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This is the first of a two-part paper. We formulate a data-driven method for
constructing finite-volume discretizations of an arbitrary dynamical system’s underlying
Liouville/Fokker–Planck equation. A method is employed that allows for flexibility
in partitioning state space, generalizes to function spaces, applies to arbitrarily long
sequences of time-series data, is robust to noise and quantifies uncertainty with respect
to finite sample effects. After applying the method, one is left with Markov states (cell
centres) and a random matrix approximation to the generator. When used in tandem, they
emulate the statistics of the underlying system. We illustrate the method on the Lorenz
equations (a three-dimensional ordinary differential equation) saving a fluid dynamical
application for Part 2 (Souza, J. Fluid Mech., vol. 997, 2024, A2).
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1. Introduction

Often, the goal of modelling a complex system is not to determine the dynamical equations
but to construct models that converge in distribution to relevant statistics. In the context of
turbulence modelling, this can be viewed as one of the goals of a large-eddy simulation,
where subsets of statistics (often the kinetic energy spectra) are compared with that of
direct numerical simulation. Similarly, in Earth systems modelling, the unpredictability of
weather patterns over long time scales necessitates the development of nonlinear models
that are queried for relevant statistics. Thus, the models are not meant to converge to
dynamical trajectories but rather converge in distribution to target observables.

The present work is motivated by the need to construct simplified statistical models
of complex physical phenomena such as turbulence. We take on a dynamical systems
view of turbulence original to Hopf (1948), complemented by Lorenz (1963) and found
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in its modern form in Cvitanović et al. (2016). Thus, the approach is to develop a direct
discretization of the statistics associated with chaotic or turbulent dynamics, which we
assume to be mixing and associated with a fractal in state space.

There exist many types of discretizations that directly target the statistics, which here
means a discretization of the underlying Liouville equation (deterministic dynamics),
Fokker–Planck equation (stochastic dynamics), Perron–Frobenius/transfer operator
(discrete-time dynamics) or Koopman operator (adjoint of the Perron–Frobenius/transfer
operator). Discretizations methods include that of Ulam (1964), Dellnitz, Froyland &
Junge (2001), Dellnitz et al. (2005) or, for the stochastic Lorenz equations, Allawala
& Marston (2016). Furthermore, there exist efficient extensions of Ulam’s method for
multidimensional systems such as the box-refinement methods of Dellnitz & Junge
(1999), Dellnitz et al. (2001) or the sparse Haar tensor basis of Junge & Koltai (2009).
Modern methods take on an operator theoretic plus data-driven approach, leading to
Koopman operators that are measure preserving Colbrook (2023), which build off of
earlier work such as Schmid (2010) and Rowley et al. (2009). Data-driven construction
of the Perron–Frobenius operator is reviewed by Klus et al. (2016), Giannakis (2019) and
Fernex, Noack & Semaan (2021). Convergence guarantees under various assumptions are
found in, for example, Froyland (1997), Das, Giannakis & Slawinska (2021), Colbrook &
Townsend (2023) and Schütte, Klus & Hartmann (2022). Furthermore, modern methods
are beginning to use deep learning in order to learn optimal nonlinear dictionaries for
observables, see Constante-Amores, Linot & Graham (2023) and Bittracher et al. (2023).

The method presented here can be viewed as a subset of the general method for
constructing Koopman operators using the extended dynamic mode decomposition
method (Williams, Kevrekidis & Rowley 2015); however, we make a particular choice
of a nonlinear dictionary that allows for computational expedience (we do not need
to explicitly calculate pseudoinverses), geometric interpretability (which allows for a
natural method to increase the size of the nonlinear dictionary) and the quantification of
uncertainty due to finite sampling effects. The first two changes allow for much larger-scale
computations than what has been previously achieved. Furthermore, we take an approach
that closely mirrors a combination of Froyland et al. (2013) and Fernex et al. (2021).
When addressing statistics of a partial differential equation, we take a field-theoretic
perspective such as that of Hopf (1952). The goal is to construct a discretization of the
generator (continuity/Fokker–Planck operator), similar to Rosenfeld et al. (2021). The
method of constructing the generator herein is motivated by finite-volume discretizations
of advection–diffusion equations and yields an approximation that can be interpreted as a
continuous-time Markov process with finite state space.

