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ON THE RANGE OF AN INTEGRAL TRANSFORMATION

P. G. ROONEY

ABSTRACT. The range of the 9, transformation, defined by

) = /Om o3y, e f) dr,

is characterized on the spaces £, , defined by the norm

d 1
Vo = ([ W70k )7 <o, 1<p<on,

foru:%—y.

1. Introduction. Denote by Cy the collection of complex-valued functions contin-
uous and compactly supported in (0, 00) and by [X, Y] the collection of bounded linear
transformations from the Banach space X to the Banach space Y, [X, X] being abbrevi-
ated to [X]. Also, if 1 < p < oo, let Y(p) = max(1/p, 1/p’), where p’ = p/(p — 1). The
integral transformation we will study in this article is the 9, transformation defined for
f € Coby
) @N = [Tt ranfwa,

where Y, is the Bessel function of the second kind. We have studied this transforma-
tion earlier on the spaces £, defined to consist of those complex-valued Lebesgue
measurable functions on (0, o) such that ||f]|,, < oo, where

@ o = ([ 1700P 2, 1<p<oo.

In [6] it was shown thatif 1 < p < oo andY(p) < p < 2 — |v|, then %, € [Lyp, Li—pyg]
for all ¢ > p such that ¢’ > 1/p. It was also shown there that, except when p = % -V,
the range of %, on such £, , was the same as the range of the Hankel transformation H,
on L, p, thatis %,(L,,) = H,(L,p), where H, is defined for v > —1 and f € Co by

3) HNH) = [t enf @) dr,

and J, is the Bessel function of the first kind. Since H, (L, ;) was given a fairly simple
characterization in [5, Theorem 2], this characterization also applies to 9,(L,,) except
when p = %—l/. When g = % —v, in which case —% <wv £0,itis known that 9,,(L, ) C
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H,(L,p), but it was shown in [1, Theorem 5.1 and Corollary] that %,(L, ) # H, (L),
and 9,(L, ) has not been characterized except when v = 0, in which case p = 2. In this
article we shall characterize 9,(£, ,) when p = % —v. A similar program was carried out
for the H, or Struve transformation on L, Dy in [4, Section 3] and for the extended
Hankel transformation H,,v < —1 when y = % — v —2lin [3, Section 6].

In Section 2 we prove a preliminary lemma, and in section three we give the charac-
terization of %,(L,,) when p = § —v.

Our notation will be that of [6], and we shall use the operator M, whose definition and
properties are given in [6, Section 1] and the Mellin transformation M whose properties
are also given there. Also, we shall use the operators P_, Q. and Q_ which are defined
in [2, Sections 2 and 3] and whose properties are given there. One further notation that
we use is [~ which is explained in [7, Section 1.7].

2. A preliminary lemma. In [6, Theorem 4.2] it was shown that on £, ,, where
1<p<oo,¥(p) <p<3—|
Y, =—M;

3=V

H-M,_,H,,

where H_ is the odd Hilbert transformation, for whose theory see [6, Section 3]. However,
for our work here we shall need another representation of %, given by the following
lemma.

LEMMA 1. On L, where 1 <p <00, ¥(p) <3 —v < 32—y v#0,

o
@) % =—M;_,P-M,_;HM, ,0:M,_,.

PROOF. From [6, Theorem 4.1], ; € [L%—v,p’ L% +V,p]. From the properties of the

operators My, Oy, H,, and P_ in the references cited in the Introduction, M,_, maps
L%_V,p boundedly onto Lo,, which is mapped boundedly into into itself by O, and
M,,_il maps this boundedly onto Lil —v,p> Hy now maps this boundedly onto L% wp which
is mapped boundedly onto £, by M,_,, and this last space is mapped boundedly
into itself by P_; finally M% maps £;, onto L%w,p boundedly. Thus both sides of
(4) are in [L%_,,’p7 L%w,p], and thus since obviously Cp is dense in £, ,, and since
% =72) <vp) < % — v, it suffices to prove (4) for p = 2. For this we use the Mellin
transformation M, using [6, (1.10),(2.3) and (4.4)] and [2, Theorems 2.2 and 3.1]. Thus,
iff € L, ,,andRes =3 —v,

b4

(MM%_VP_M _%H,,MV_%Q+M%_J)(S)

