SX(S) =
1

−K3
X

∫ ∞

0

vol
(
−KX −uS

)
du < 1

for every surface S ⊂X. Hence, if C is a surface, then β(F) > 0. Thus, to show that X is

K-stable, we may assume that C is either a curve or a point. If C is a curve, then [3, Cor.

1.7.26] gives the following corollary.
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Corollary 8. Suppose that β(F) � 0 and that C is a curve. Let S be an irreducible

normal surface in the threefold X that contains C. Set

S
(
WS

•,•;C
)
=

3

(−KX)3

∫ τ

0

(
P (u)2 ·S

)
·ordC

(
N(u)

∣∣
S

)
du+

+
3

(−KX)3

∫ τ

0

∫ ∞

0

vol
(
P (u)

∣∣
S
−vC

)
dvdu,

where τ is the largest rational number u such that −KX −uS is pseudoeffective, P (u) is

the positive part of the Zariski decomposition of −KX −uS, and N(u) is its negative part.

Then S(WS
•,•;C)> 1.

Let P be a point in C. Then

AX(F)

SX(F)
� δP (X) = inf

E/X
P∈CX(E)

AX(E)

SX(E)
,

where the infimum is taken over all prime divisors E over X whose centers on X that

contain P. Therefore, to prove that the Fano threefold X is K-stable, it is enough to show

that δP (X) > 1. On the other hand, we can estimate δP (X) by using [1, Th. 3.3] and [3,

Cor. 1.7.30]. Namely, let S be an irreducible surface in X with Du Val singularities such

that P ∈ S. Set

τ = sup
{
u ∈Q�0

∣∣ the divisor −KX −uS is pseudoeffective
}
.

For u ∈ [0, τ ], let P (u) be the positive part of the Zariski decomposition of the divisor

−KX −uS, and let N(u) be its negative part. Then [1, Th. 3.3] and [3, Cor. 1.7.30] give

δP (X) � min

{
1

SX(S)
, δP

(
S;WS

•,•
)}

(3.1)

for

δP
(
S;WS

•,•
)
= inf

F/S,
P⊆CS(F )

AS(F )

S(WS
•,•;F )

,

where

S
(
WS

•,•;F
)
=

3

−K3
X

∫ τ

0

(
P (u)2 ·S

)
·ordF

(
N(u)

∣∣
S

)
du+

3

−K3
X

∫ τ

0

∫ ∞

0

vol
(
P (u)

∣∣
S
−vF

)
dvdu,

and now the infimum is taken over all prime divisors F over S whose centers on S that

contain P. Let us show how to apply (3.1) in some cases. Recall that SX(S) < 1 by [10,

Th. 10.1].

Lemma 9. Let C be the fiber of the conic bundle π3 that contains P, and let S be a

general surface in |H3| that contains C. Suppose that S is a smooth del Pezzo of degree 4

and that C is smooth. Then δP (X)> 1.

Proof. One has τ = 1. Moreover, for u ∈ [0,1], we have N(u) = 0 and P (u)|S =−KS +

(1− u)C. Let L = −KS + (1− u)C. Using Lemma 24 and arguing as in the proof of

Lemma 27, we get
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S
(
WS

•,•;F
)
=

1

6

∫ 1

0

4(1+(1−u))SL(F )du �

� AS(F )

∫ 1

0

4

6
(1+(1−u))

19+8(1−u)+(1−u)2

24
du=

143

144
AS(F )

for any prime divisor F over S such that P ∈ CS(F ). Then (3.1) gives δP (X)> 1.

Similarly, we obtain the following result.

Lemma 10. Let S be the surface in |H1| that contains P. Then

δP (X) � min

{
1

SX(S)
,

2,592δP (S)

2,560+63δP (S)

}
for δP (S) = δP (S,−KS), where δP (S,−KS) is defined in Appendix 1.

Proof. We have τ = 3
2 . Moreover, we have

P (u) =

⎧⎨⎩(1−u)H1+H2+H3, if 0 � u � 1,

(2−u)H2+(3−2u)H3, if 1 � u � 3

2
,

and

N(u) =

⎧⎨⎩0, if 0 � u � 1,

(u−1)E2, if 1 � u � 3

2
.

Note also that E2|S is a smooth genus 3 curve contained in the smooth locus of the surface S.

Recall that S is a quintic del Pezzo surface with at most Du Val singularities and that the

restriction morphism π2|S : S → P1
u,v is a conic bundle. Note that the morphism π3|S : S →

P2
x,y,z is birational. Let C be a fiber of the conic bundle π2|S , and let L be the preimage in

S of a general line in P2
x,y,z. Then −KS ∼ C+L and

P (u)
∣∣
S
∼R

⎧⎨⎩C+L, if 0 � u � 1,

(2−u)C+(3−2u)L, if 1 � u � 3

2
.

Since 2L−C is pseudoeffective, the divisor 7−4u
3 (−KS)− (2− u)C − (3− 2u)L is also

pseudoeffective.

Let F be a divisor over S such that P ∈ CS(F ). Then it follows from Lemma 27 that

S
(
WS

•,•;F
)

� 1

6
AS(F )

∫ 3
2

1

(u−1)
(
P (u)

∣∣
S

)2
du+

1

6

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
S
−vF

)
dvdu=

=
7

288
AS(F )+

1

6

∫ 1

0

∫ ∞

0

vol
(
−KS −vF

)
dvdu+

+
1

6

∫ 3
2

1

∫ ∞

0

vol
(
(2−u)C+(3−2u)L−vF

)
dvdu �

� 7

288
AS(F )+

1

6

∫ 1

0

5
AS(F )

δP (S)
du+

1

6

∫ 3
2

1

∫ ∞

0

vol

(
7−4u

3

(
−KS

)
−vF

)
dvdu=
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=
7

288
AS(F )+

5

6δP (S)
AS(F )+

1

6

∫ 3
2

1

(
7−4u

3

)3∫ ∞

0

vol
(
−KS −vF

)
dvdu �

� 7

288
AS(F )+

5

6δP (S)
AS(F )+

1

6

∫ 3
2

1

(
7−4u

3

)3

5
AS(F )

δP (S)
du=

=
7

288
AS(F )+

5

6δP (S)
AS(F )+

25

162δP (S)
AS(F ) =

(
80

81δP (S)
+

7

288

)
AS(F ).

Then δP (S;W
S
•,•) � 1

80
81δP (S)+

7
288

= 2,592δP (S)
2,560+63δP (S) and the required assertion follows from

(3.1).

Keeping in mind that SX(S) < 1 by [10, Th. 10.1] and the δ-invariant of the smooth

quintic del Pezzo surface is 15
13 by [3, Lem. 2.11], we obtain the following corollary.

Corollary 11. Let S be the surface in |H1| that contains P. If S is smooth, then

δP (X)> 1.

Similarly, using Lemmas 25 and 26 from Appendix 1, we obtain the following corollary.

Corollary 12. Let S be the surface in |H1| that contains P. Suppose that S has at

most singular points of type A1 and that P is not contained in any line in S that passes

through a singular point. Then δP (X)> 1.

Alternatively, we can estimate δP (X) using [3, Th. 1.7.30]. Namely, let C be an irreducible

smooth curve in S that contains P. Suppose S is smooth at P. Since S �⊂ Supp(N(u)), we

write

N(u)
∣∣
S
= d(u)C+N ′

S(u),

where N ′
S(u) is an effective R-divisor on S such that C �⊂ Supp(N ′

S(u)), and d(u) =

ordC(N(u)|S). Now, for every u ∈ [0, τ ], we define the pseudoeffective threshold t(u) ∈ R�0

as follows:

t(u) = inf
{
v ∈ R�0

∣∣ the divisor P (u)
∣∣
S
−vC is pseudoeffective

}
.