The rest of the paper is organized as follows. In § 2, we discuss the underlying theory
and approximations. The approach is heavily inspired by Hopf (1952) and Cvitanović et al.
(2016). The primary idea is to discretize the equations for the statistics (an ‘Eulerian’
quantity) by using the equation for the dynamics (a ‘Lagrangian’ quantity). Further
approximations are then made to calculate observables of interest.

In § 3, we introduce a data-driven method with quantified uncertainties for calculating
the approximate generator. The technique can be applied to arbitrarily long time-series
data, dynamical systems with a large state space, and further provides uncertainty
estimates on the entries of the discretized generator.

Section 4 gives an example of utilizing the method on Lorenz (1963). One sees that even
a coarse discretization of statistics captures statistical features of the original system.

For those simply interested in what the calculations enable, §§ 2–3 are safely skipped
in favour of § 4 or Part 2 of this series (Souza 2024). Furthermore, Appendices A, B, C
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Partitions of state space: theory and methodology

and D expand the text by discussing symmetries, matrix properties of the generator, an
algebraic interpretation of constructing the generator alongside the connection to dynamic
mode decomposition and convergence of the data-driven method with respect to the simple
harmonic oscillator, respectively.

2. Theory

In the following sections, we outline the framework for calculations involving the Liouville
equation of a dynamical system. The focus is not on the ‘Lagrangian’ view (as given by the
dynamics) but rather an ‘Eulerian’ one (given by statistics). Consequently, we introduce
notation to help distinguish the perspectives inherent in the two viewpoints. We show how
to go from the continuous to the discrete and provide formulae.

2.1. Finite-dimensional dynamical system
We start with a generic continuous time dynamical system in d-dimensions given by

ṡ = U(s), (2.1)

where s(t) : R → R
d is the state of the system and U : R

d → R
d is the evolution equation.

Equation (2.1) provides a succinct rule for determining the evolution of a dynamical
system; however, uncertain initial conditions stymie future predictions in the presence
of chaos (Lorenz 1963). It is, therefore, more natural to study the statistical evolution of
probability densities as in Hopf (1952). Thus, we focus not on the d-dimensional ordinary
differential equation given by (2.1) but rather the d-dimensional partial differential
equation that governs the evolution of probability densities in state space.

We denote fixed vector in state space by s ∈ R
d, the components of the state s by

s = (s1, s2, . . . , sd) and the components of the evolution rule by U = (U1, U2, . . . , Ud).
The evolution equation for the statistics of (2.1), as characterized by a probability density
function,

P = P(s1, s2, . . . , sd, t) = P(s, t), (2.2)

is given by the Liouville equation

∂tP +
d∑

i=1

∂

∂si
(Ui(s)P) = 0. (2.3)

The above equation is a statement of probability conservation. It is precisely analogous to
the mass conservation equation from the compressible Navier–Stokes equations. However,
the ‘mass’ is being interpreted as a probability density. The distribution, P , is guided by
the flow dynamics U to likely regions of state space.

The presence of stochastic white noise, ξ in a dynamical system,

ṡ = U(s) + D1/2ξ (2.4)

where the ensemble average of ξ satisfies 〈ξi(t)ξj(t′)〉 = δijδ(t − t′) and D1/2 is the matrix
square root of the covariance matrix D, e.g. D = D1/2D1/2, modifies (2.3) through the
inclusion of a diffusion term

