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ON THE RANGE OF AN INTEGRAL TRANSFORMATION 

P. G. ROONEY 

ABSTRACT. The range of the % transformation, defined by 

(%/)(*) = £°(xt)hv(xf)f{t) dt, 

is characterized on the spaces L^p defined by the norm 

m», = (jf wmr*)1' <°o, \<P<oo, 
for /i = \ — v. 

1. Introduction. Denote by Co the collection of complex-valued functions contin­
uous and compactly supported in (0, co) and by [X, Y] the collection of bounded linear 
transformations from the Banach space X to the Banach space 7, [X, X] being abbrevi­
ated to [X], Also, if 1 < p < oo, let lip) = max(l//?, 1///), where p' = p/(p - 1). The 
integral transformation we will study in this article is the % transformation defined for 
/ e Co by 

(1) (%/)(*) = j^(xt)hv(xt)f{t)dt, 

where Yv is the Bessel function of the second kind. We have studied this transforma­
tion earlier on the spaces L^p defined to consist of those complex-valued Lebesgue 
measurable functions on (0, oo) such that \\f\\^p < oo, where 

(2) r | U p = ^ K / ( x ) r ^ 1 < P < M . 

In [6] it was shown that if 1 < p < oo and 7(p) < p < \ — H , then % E [LpiP, L\-n,q] 
for all q > p such that q' > \ / p. It was also shown there that, except when p = \ — i/, 
the range of % on such L^p was the same as the range of the Hankel transformation Hu 

on IptP, that is %(L^P) = HU(L^P), where Hv is defined for v > — 1 and/ € Co by 

(3) (Huf)(x) = £°(xt)Uu(xt)f(t)dt, 

and Jv is the Bessel function of the first kind. Since Hv{L^p) was given a fairly simple 
characterization in [5, Theorem 2], this characterization also applies to %(L^P) except 
when p - \ — v. When p - \ — v, in which case — \ < v < 0, it is known that %{L^P) Ç 
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Hv(lpiP\ but it was shown in [1, Theorem 5.1 and Corollary] that %{L^p) ^ HV{L^P), 
and %{L^P) has not been characterized except when v = 0, in which case/7 = 2. In this 
article we shall characterize %(L^P) when /z = | — v. A similar program was carried out 
for the H„ or Struve transformation on L_^u+i, in [4, Section 3] and for the extended 
Hankel transformation HU1 v < —1 when /x = \ — v — 2/ in [3, Section 6]. 

In Section 2 we prove a preliminary lemma, and in section three we give the charac­
terization of %(LPiP) when \x = ^ — v. 

Our notation will be that of [6], and we shall use the operator Ma whose definition and 
properties are given in [6, Section 1] and the Mellin transformation M whose properties 
are also given there. Also, we shall use the operators P_, Q+ and Q- which are defined 
in [2, Sections 2 and 3] and whose properties are given there. One further notation that 
we use is S~*°° which is explained in [7, Section 1.7]. 

2. A preliminary lemma. In [6, Theorem 4.2] it was shown that on L^p, where 

1 < / ? < o o , 7 ( / ? ) < M < f - M * 

where H- is the odd Hilbert transformation, for whose theory see [6, Section 3]. However, 
for our work here we shall need another representation of %, given by the following 
lemma. 

LEMMA 1. On L\ , where 1 < p < oo, lip) < \ - v < \ - \v\y v ^ 0, 

(4) % = - M i ^ P - M ^ i / f ^ i M i - , . 
2 2 2 2 u 

PROOF. From [6, Theorem 4.1], % G [Li , Lx-+v)P\- F r o m t h e properties of the 
operators Ma^Q+^Hu, and P- in the references cited in the Introduction, M\_v maps 
-Li-vp boundedly onto £oiP, which is mapped boundedly into into itself by Q+, and 
Mv_\ maps this boundedly onto L\_v ; Hv now maps this boundedly onto Li+V which 
is mapped boundedly onto L\iP by Mu_i, and this last space is mapped boundedly 
into itself by P_; finally M\_v maps L\iP onto Li+l/ boundedly. Thus both sides of 
(4) are in [£i_ , £±+ ], and thus since obviously Co is dense in L^p, and since 
\ - 7(2) < 7(p) < \ — v, it suffices to prove (4) for p = 2. For this we use the Mellin 
transformation fW, using [6, (1.10),(2.3) and (4.4)] and [2, Theorems 2.2 and 3.1]. Thus, 
iff E L\ 2

 anc* Re 5- = ^ — z/, 

{^M{_vP-Mv_{HuMv_{Q+M{_J\s) 