For v ∈ [0, t(u)], we let P (u,v) be the positive part of the Zariski decomposition of

P (u)|S −vC, and we let N(u,v) be its negative part. As in Corollary 8, we let

S
(
WS

•,•;C
)
=

3

(−KX)3

∫ τ

0

(
P (u)2 ·S

)
·ordC

(
N(u)

∣∣
S

)
du+

+
3

(−KX)3

∫ τ

0

∫ ∞

0

vol
(
P (u)

∣∣
S
−vC

)
dvdu.

Note that C �⊂ Supp(N(u,v)) for every u ∈ [0, τ) and that v ∈ (0, t(u)). Thus, we can let

FP

(
WS,C

•,•,•
)
=

6

(−KX)3

∫ τ

0

∫ t(u)

0

(
P (u,v) ·C

)
·ordP

(
N ′

S(u)
∣∣
C
+N(u,v)

∣∣
C

)
dvdu.

Finally, we let

S
(
WS,C

•,•,•;P
)
=

3

(−KX)3

∫ τ

0

∫ t(u)

0

(
P (u,v) ·C

)2
dvdu+FP

(
WS,C

•,•,•
)
.

Then [3, Th. 1.7.30] gives the following corollary.
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Corollary 13. One has

AX(F)

SX(F)
� δP (X) � min

{
1

S(WS,C
•,•,•;P )

,
1

S(WS
•,•;C)

,
1

SX(S)

}
. (�)

Moreover, if both inequalities in (�) are equalities and C= P , then δP (X) = 1
SX(S) .

Let us show how to compute S(WS
•,•;C) and S(WS,C

•,•,•;P ) in some cases.

Lemma 14. Suppose that ω(P ) �∈ΔP1×P1. Let S be a general surface in |H1+H2| that
contains P, and let C be the fiber of the morphism ω containing P. Then S(WS

•,•;C) = 31
36

and S(WS,C
•,•,•;P ) = 1.

Proof. We have τ = 1. Moreover, for u ∈ [0,1], we have N(u) = 0 and P (u)|S =−KS +

2(1−u)C. On the other hand, it follows from Lemma 7 that S is a smooth del Pezzo surface

of degree 2, and the restriction map π3|S : S → P2
x,y,z is a double cover that is ramified over

a smooth quartic curve. Therefore, applying the Galois involution of this double cover to C,

we obtain another smooth irreducible curve Z ⊂ S such that C+Z ∼−2KS , C
2 = Z2 = 0

and C ·Z = 4, which gives

P (u)|S −vC ∼R

(5
2
−2u−v

)
C+

1

2
Z.

Then P (u)|S − vC is pseudoeffective ⇐⇒ P (u)|S − vC is nef ⇐⇒ v � 5
2 − 2u. Thus, we

have

vol
(
P (u)|S −vC

)
=
(
−KS +2(1−u)C

)2
= 10−8u−4v

and P (u,v) ·C = 2. Now, integrating, we obtain S(WS
•,•;C) = 31

36 and S(WS,C
•,•,•;P ) = 1.

Lemma 15. Suppose that P �∈ E1∪E2. Let S be a general surface in |H3| that contains
P, and let C be the fiber of the morphism π3 containing P. Suppose that S is a smooth del

Pezzo surface. Then S(WS
•,•;C) = 7

9 and S(WS,C
•,•,•;P ) = 1.

Proof. We have τ = 1. Moreover, for u ∈ [0,1], we have N(u) = 0 and P (u)|S =−KS +

(1−u)C. Since S is a smooth del Pezzo surface, the restriction map ω|S : S→ P1
s,t×P1

u,v is a

double cover ramified over a smooth elliptic curve. Therefore, using the Galois involution of

this double cover, we get an irreducible curve Z ⊂ S such that C+Z ∼−KS , C
2 = Z2 = 0,

and C ·Z = 2, which gives

P (u)|S −vC ∼R (2−u−v)C+Z.

Then P (u)|S−vC is pseudoeffective ⇐⇒ P (u)|S−vC is nef ⇐⇒ v � 2−u. Thus, we have

vol
(
P (u)|S −vC

)
=
(
−KS +(1−u)C

)2
= 8−4u−4v

and P (u,v) ·C = 2. Now, integrating, we obtain S(WS
•,•;C) = 7

9 and S(WS,C
•,•,•;P ) = 1.

Lemma 16. Suppose that P �∈E1∪E2. Let S be a general surface in |H3| that contains P,
and let C be the fiber of the morphism π3 containing P. Suppose S is not a smooth del Pezzo

surface. Then S(WS
•,•;C) = 8

9 and S(WS,C
•,•,•;P ) = 7

9 .

Proof. We have τ = 1. Moreover, for u ∈ [0,1], we have N(u) = 0 and P (u)|S =−KS +

(1−u)C. It follows from Lemma 6 that S contains two (−2)-curves e1 and e2 such that
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−KS ∼ 2C+e1+e2. On the surface S, we have C2 = 0, C ·e1 = C ·e2 = 1, e21 = e22 = −2,

and

P (u)|S −vC ∼R (3−u−v)C+e1+e2.

Then P (u)|S −vC is pseudoeffective ⇐⇒ v � 3−u. Moreover, we have

P (u,v) =

⎧⎨⎩(3−u−v)C+e1+e2, if 0 � v � 1−u,

3−u−v

2

(
2C+e1+e2

)
, if 1−u � v � 3−u,

N(u,v) =

⎧⎨⎩0, if 0 � v � 1−u,

u+v−1

2
(e1+e2), if 1−u � v � 3−u,

vol
(
P (u)|S −vC

)
=

{
8−4u−4v, if 0 � v � 1−u,

(u+v−3)2, if 1−u � v � 3−u.

Now, integrating vol(P (u)|S −vC), we obtain S(WS
•,•;C) = 8

9 .

To compute S(WS,C
•,•,•;P ), observe that FP (W

S,C
•,•,•) = 0, because P �∈ e1∪e2, since S is a

general surface in |H3| that contains C. On the other hand, we have

P (u,v) ·C =

{
2, if 0 � v � 1−u,

3−u−v, if 1−u � v � 3−u.

Hence, integrating (P (u,v) ·C)2, we get S(WS,C
•,•,•;P ) = 7

9 as required.

Lemma 17. Suppose P ∈ (E1∪E2)\ (E1∩E2). Let S be a general surface in |H3| that
contains P, and let C be the irreducible component of the fiber of the conic bundle π3

containing P such that P ∈ C. Then S(WS
•,•;C) = 1 and S(WS,C

•,•,•;P ) � 31
36 .

Proof. We have τ = 1. For u ∈ [0,1], we have N(u) = 0 and P (u)|S ∼R −KS +(1−u)

(C+C ′), where C ′ is the irreducible curve in S such that C+C ′ is the fiber of the conic

bundle π3 that passes through the point P. Since P �∈ E1∩E2, we see that P �∈ C ′.

By Lemma 6, the surface S is a smooth del Pezzo surface of degree 4, so we can identify

it with a complete intersection of two quadrics in P4. Then C and C ′ are lines in S, and S

contains four additional lines that intersect C. Denote them by L1, L2, L3, and L4, and let

Z = L1+L2+L3+L4. Then the intersections of the curves C, C ′, and Z on the surface S

are given in the table below.