1
_ (MP_MV_%H,,M,,_%Q+M%—J)(S+ 5~ 1/)

S TIT o HM M !
=iy MMy HM, 0.y s+ 5 —v)
s—1—v
= ——l-—(MH,,MV_%Q+M%_,,f)(S)
S + 7 — Vv -
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1

L B
TSl mu(S)(MMV_1Q+M1_Vf)(1 5)

L_y
= Hf_ my(stle_m( +v—s)

1
_S—3 vV —§+V-—S 7r(§+1/-—) ~
= %_Vm.,(s) [ tan 5 (MM; Vf)( +v s)

m(s+1—v)

= my(s) cot T2(Mf)(l —s5)= _(Myvf)(s)7

where m, (s) is the multiplier associated with the Hankel transformation of order v, that
is
r(iw+s+1
ms) =21 GO+ D).
I(300 =s+%)

and the result follows.

3. Characterization of the range. The following theorem gives the characteriza-

tion of %(Ll —vp)

THEOREM 2. A function g € 9{,([,% ), where 1 < p < 00, Y(p) < % —vr< % — |y
if and only if:

(a) g € HV(L%—I/,]));

(b) 17 ’%g(t) dt converges;

(c) ¢ € H,,(Ll_,,p) where

=Vv,p

o(x) = i fx_mt”_%g(t)dt,x > 0.

PROOF. Without loss of generality, we may suppose v # 0; for the case v = 0 was
dealt with in [1, Theorem 5.2], and the conditons given there are the same as those
of this theorem if one notes that when v = 0, p = 2, that L§| 2 = L2(0,00), and that
Ho(L2(0,00)) = Ly(0, 00).

Suppose then that v # 0 and that g € 9{,([4_,, ) say & = %f where f € L%_W.
Then (a) follows from [6, Theorem 4.1] and (b) follows from [1, Theorem 5.1]. From
Lemma 1, g = —M%_VP_MV_%H,,MV_%Q+M§|_Vf = M%_VP_MV_%H,A/), where ¢ =
-M,_ } o.M %_Vf . Hence, since, as was shown in the proof of Lemma 1, M,_; Q+M%_,, €
[Ll 1,y € L% . But then M%_V(P_)_'M,,_%g = H,. Since g € H,,(Ll_,,p) g €

5 =v,p1 —V,p

L. and thus MV_% 8 € Ly,. Hence, from [2, Theorem 2.4],

3+V,p
X1V <x_] /}jOo t"_%g(t) dt +x"_%g(x))
P(x) + g(x).

My_,(P-)"'M,_18)(x)

Hence ¢ = H,¢ — g, and since g € H,,(L%_W), ¢ € H,,(Ll_y p)
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Conversely, suppose g satisfies (a), (b) and (c). Then 1); exists so that g = H, ;.
But from [2, Theorem 3.1], since on Ly, 0.0 = Q0. = I, Q. maps Ly, one-to-
one onto itself, and hence fi € Ly_, , exists so that ¢y = M, 10.M;_.fi, and thus
g = H,,Mu_%Q+M7|_M]‘1. Similarly f, € L%_ » exists so that ¢ = H,M, _%QJ,M%_sz.
From Lemma 1,

12

%f] = —M%_VP_M IH,,MV_%Q...M%_V](] =—M, ,,P_MV_%g,

V—I 53—

or, using the definition of P_ in [2, Section 2]

) = =t~ (g0 = [ ¢ dgar) = —ge0 +x~ [T ¢ gy dr.

Similarly

@)W = =g+~ [T g

—x_%"’/Nmt"_%g(t)dt+x%_”/mt_zdt[wu”"%g(u)du.
X X

Thus, integrating by parts,
@) = =4 [ g de

+x2 Y (——f‘ /t—m u"“%g(u)du |2 —/th"_%g(t)dt)

= —x%_y /xmty_%g(l)dt = _g(x) - (%fl )(.)C),

and thus,

8(0) = —=(9f)x) = (9)X) = (%f)x)

where f = —f] — f,. Clearly f € L% and thus g € 9,(L,

; —vp’ i“’>l’)’ and the theorem is
proved.
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