= {<UP-Mv_{HvMv_^M{_J)[s + \-v) 

S+ 2 

5 ^{MMv_{HvMv_,Q+Mi_J)[s +\-v) 

s + \ - v 
(MHvMv-iQ+MiJ)^) 
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= S~\~VtnAsXMQ+M^O- + v - s) 
s+ \ —v 2 V2 / 

— \+v — s 7r(4+i/ — s) / i \ 
mv(s)-2 t a n - ^ — - ( ^ M , _ / ) - +u-s) 

s+j—u ^+u — s 2 2 V2 / 

= mv(s) cot 7 r ( ^ + j ~ ' / ) ( ^ / ) ( l - s) = - ( J l W X s ) , 

where m,,(i) is the multiplier associated with the Hankel transformation of order v, that 

T^O-<> + §)) 

and the result follows. 

3. Characterization of the range. The following theorem gives the characteriza­
tion of %{Lx__up). 

THEOREM 2. A function g G %(Li_^p), where 1 < p < oo, l(p) <\ — v<\ — \v\ 
if and only if: 

(a) g G Hu(U_up); 

(b) JT°° ^~ ^ #(0 d* converges; 
(c) (j> G Hv{Lx__vp\ where 

(j){x) = x~ï-u r°° f~ïg(t)dt,x > 0. 

PROOF. Without loss of generality, we may suppose v ^ 0; for the case v = 0 was 
dealt with in [1, Theorem 5.2], and the conditons given there are the same as those 
of this theorem if one notes that when v = 0, p = 2, that L\ 2 = L2(0, oo), and that 

//o(L2(0,co))=L2(0,oo). 
Suppose then that v ^ 0 and that g G %(Li_^p), say g = %f where/ G £i-UiP-

Then (a) follows from [6, Theorem 4.1] and (b) follows from [1, Theorem 5.1]. From 
Lemma 1, g = -Mi_1/P-.Mv_\HvMv_iQ^M1__J = M,_I/P_MI/_I//I/t/;, where V = 
—Mv_ i Q+Mi _J. Hence, since, as was shown in the proof of Lemma 1, Mv_ \ Q+M\ _v G 
[ £ i _ J ] , V £ L\-v4r

 B u t t h e n Mx__v{P-TxMv_,g = Hv^. Since g G HV{L±_VJ)\ g G 
£i+1/„

 a nd thus Mv_\g G £o,p. Hence, from [2, Theorem 2.4], 

= </>(*) + g(*). 

Hence 0 = / /„^ - g, and since g G Hv(L^p\ (j) G Hu(L^_^p). 
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Conversely, suppose g satisfies (a), (b) and (c). Then i/>i exists so that g = Hu^\. 
But from [2, Theorem 3.1], since on £oiP, Q+Q- = Q-Q+ = /, Q+ maps £QIP one-to-
one onto itself, and hence/ 6 L\_vn exists so that é\ = M„_iQ+Mi f\, and thus 

2 '* 2 2 

g = HvMv_x_Q^M^_Jx, Similarly f2 E U_vp exists so that <j> = HvMv_x_Q+Mx__J2. 
From Lemma 1, 

%fx = -M^P-M^HM^. Q+Mh_Jx = -M^P.M^g, 

or, using the definition of P_ in [2, Section 2] 

(%/OW = -xl-'fc-lgix) - £° f-ïg(t)dt) = -g{x)+x^ £° f-\g{t)dL 

Similarly 

(%/2)W = -<Kx) + xl-v £°f-i<Kt)dt 

= -x~X"v j T 0 0 f-lg(t)dt + xl-v j T t-2dt£**\v~ig{u)du. 

Thus, integrating by parts, 

(%/2)W = -*"*-" J^°° f~hit)dt 

+ x W - r 1 J^°° uu-l2g(u)du If -J^°f-2g(t)d?j 

= ~xl"u £° f-lg{t)dt = ~g(x) - (%/)(*), 

and thus, 
8(x) = - ( % / ) « - (%fi)(x) = (%/)(*) 

where/ = —/ —f2. Clearly/ € L\_v^, a nd thus g £ %(A_I/)/7), and the theorem is 
proved. 
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