• C C′ Z

C −1 1 4
C ′ 1 −1 0
Z 4 0 −4

Observe that −KS ∼Q
3
2C + 1

2C
′ + 1

2Z. This gives P (u)|S − vC ∼R (52 − u − v)C +

(32 −u)C ′+ 1
2Z, which implies that P (u)|S −vC is pseudoeffective ⇐⇒ v � 5

2 −u.
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Moreover, we have

P (u,v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(5
2
−u−v

)
C+

(3
2
−u

)
C ′+

1

2
Z, if 0 � v � 1,(5

2
−u−v

)
(C+C ′)+

1

2
Z, if 1 � v � 2−u,(5

2
−u−v

)
(C+C ′+Z), if 2−u � v � 5

2
−u,

N(u,v) =

⎧⎪⎪⎨⎪⎪⎩
0, if 0 � v � 1,

(v−1)C ′, if 1 � v � 2−u,

(v−1)C ′+(v+u−2)Z, if 2−u � v � 5

2
−u,

P (u,v) ·C =

⎧⎪⎪⎨⎪⎪⎩
1+v, if 0 � v � 1,

2, if 1 � v � 2−u,

10−4u−4v, if 2−u � v � 5

2
−u,

vol
(
P (u)|S −vC

)
=

⎧⎪⎪⎨⎪⎪⎩
8−v2−4u−2v, if 0 � v � 1,

9−4u−4v, if 1 � v � 2−u,

(5−2u−2v)2, if 2−u � v � 5

2
−u.

Now, integrating vol(P (u)|S −vC) and (P (u,v) ·C)2, we get S(WS
•,•;C) = 1 and

S
(
WS,C

•,•,•;P
)
=

5

6
+FP

(
WS,C

•,•,•
)
=

5

6
+

1

3

∫ 1

0

∫ 5
2−u

0

(
P (u,v) ·C

)
·ordP

(
N(u,v)

∣∣
C

)
dvdu �

� 5

6
+

1

3

∫ 1

0

∫ 5
2−u

2

(10−4u−4v)(v+u−2)dvdu=
31

36
,

because P �∈ C ′, and the curves Z and C intersect each other transversally.

§4. The proof of Main Theorem

Let us use notations and assumptions of §§2 and 3. Recall that F is a prime divisor over

the threefold X and that C is its center in X. To prove Main Theorem, we must show that

β(F)> 0.

Lemma 18. Suppose that C is a curve. Then β(F)> 0.

Proof. Suppose that β(F) � 0. Then δP (X) � 1 for every point P ∈ C. Let us seek for a

contradiction.

Let S1 be a general surface in the linear system |H1|. Then S1 is smooth. Hence, if

S1∩C �=∅, then δP (X) � 1 for every point P ∈ S1∩C, which contradicts Corollary 11. We

see that S1 ·C = 0. Similarly, we see that S2 ·C = 0 for a general surface S2 ∈ |H2|. So, we
see that ω(C) is a point.

Let C be the scheme fiber of the conic bundle ω over the point ω(C). Then C is an

irreducible component of the curve C. If the fiber C is smooth, then we C= C.
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Suppose that C is smooth. If S is a general surface in the linear system |H1+H2| that
contains C, then S(WS

•,•;C) =
31
36 < 1 by Lemma 14, which contradicts Corollary 8. So, the

curve C is singular.

Note that π3(C) is a line in P2
x,y,z. On the other hand, the discriminant curve ΔP2 is an

irreducible smooth quartic curve in P2
x,y,z. Therefore, in particular, the line π3(C) is not

contained in ΔP2 . Now, let P be a general point in C, let Z be the fiber of the conic bundle

π3 that passes through P, and let S be a general surface in |H3| that contains the curve Z.

Then Z and S are both smooth, and it follows from Lemma 6 that S is a del Pezzo of

degree 4, so that δP (X)> 1 by Lemma 9.

Hence, to complete the proof of Main Theorem, we may assume that C is a point. Set

P = C. Let C be the fiber of the conic bundle ω that contains P.

Lemma 19. Suppose that P �∈ E1∩E2. Then β(F)> 0.

Proof. Apply Lemmas 15–17 and Corollary 13.

Thus, to complete the proof of Main Theorem, we may assume, in addition, that

P ∈ E1 ∩E2. Then the conic C is smooth at P by Lemma 5. In particular, we see that

C is reduced.

Lemma 20. Suppose that C is smooth. Then β(F)> 0.

Proof. Apply Lemma 14 and Corollary 13.

To complete the proof of Main Theorem, we may assume that C is singular. Write

C = 	1+ 	2, where 	1 and 	2 are irreducible components of the conic C . Then P �= 	1∩ 	2,

since P �∈ Sing(C ).

Let S1 and S2 be general surfaces in |H1| and |H2| that pass through the point P,

respectively. Then C = S1 ∩S2, and it follows from Corollary 4 that S1 or S2 is smooth

along the conic C . Without loss of generality, we may assume that S1 is smooth along C .

We let S = S1.

If S is smooth, then δP (X)> 1 by Corollary 11. Thus, we may assume that S is singular.

Recall that S is a quintic del Pezzo surface and that 	1 and 	2 are lines in its anticanonical

embedding. The preimages of the lines 	1 and 	2 on the minimal resolution of the surface

S are (−1)-curves, which do not intersect (−2)-curves. By Lemma 1 and Remark 2, one of

the following cases holds:

(A1) The surface S has one singular point of type A1.

(2A1) The surface S has two singular points of type A1.

In both cases, the restriction morphism π3|S : S → P2
x,y,z is birational. In (A1)-case, this

morphism contracts three disjoint irreducible smooth rational curves e1, e2, and e3 such

that E1|S =2e1+e2+e3, the curves e1, e2, and e3 are sections of the conic bundle π2|S : S→
P1
u,v, the curve e1 passes through the singular point of the surface S, but e2 and e3 are

contained in the smooth locus of the surface S. In (2A1)-case, the morphism π3|S contracts

two disjoint curves e1 and e2 such that E1

∣∣
S
= 2e1+2e2, the curves e1 and e2 are sections

of the conic bundle π2|S , and each curve among e1 and e2 contains one singular point of

the surface S. In both cases, we may assume that 	1∩e1 �=∅.
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Let us identify the surface S with its image in P5 via the anticanonical embedding

S ↪→ P5. Then 	1 and 	2 and the curves contracted by π3|S are lines. In (A1)-case, the

surface S contains two additional lines 	3 and 	4 such that 	3+	4 ∼ 	1+	2, the intersection

	3∩ 	4 is the singular point of the surface S, and the intersection graph of the lines 	1, 	2,

	3, 	4, e1, e2, and e3 is shown here:

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�

e1

	3

	1
e2

e3

	2

	4

In this picture, we denoted by • the singular point of the surface S. Moreover, on the

surface S, the intersections of the lines 	1, 	2, 	3, 	4, e1, e2, and e3 are given in the

table below.

• �1 �2 �3 �4 e1 e2 e3

	1 −1 1 0 0 1 0 0
	2 1 −1 0 0 0 1 1
	3 0 0 − 1

2
1
2

1
2 1 0

	4 0 0 1
2 − 1

2
1
2 0 1

e1 1 0 1
2

1
2 − 1

2 0 0
e2 0 1 1 0 0 −1 0
e3 0 1 0 1 0 0 −1

Likewise, in (2A1)-case, the surface S contains one additional line 	3 such that 2	3 ∼
	1+ 	2, the line 	3 passes through both singular points of the del Pezzo surface S, and the

intersection graph of the lines on the surface S is shown in the following picture:

	3� �

e1 e2

���������������

	1

���������������

	2

As above, the singular points of the surface S are denoted by •. The intersections of the

lines 	1, 	2, 	3, e1, and e2 on the surface S are given in the table below.
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• �1 �2 �3 e1 e2

	1 −1 1 0 1 0
	2 1 −1 0 0 1
	3 0 0 0 1

2
1
2

e1 1 0 1
2 − 1

2 0
e2 0 1 1

2 0 − 1
2

Remark 21. By [7, Lem. 2.9], the lines in S generate the group Cl(S) and the cone of

effective divisors Eff(S), and every extremal ray of the Mori cone NE(S) is generated by

the class of a line.

In (A1)-case, the point P is one of the points e1 ∩ 	1, e2 ∩ 	2, or e3 ∩ 	2, because P ∈
E1∩E2. On the other hand, if P = e2∩ 	2 or P = e3∩ 	2, it follows from Corollary 12 that

δP (X)> 1. In (2A1)-case, either P = e1∩	1 or P = e2∩	2. Therefore, to complete the proof

of Main Theorem, we may assume that P = e1∩ 	1 in both cases.

Now, we will apply Corollary 13 to the surface S with C = e1 at the point P. We have

τ = 3
2 . As in the proof of Corollary 10, we see that

P (u) =

⎧⎨⎩(1−u)H1+H2+H3, if 0 � u � 1,

(2−u)H2+(3−2u)H3, if 1 � u � 3

2
,

and

N(u) =

⎧⎨⎩0, if 0 � u � 1,

(u−1)E2, if 1 � u � 3

2
.

Since H1|S ∼ 0, H2|S ∼ 	1+ 	2, and H3|S ∼ 	1+2e1, we have

P (u)
∣∣
S
−ve1 ∼R

⎧⎨⎩(2−v)e1+2	1+ 	2, if 0 � u � 1,

(6−4u−v)e1+(5−3u)	1+(2−u)	2, if 1 � u � 3

2
.

Thus, since the intersection form of the curves 	1 and 	2 is semi-negative definite, we get

t(u) =

⎧⎨⎩2 if 0 � u � 1,

6−4u if 1 � u � 3

2
.

Similarly, if 0 � u � 1, then

P (u,v) =

{
(2−v)e1+2	1+ 	2, if 0 � v � 1,

(2−v)e1+(3−v)	1+ 	2, if 1 � v � 2,

N(u,v) =

{
0, if 0 � v � 1,

(v−1)	1, if 1 � v � 2,

https://doi.org/10.1017/nmj.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.5


K-STABLE DIVISORS IN P1 ×P1 ×P2 OF DEGREE (1,1,2) 701

P (u,v) ·e1 =

⎧⎪⎨⎪⎩
v+2

2
, if 0 � v � 1,

4−v

2
, if 1 � v � 2,

vol
(
P (u)

∣∣
S
−ve1

)
=

⎧⎪⎨⎪⎩
10−4v−v2

2
, if 0 � v � 1,

(2−v)(6−v)

2
, if 1 � v � 2.

Likewise, if 1 � u � 3
2 , then

P (u,v) =

{
(6−4u−v)e1+(5−3u)	1+(2−u)	2, if 0 � v � 3−2u,

(6−4u−v)e1+(8−5u−v)	1+(2−u)	2, if 3−2u � v � 6−4u,

N(u,v) =

{
0, if 0 � v � 3−2u,

(v+2u−3)	1, if 3−2u � v � 6−4u,

P (u,v) ·e1 =

⎧⎪⎨⎪⎩
4+v−2u

2
, if 0 � v � 3−2u,

10−6u−v

2
, if 3−2u � v � 6−4u,

vol
(
P (u)

∣∣
S
−ve1

)
=

⎧⎪⎨⎪⎩
66+24u2+4uv−v2−80u−8v

2
, if 0 � v � 3−2u,

(6−4u−v)(14−8u−v)

2
, if 3−2u � v � 6−4u.

Integrating, we get S(WS
•,•;e1) =

137
144 and S(WS,e1

•,•,•;P ) = 59
96 + FP (W

S,e1
•,•,•). To compute

FP (W
S,e1
•,•,•), we let Z = E2|S . Then Z is a smooth curve of genus 3 such that π(Z) is a

smooth quartic in P2
x,y,z. Moreover, the curve Z is contained in the smooth locus of the

surface S, and

Z ∼
{
4e1+ 	3+ 	4+2	1 in (A1)-case,

2	1+2	2+2e1+2e2 in (2A1)-case.

In particular, we have Z ·e1 = 1. Since e1 �⊂ Z, we have

N ′
S(u) =

⎧⎨⎩0, if 0 � u � 1,

(u−1)Z, if 1 � u � 3

2
.

Note that P ∈ Z, because P ∈ E1∩E2. Thus, since e1 ·Z = 1 and e1 · 	1 = 1, we have

FP

(
WS,e1

•,•,•
)
=

1

3

∫ 3
2

1

∫ 6−4u

0

(
P (u,v) ·e1

)
(u−1)dvdu+

1

3

∫ 3
2

0

∫ t(u)

0

(
P (u,v) ·e1

)(
N(u,v) ·e1

)
dvdu=

=
1

3

∫ 3
2

1

∫ 3−2u

0

(4+v−2u)(u−1)

2
dvdu+

1

3

∫ 3
2

1

∫ 6−4u

3−2u

(10−6u−v)(u−1)

2
dvdu+

+
1

3

∫ 1

0

∫ 2

1

(4−v)(v−1)

2
dvdu+

1

3

∫ 3
2

1

∫ 6−4u

3−2u

(10−6u−v)(v+2u−3)

2
dvdu=

71

288
,

so that S(WS,e1
•,•,•;P )= 31

36 . Now, applying Corollary 13, we get δP (X)> 1, because SX(S)< 1.

Therefore, we see that β(F)> 0. By [11], [13], this completes the proof of Main Theorem.
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Remark 22. Instead of using Corollary 13, we can finish the proof of Main Theorem

as follows. Let F be a divisor over S such that P ∈CS(F ), and let C be a fiber of the conic

bundle π2|S . Then, arguing as in the proof of Corollary 10, we get

S
(
WS

•,•;F
)

�
(

7

288
+

5

6δP (S)

)
AS(F )+

1

6

∫ 3
2

1

∫ ∞

0

vol
(
(2−u)C+(3−2u)H3

∣∣
S
−vF

)
dvdu.

But δP (S) = 1 by Lemmas 25 and 26, since P = e1∩ 	1. Thus, we have

S
(
WS

•,•;F
)

� 247

288
AS(F )+

1

6

∫ 3
2

1

∫ ∞

0

vol
(
(2−u)C+(3−2u)H3

∣∣
S
−vF

)
dvdu= (♥)

=
247

288
AS(F )+

1

6

∫ 3
2

1

(3−2u)3
∫ ∞

0

vol

(
2−u

3−2u
C+H3

∣∣
S
−vF

)
dvdu=

=
247

288
AS(F )+

1

6

∫ 3
2

1

(3−2u)3
∫ ∞

0

vol

(
−KS +

u−1

3−2u
C −vF

)
dvdu.

Set L = −KS + tC for t ∈ R�0. Then L is ample and L2 = 5+4t. Define δP (S,L) as in

Appendix 1. Then, applying [3, Cor. 1.7.24] to the flag P ∈ e1 ⊂ S, we get

δP (S,L) �

⎧⎪⎪⎨⎪⎪⎩
1, if 0 � t � −3+

√
21

6
,

15+12t

6t2+18t+13
, if

−3+
√
21

6
� t.

The proof of this inequality is very similar to our computations of S(WS
•,•;e1) and

S(WS,e1
•,•,•;P ), so that we omit the details. Now, we let t = u−1

3−2u . Then t � −3+
√
21

6 ⇐⇒
u � 3

2(1−
1√
21
), so

1

6

∫ 3
2

1

(3−2u)3
∫ ∞

0

vol
(
−KS + tC −vF

)
dvdu=

=
1

6

∫ 3
2

1

(3−2u)3(5+4t)SL(F )du � 1

6

∫ 3
2 (1− 1√

21
)

1

(3−2u)3(5+4t)AS(F )du+

+
1

6

∫ 3
2

3
2 (1− 1√

21
)

(3−2u)3(5+4t)
15+12t

6t2+18t+13
AS(F )du=

247

2,016
AS(F ).

Now, using (♥), we get S(WS
•,•;F ) � 247

288AS(F ) + 247
2,016AS(F ) = 247

252AS(F ). Then

δP (S;W
S
•,•) � 252

247 , so that δP (X)> 1 by (3.1), since SX(S)< 1 by [10, Th. 10.1].

Appendix A δ-invariants of del Pezzo surfaces

In this appendix, we present three rather sporadic results about δ-invariants of del Pezzo

surfaces with at most du Val singularities, which are used in the proof of Main Theorem.

Let S be a del Pezzo surface that has at most du Val singularities, let L be an ample

R-divisor on the surface S, and let P be a point in S. Set

δP (S,L) = inf
F/S

P∈CS(F )

AS(F )

SL(F )
,
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where infimum is taken over all prime divisors F over S such that P ∈ CS(F ), and

SL(F ) =
1

L2

∫ ∞

0

vol
(
L−uF

)
du.

Example 23. Suppose that S is a smooth cubic surface in P3 and that L=−KS . Let

T be the hyperplane section of the cubic surface S that is singular at P. Then it follows

from [1, Th. 4.6] that

δP (S,L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

2
, if T is a union of three lines such that all of them contains P,

27

17
, if T is a union of a line and a conic that are tangent at P,

5

3
, if T is an irreducible cuspidal cubic curve,

18

11
, if T is a union of three lines such that only two of them contain P,

9

25−8
√
6
, if T is a union of a line and a conic that intersect transversally at P,

12

7
, if T is an irreducible nodal cubic curve.

It would be nice to find an explicit formula for δP (S,L) in all possible cases. But this

problem seems to be very difficult. So, we will only estimate δP (S,L) in three cases when

K2
S ∈ {4,5}.
Suppose that 4�K2

S � 5. Let us identify S with its image in the anticanonical embedding.

Lemma 24. Suppose that S is smooth and K2
S = 4. Let C be a possibly reducible conic

in S that passes through P, and let L = −KS + tC for t ∈ R�0. If the conic C is smooth,

then

δP (S,L) �
{

24
19+8t+t2 , if 0 � t � 1,
6(1+t)

5+6t+3t2 , if t � 1.
(♣)

Similarly, if C is a reducible conic, then

δL(S,L) � 24(1+ t)

19+30t+12t2
. (♠)

Proof. The proof of this lemma is similar to the proof of [3, Lem. 2.12]. Namely, as in

that proof, we will apply [3, Th. 1.7.1], [3, Cor. 1.7.12], and [3, Cor. 1.7.25] to get (♣) and

(♠). Let us use notations introduced in [3, Sect. 1] applied to S polarized by the ample

divisor L.

First, we suppose that P is not contained in any line in S. In particular, the conic C is

smooth. Let σ : S̃ → S be the blowup of the point P, let E be the exceptional curve of the

blowup σ, and let C̃ be the proper transform on S̃ of the conic C. Then S̃ is a smooth

cubic surface in P3, and there exists a unique line l⊂ S̃ such that −K
˜S ∼ C̃+E+ l. Take

u ∈ R�0. Then

σ∗(L)−uE ∼R (1+ t)C̃+(2+ t−u)E+ l,
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which implies that σ∗(L)−uE is pseudoeffective ⇐⇒ u � 2+ t. Similarly, we see that

P(u)∼R

{
(1+ t)C̃+(2+ t−u)E+ l, if 0 � u � 2,

(3+ t−u)C̃+(2+ t−u)E+ l, if 2 � u � 2+ t,

N (u) =

{
0, if 0 � u � 2,

(u−2)C̃, if 2 � u � 2+ t,

P(u) ·E =

{
u, if 0 � u � 2,

2, if 2 � u � 2+ t,

vol
(
σ∗(L)−uE

)
=

{
4+4t−u2, if 0 � u � 2,

4(2+ t−u), if 2 � u � 2+ t,

where we denote by P(u) the positive part of the Zariski decomposition of the divisor

σ∗(L)−uE, and we denote by N (u) its negative part. This gives

SL(E) =
8+12t+3t2

6(1+ t)
.

Moreover, applying [3, Cor. 1.7.25], we obtain

S(WE
•,•;Q) � 4+6t+3t2

6(1+ t)

for every point Q ∈ E. Note that AS(E) = 2. Thus, it follows from [3, Cor. 1.7.12] that

δP (S,L) � 6(1+ t)

4+6t+3t2
>

24

19+8t+ t2
.

To complete the proof of the lemma, we may assume that S contains a line 	 such that

P ∈ 	. Then 	 ·C = 0 or 	 ·C = 1. If 	 ·C = 0, then 	 must be an irreducible component of

the conic C. Let us apply [3, Th. 1.7.1] and [3, Cor. 1.7.25] to the flag P ∈ 	 to estimate

δP (S,L). Take u ∈ R�0. Let P (u) be the positive part of the Zariski decomposition of the

divisor L−u	, and let N(u) be its negative part. We must compute P (u), N(u), P (u) · 	,
and vol(L−u	).

There exists a birational morphism π : S → P2 that blows up five points O1, . . . ,O5 ∈ P2

such that no three of them are collinear. For every i ∈ {1, . . . ,5}, let ei be the π-exceptional
curve such that π(ei) = Oi. Similarly, let lij be the strict transform of the line in P2 that

contains Oi and Oj , where 1 � i < j � 5. Finally, let B be the strict transform of the conic

on P2 that passes through the points O1, . . . ,O5. Then e1, . . . ,e5, l12, . . . , l45,B are all lines

in S, and each extremal ray of the Mori cone NE(S) is generated by a class of one of these

16 lines.

Suppose that the conic C is irreducible. Then C · 	 = 1. In this case, without loss of

generality, we may assume that 	= e1 and C ∼ l12+e2. If 0 � t � 1, then
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P (u) =

⎧⎪⎪⎨⎪⎪⎩
L−u	, if 0 � u � 1,

L−u	− (u−1)(l12+ l13+ l14+ l15), if 1 � u � 1+ t,

L−u	− (u−1)(l12+ l13+ l14+ l15)− (u− t−1)B, if 1+ t � u � 3+ t

2
,

N(u) =

⎧⎪⎪⎨⎪⎪⎩
0, if 0 � u � 1,

(u−1)(l12+ l13+ l14+ l15), if 1 � u � 1+ t,

(u−1)(l12+ l13+ l14+ l15)+(u− t−1)B, if 1+ t � u � 3+ t

2
,

P (u) · 	=

⎧⎪⎪⎨⎪⎪⎩
1+ t+u, if 0 � u � 1,

5+ t−3u, if 1 � u � 1+ t,

6+2t−4u, if 1+ t � u � 3+ t

2
,

vol
(
L−u	

)
=

⎧⎪⎪⎨⎪⎪⎩
4(1+ t)−2u(1+ t)−u2, if 0 � u � 1,

(2−u)(4+2t−3u), if 1 � u � 1+ t,

(3+ t−2u)2, if 1+ t � u � 3+ t

2
,

and L−u	 is not pseudoeffective for u > 3+t
2 . Similarly, if t � 1, then

P (u) =

{
L−u	, if 0 � u � 1,

L−u	− (u−1)(l12+ l13+ l14+ l15), if 1 � u � 2,

N(u) =

{
0, if 0 � u � 1,

(u−1)(l12+ l13+ l14+ l15), if 1 � u � 2,

P (u) · 	=
{
1+ t+u, if 0 � u � 1,

5+ t−3u, if 1 � u � 2,

vol
(
L−u	

)
=

{
4(1+ t)−2u(1+ t)−u2, if 0 � u � 1,

(2−u)(4+2t−3u), if 1 � u � 2,

and L−u	 is not pseudoeffective for u > 2. Then

SL

(
	
)
=

⎧⎪⎪⎨⎪⎪⎩
17+4t− t2

24
, if 0 � t � 1,

2+3t

3(1+ t)
, if t � 1.

Observe that P �∈ lij for every 1 � i < j � 5. Thus, if t � 1, then [3, Cor. 1.7.25] gives

S(W 	
•,•;P ) =

⎧⎪⎪⎨⎪⎪⎩
19+8t+ t2

24
, if P ∈B,

9+15t+3t2+ t3

12(1+ t)
, if P �∈B.
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Similarly, if t � 1, then [3, Cor. 1.7.25] gives

S
(
W 	

•,•;P
)
=

5+6t+3t2

6(1+ t)
.

Now, using [3, Th. 1.7.1], we get (♣).

To complete the proof of the lemma, we may assume that the conic C is reducible. In

this case, we let 	 be an irreducible component of the conic C that contains P. Without

loss of generality, we may assume that 	= e1 and C = e1+B. Then

P (u) =

⎧⎪⎪⎨⎪⎪⎩
L−u	, if 0 � u � 1,

L−u	− (u−1)B, if 1 � u � 1+ t,

L−u	− (u− t−1)(l12+ l13+ l14+ l15)− (u−1)B, if 1+ t � u � 3+2t

2
,

N(u) =

⎧⎪⎪⎨⎪⎪⎩
0, if 0 � u � 1,

(u−1)B, if 1 � u � 1+ t,

(u− t−1)(l12+ l13+ l14+ l15)+(u−1)B, if 1+ t � u � 3+2t

2
,

P (u) · 	=

⎧⎪⎪⎨⎪⎪⎩
1+u, if 0 � u � 1,

2, if 1 � u � 1+ t,

6+4t−4u, if 1+ t � u � 3+2t

2
,

vol
(
L−u	

)
=

⎧⎪⎪⎨⎪⎪⎩
4(1+ t)−2u−u2, if 0 � u � 1,

5+4t−4u, if 1 � u � 1+ t,

(3+2t−2u)2, if 1+ t � u � 3+2t

2
,

and the divisor L−u	 is not pseudoeffective for u > 3+2t
2 . This gives

SL

(
	
)
=

17+30t+12t2

24(1+ t)
.

Moreover, using [3, Cor. 1.7.25], we compute

S
(
W 	

•,•;P
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

19+30t+12t2

24(1+ t)
, if P ∈B,

19+24t

24(1+ t)
, if P ∈ l12∪ l13∪ l14∪ l15,

3+4t

4(1+ t)
, otherwise.

Now, using [3, Th. 1.7.1], we get (♠) as claimed.

In the remaining part of this appendix, we suppose that K2
S = 5, L = −KS , and S

has isolated ordinary double points, that is, singular points of type A1. As usual, we set

δP (S) = δP (S,−KS) and

δ(S) = inf
P∈S

δP (S).
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Let η : S̃ → S be the minimal resolution of the quintic del Pezzo surface S. Since −K
˜S ∼

η∗(−KS), we can estimate the number δP (S) as follows. Let O be a point in the surface S̃

such that η(O) = P , and let C be a smooth irreducible rational curve in S̃ such that:

• If P ∈ Sing(S), then C is the η-exceptional curve such that η(C) = P .

• If P �∈ Sing(S), then C is appropriately chosen curve that contains O.

As usual, we set

τ = sup
{
u ∈Q�0

∣∣ the divisor −K
˜S −uC is pseudoeffective

}
.

For u ∈ [0, τ ], let P (u) be the positive part of the Zariski decomposition of the divisor

−K
˜S −uC, and let N(u) be its negative part. Let

SS(C) =
1

K2
S

∫ ∞

0

vol
(
−K

˜S −uC
)
du=

1

K2
S

∫ τ

0

P (u)2du,

and let

S
(
WC

•,•,O
)
=

2

K2
S

∫ τ

0

(
P (u) ·C

)
ordO

(
N(u)

∣∣
C

)
du+

1

K2
S

∫ τ

0

(P (u) ·C)2du.

If P �∈ Sing(S), then [3, Th. 1.7.1] and [3, Cor. 1.7.25] give

1

SS(C)
� δP (S) � min

{
1

SS(C)
,

1

S
(
WC

•,•,O
)} . (�)

Similarly, if P ∈ Sing(S), then [3, Cor. 1.7.12] and [3, Cor. 1.7.25] give

1

SS(C)
� δP (S) � min

{
1

SS(C)
, inf
O∈C

1

S
(
WC

•,•,O
)} . (♦)

Lemma 25. Suppose that S has one singular point. Then δ(S) = 15
17 , and the following

assertions hold:

• If P is not contained in any line in S that contains the singular point of S, then δP (S)� 15
13 .

• If P is not the singular point of the surface S, but P is contained in a line in S that passes

through the singular point of the surface S, then δP (S) = 1.

• If P is the singular point of the surface S, then δP (S) =
15
17 .

Proof. We let P0 be the singular point of the surface S, and let 	0 be the π-exceptional

curve. Then it follows from [8] that there exists a birational morphism π : S̃ → P2 such that

π(	0) is a line, the map π blows up three points Q1, Q2, and Q3 contained in π(	0) and

another point Q0 ∈ P2 \π(	0).
For i ∈ {0,1,2,3}, let ei be the π-exceptional curve such that π(ei) = Qi. For every

i ∈ {1,2,3}, let 	i be the strict transform of the line in P2 that passes through Q0 and Qi.

Then 	0, 	1, 	2, 	3, e0, e1, e2, and e3 are the only irreducible curves in the surface S̃ that

have negative self-intersections. Moreover, the intersections of these curves are given in the

following table:
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�0 �1 �2 �3 e0 e1 e2 e3

	0 −2 0 0 0 0 1 1 1
	1 0 −1 0 0 1 1 0 0
	2 0 0 −1 0 1 0 1 0
	3 0 0 0 −1 1 0 0 1
e0 0 1 1 1 −1 0 0 0
e1 1 1 0 0 0 −1 0 0
e2 1 0 1 0 0 0 −1 0
e3 1 0 0 1 0 0 0 −1

Note that η(	1), η(	2), η(	3), η(e0), η(e1), η(e2), and η(e3) are all lines contained in the

surface S. Among them, only the lines η(e1), η(e2), and η(e3) pass through the singular

point P0.

For (a0,a1,a2,a3, b0, b1, b2, b3) ∈ R8, we write

[a0,a1,a2,a3, b0, b1, b2, b3] :=

3∑
i=0

ai	i+

3∑
i=0

biei ∈ Pic(S̃)⊗R.

If P = P0, then C = 	0, which implies that τ = 2 and

P (u) =

{
[−u,1,1,1,2,0,0,0], if 0 � u � 1,

[−u,1,1,1,2,1−u,1−u,1−u], if 1 � u � 2,

N(u) =

{
0, if 0 � u � 1,

(u−1)(e1+e2+e3), if 1 � u � 2,

P (u) ·C =

{
2, if 0 � u � 1,

3−u, if 1 � u � 2,
P (u)2 =

{
5−2u2, if 0 � u � 1,

(4−u)(2−u), if 1 � u � 2,

which implies that SS(C) = 17
15 and S(WC

•,•;O) = 1. Therefore, using (♦), we obtain δP0(S) =
15
17 .

To proceed, we may assume that P �= P0. If O ∈ e0, we let C = e0. Then τ = 2, and

P (u) =

{
[0,1,1,1,2−u,0,0,0], if 0 � u � 1,

[0,2−u,2−u,2−u,2−u,0,0,0], if 1 � u � 2,

N(u) =

{
0, if 0 � u � 1,

(u−1)(	1+ 	2+ 	3), if 1 � u � 2,

P (u) ·C =

{
1+u, if 0 � u � 1,

4−2u, if 1 � u � 2,
P (u)2 =

{
5−2u−u2, if 0 � u � 1,

2(2−u)2, if 1 � u � 2,

which implies that SS(C) = 13
15 and S(WC

•,•;O) � 13
15 , so that δP (S) =

15
13 by (�).
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If O ∈ 	1, we let C = 	1. In this case, we have τ = 2, and

P (u) =

{
[0,1−u,1,1,2,0,0,0], if 0 � u � 1,

[1−u,1−u,1,1,3−u,2−2u,0,0], if 1 � u � 2,

N(u) =

{
0, if 0 � u � 1,

(u−1)(	0+e0+2e1), if 1 � u � 2,

[6pt]P (u) ·C =

{
1+u, if 0 � u � 1,

4−2u, if 1 � u � 2,
P (u)2 =

{
5−2u−u2, if 0 � u � 1,

2(2−u)2, if 1 � u � 2,

so that SS(C) = 13
15 . If O ∈ 	1 \ (e0 ∪ e1), then S(WC

•,•;O) = 11
15 . If O = 	1 ∩ e1, then

S(WC
•,•;O) = 1. Thus, using (�), we see that δP (S) =

15
13 if O ∈ 	1 \ e1, and δP (S) � 1 if

O = 	1∩e1.

Similarly, δP (S)=
15
13 if O∈ 	2\e2 or O∈ 	3\e3, and δP (S)� 1 if O= 	2∩e2 or O= 	3∩e3.

If O ∈ e1, we let C = e1. In this case, we have τ = 2, and

P (u) =

⎧⎪⎨⎪⎩
[
− u

2
,1,1,1,2,−u,0,0

]
, if 0 � u � 1,[

− u

2
,2−u,1,1,2,−u,0,0

]
, if 1 � u � 2,

N(u) =

⎧⎨⎩
u

2
	0, if 0 � u � 1,

u

2
	0+(u−1)	1, if 1 � u � 2,

P (u) ·C =

⎧⎪⎨⎪⎩
2+u

2
, if 0 � u � 1,

4−u

2
, if 1 � u � 2,

P (u)2 =

⎧⎪⎨⎪⎩
5−2u− u2

2
, if 0 � u � 1,

(6−u)(2−u)

2
, if 1 � u � 2,

which implies that SS(C) = 1 and S(WC
•,•;O) � 13

15 if O ∈ e1 \ 	0, so that δP (S) = 1 by (�).
Likewise, we see that δP (S) = 1 in the case when O ∈ e2 or O ∈ e3. Thus, to complete

the proof, we may assume that P is not contained in any line in S.

Now, we let C be the unique curve in the pencil |	1 + e1| that contains P. By our

assumption, the curve C is smooth and irreducible. Then τ = 2, and

P (u) =

⎧⎪⎨⎪⎩
[
− u

2
,1−u,1,1,2,−u,0,0

]
, if 0 � u � 1,[

− u

2
,1−u,1,1,3−u,−u,0,0

]
, if 1 � u � 2,

N(u) =

⎧⎪⎨⎪⎩
u

2
	0, if 0 � u � 1,

1

2
u	0+(u−1)e0, if 1 � u � 2,

P (u) ·C =

⎧⎪⎨⎪⎩
4−u

2
, if 0 � u � 1,

3(2−u)

2
, if 1 � u � 2,

P (u)2 =

⎧⎪⎪⎨⎪⎪⎩
5−4u+

u2

2
, if 0 � u � 1,

3(2−u)2

2
, if 1 � u � 2.

Then SS(C) = 11
15 and S(WC

•,•;O) = 23
30 . Thus, it follows from (�) that δP (S) � 30

23 > 15
13 .
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Finally, let us estimate δP (S) in the case when the del Pezzo surface S has two singular

points. In this case, the surface S contains a line that passes through both its singular

points [8].

Lemma 26. Suppose S has two singular points. Let 	 be the line in S that passes through

both singular points of the surface S. Then δ(S) = 15
19 . Moreover, the following assertions

hold:

• If P is not contained in any line in S that contains a singular point of S, then δP (S)� 15
13 .

• If P is not contained in the line 	, but P is contained in a line in S that passes through a

singular point of the surface S, then δP (S) = 1.

• If P ∈ 	, then δP (S) =
15
19 .

Proof. Let e1 and e2 be η-exceptional curves. Then S̃ contains (−1)-curves 	1, 	2, 	3,

	4, and 	5 such that the intersections of the curves 	1, 	2, 	3, 	4, 	5, e1, and e2 on S̃ are

given in the following table.

�1 �2 �3 �4 �5 e1 e2

	1 −1 0 0 0 0 1 1
	2 0 −1 1 0 0 1 0
	3 0 1 −1 1 0 0 0
	4 0 0 1 −1 1 0 0
	5 0 0 0 1 −1 0 1
e1 1 1 0 0 0 −2 0
e2 1 0 0 0 1 0 −2

The curves η(	1), η(	2), η(	3), η(	4), and η(	5) are the only lines in S. Moreover, we have

	= η(	1), and η(	1), η(	2), an η(	5) are the only lines in S that contain a singular point of

the surface S.

As in the proof of Lemma 25, for (a1,a2,a3,a4,a5, b1, b2) ∈ R7, we write

[a1,a2,a3,a4,a5, b1, b2] :=

5∑
i=1

ai	i+

2∑
i=1

biei ∈ Pic(S̃)⊗R.

If O ∈ 	1 \ (e1∪e2), we let C = 	1. In this case, we have τ = 3, and

P (u) =

⎧⎨⎩
[
1−u,1,1,1,1,

2−u

2
,
2−u

2

]
, if 0 � u � 2,

[1−u,3−u,3−u,0,0,0], if 2 � u � 3,

N(u) =

⎧⎨⎩
u

2
(e1+e2), if 0 � u � 2,

(u−2)(	2+ 	5)+(u−1)(e1+e2), if 2 � u � 3,

P (u) ·C =

{
1, if 0 � u � 2,

3−u, if 2 � u � 3,
P (u)2 =

{
5−2u, if 0 � u � 2,

(3−u)2, if 2 � u � 3,

which implies that SS(C) = 19
15 and S(WC

•,•;O) � 17
15 , so that δP (S) =

15
19 by (�).
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If O ∈ e1, then C = e1. In this case, we have τ = 2, and

P (u) =

{
[1,1,1,1,1,1−u,1], if 0 � u � 1,

[3−2u,2−u,1,1,1,1−u,2−u], if 1 � u � 2,

N(u) =

{
0, if 0 � u � 1,

2(u−1)	1+(u−1)	2+(u−1)e2, if 1 � u � 2,

P (u) ·C =

{
2u, if 0 � u � 1,

3−u, if 1 � u � 2,
P (u)2 =

{
5−2u2, if 0 � u � 1,

(2−u)(4−u), if 1 � u � 2,

which implies that SS(C) = 17
15 and S(WC

•,•;O) � 19
15 , so that δP (S) � 19

15 by (♦).

On the other hand, we already know that SS(	) =
19
15 , which implies that δP (S) =

19
15

if P = η(e1). Similarly, we see that δP (S) =
19
15 if P = η(e2). Hence, we may assume that

O �∈ e1∪e2∪ 	1.

If O ∈ 	2, we let C = 	2. In this case, we have τ = 2, and

P (u) =

⎧⎪⎨⎪⎩
[
1,1−u,1,1,1,

2−u

2
,1
]
, if 0 � u � 1,[

1,1−u,2−u,1,1,
2−u

2
,1
]
, if 1 � u � 2,

N(u) =

⎧⎨⎩
u

2
e1, if 0 � u � 1,

u

2
e1+(u−1)	3, if 1 � u � 2,

P (u) ·C =

⎧⎪⎨⎪⎩
2+u

2
, if 0 � u � 1,

4−u

2
, if 1 � u � 2,

P (u)2 =

⎧⎪⎨⎪⎩
5−2u− u2

2
, if 0 � u � 1,

(6−u)(2−u)

2
, if 1 � u � 2,

which implies that SS(C) = 1 and S(WC
•,•;O) � 13

15 , so that δP (S) = 1 by (�).
Similarly, we see that δP (S) = 1 if O ∈ 	5. Hence, if P is contained in a line in S that

passes through a singular point of the surface S, then δP (S) = 1. Thus, we may assume that

O �∈ 	2∪ 	2.

If P ∈ 	3, we let C = 	3. In this case, we have τ = 2, and

P (u) =

{
[1,1,1−u,1,1,1,1], if 0 � u � 1,

[1,3−2u,1−u,2−u,1,2−u,1], if 1 � u � 2,

N(u) =

{
0, if 0 � u � 1,

(u−1)(	4+2	2+e1), if 1 � u � 2,

P (u) ·C =

{
1+u, if 0 � u � 1,

4−2u, if 1 � u � 2,
P (u)2 =

{
5−2u−u2, if 0 � u � 1,

2(2−u)2, if 1 � u � 2,

which implies that SS(C) = 13
15 and S(WC

•,•;O) � 13
15 , so that δP (S) =

15
13 by (�).

Similarly, we see that δP (S) =
15
13 if O ∈ 	4. Therefore, we may also assume that O �∈ 	3∪	4.
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Let C be the curve in the pencil |	2 + 	3| that contains O. Then C is smooth and

irreducible, since O is not contained in the curves 	1, 	2, 	3, 	4, 	5, e1, and e2 by assumption.

Then τ = 2, and

P (u) =

⎧⎪⎨⎪⎩
[
1,1−u,1−u,1,1,

2−u

2
,1
]
, if 0 � u � 1,[

1,1−u,1−u,2−u,1,
2−u

2
,1
]
, if 1 � u � 2,

N(u) =

⎧⎨⎩
u

2
e1, if 0 � u � 1,

u

2
e1+(u−1)	4, if 1 � u � 2,

P (u) ·C =

⎧⎪⎨⎪⎩
4−u

2
, if 0 � u � 1,

3(2−u)

2
, if 1 � u � 2,

P (u)2 =

⎧⎪⎪⎨⎪⎪⎩
5−4u+

u2

2
, if 0 � u � 1,

3(2−u)2

2
, if 1 � u � 2.

This implies that SS(C) = 11
15 and S(WC

•,•;O) = 23
30 , so that δP (S) � 30

23 > 15
13 by (�).

Appendix B Nemuro lemma

Now, let X be any smooth Fano threefold, let π : X → P1 be a fibration into del Pezzo

surfaces, let S be a fiber of the morphism π such that S is an irreducible reduced normal

del Pezzo surface that has at worst du Val singularities, and let P be a point in S. As in

§3, set

τ = sup
{
u ∈Q�0

∣∣ the divisor −KX −uS is pseudoeffective
}
.

For u ∈ [0, τ ], let P (u) be the positive part of the Zariski decomposition of the divisor

−KX −uS, and let N(u) be its negative part. Suppose, in addition, that

N(u) =
l∑

j=1

fj(u)Ej

for some irreducible reduced surfaces E1, . . . ,El on the Fano threefold X that are different

from S, where each fi : [0, τ ] → R�0 is some function. For every j ∈ {1, . . . , l}, we set

cj = lctP (S;Ej |S). As in Appendix 1, we set δP (S) = δP (S,−KS). Define S(WS
•,•;F ) and

δP (S;W
S
•,•) as in [3, §1], or define these numbers using the formulas used in (3.1).

Lemma 27. Let F be any prime divisor over S such that P ∈ CS(F ). Then

S
(
WS

•,•;F
)

� AS(F )
3

(−KX)3

∫ τ

0

τ∑
j=1

fj(u)

cj

(
P (u)

∣∣
S

)2
du+ (♦)

+
3

(−KX)3

∫ τ

0

∫ ∞

0

vol
(
P (u)

∣∣
S
−vF

)
dvdu �

� AS(F )

(
3

(−KX)3

l∑
j=1

∫ τ

0

fj(u)

cj

(
P (u)

∣∣
S

)2
du+

3

(−KX)3
τ(−KS)

2

δP (S)

)
.
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In particular, we have

δP
(
S;WS

•,•
)

�
(

3

(−KX)3

l∑
j=1

∫ τ

0

fj(u)

cj

(
P (u)

∣∣
S

)2
du+

3

(−KX)3
τ(−KS)

2

δP (S)

)−1

.

Proof. Since the log pair (S,cjEj |S) is log canonical at P, we conclude that ordF (Ej |S)�
AS(F )

cj
. Thus, we get the first inequality in (♦). Moreover, since P (u)|S = −KS −N(u)|S ,

we have∫ τ

0

∫ ∞

0

vol(P (u)|S −vF
)
dvdu �

∫ τ

0

(−KS)
2SS(F )du= τ(−KS)

2SS(F ) � AS(F )
τ(−KS)

2

δP (S)
.

Hence, the assertion follows.

Corollary 28. Suppose that N(u) = 0 for every u ∈ [0, τ ], that is, we have l= 0. Then

δP (S,W
S
•,•) � (−KX)3δP (S)

3τ(−KS)2
.

Corollary 29. Suppose that l=1, E1|S is a smooth curve contained in S\Sing(S), and

f1(u) =

{
0, if u ∈ [0, t],

c(u− t), if u ∈ [t,τ ],

for some t ∈ (0, τ) and some c ∈ R>0. Then

δP
(
S;WS

•,•
)

�
(

3

(−KX)3

∫ τ

t

c(u− t)
(
P (u)

∣∣
S

)2
du+

3

(−KX)3
τ(−KS)

2

δP (S)

)−1

.
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