∂tP +
d∑

i=1

∂

∂si

⎛
⎝Ui(s)P + 1

2

d∑
i=j

Dij
∂

∂sj
P
⎞
⎠ = 0, (2.5)

i.e. the Fokker–Planck equation. The presence of the diffusion tensor D regularizes (2.3).
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2.2. Infinite-dimensional dynamical system
When the underlying dynamical system is a partial differential equation, we assume
a suitably well-defined discretization exists to reduce it to a formally R

d-dimensional
dynamical system. We contend ourselves to the study of the statistics of the R

d

approximation. One hopes that different discretizations lead to similar statistical
statements of the underlying partial differential equation; thus, it is worth introducing
notation for the analogous Liouville equation for a partial differential equation, as was
done by Hopf (1952). The calculations and notation that follow are formal, and there are
mathematical difficulties in assigning them rigorous meaning; however, we find value in
the approach, as it often allows for expedient calculations as was done in Souza, Lutz &
Flierl (2023b) and Giorgini et al. (2024). The overall (heuristic) recipe for the transition to
function spaces is to replace sums with integrals, derivatives with variational derivatives,
discrete indices with continuous indices and Kronecker deltas with Dirac deltas.

The d-dimensional vector from before now becomes a vector in function space whose
components are labelled by a continuous index, x, a position in a domain Ω , and discrete
index j, the index for the field of interest. Thus, the component choice si(t) for a fixed index
i is analogous to s(x,j)(t) for a fixed position x and field index j ∈ {1, . . . , ds}, e.g. ds = 3
for the three velocity components of the incompressible Navier–Stokes. In the discrete
case, the single index i loops over all velocity components and all simulation grid points.

Specifically, we consider a partial differential equation for a state s defined over a domain
Ω , with suitable boundary conditions,

∂ts = U [s], (2.6)

where the operator U : X → X characterizes the evolution of system and X is a function
space. The component of U at position x and field index j is denoted by U(x,j).

The analogous evolution for the probability density functional,

P = P[s(x,1), s(x,2), . . . , s(x,ds), t] = P[s, t], (2.7)

is denoted by

∂tP +
ds∑

j=1

∫
Ω

dx
δ

δs(x,j)

(U(x,j)[s]P) = 0. (2.8)

The sum in (2.3) is replaced by an integral over position indices and a sum over field
indices in (2.8). Furthermore, the partial derivatives are replaced by variational derivatives.
The variational derivative is being used in the physicist’s sense, that is to say,

δs(x,i)

δs(y,j)
= δ(x − y)δij ⇔ ∂si′

∂sj′
= δi′j′, (2.9)

where δ(x − y) is the Dirac delta function and δij is the Kronecker delta function, x, y ∈ Ω ,
i, j ∈ {1, . . . , ds}, and i′, j′ ∈ {1, . . . , d}. In the typical physics notation, it is common to
drop the dependence on the position x and explicitly write out the field variable in terms
of its components (as opposed to the indexing that we do here), e.g.

δ

δs(y,1)

ds∑
i=1

∫
Ω

dx(s(x,i))
2 = 2s(y,1) ⇒ δ

δu

∫
Ω

(u2 + v2 + w2) = 2u (2.10)

for the prognostic variables u, v, w of the incompressible Navier–Stokes equations.
See § 35 of Zinn-Justin (2021) for examples of the Fokker–Planck equation in the
field-theoretic context.
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Partitions of state space: theory and methodology

To derive (2.8), we suppose that (2.1) is a discretization of (2.6). Starting from (2.3),
first introduce a control volume at index i as �xi to rewrite the equation as

∂tP +
d∑

i=1

�xi
1

�xi

∂

∂si
(Ui(s)P) = 0. (2.11)

In the ‘limit’ as the grid is refined and |�xi| → 0, we have

d∑
i=1

�xi
1

�xi

∂

∂si
→

ds∑
j=1

∫
Ω

dx
δ

δs(x,j)
and Ui → U(x,j). (2.12a,b)

A stochastic partial differential equation is given by

∂ts = U [s] + D1/2[ξ ], (2.13)

where ξ is space–time (and state) noise with covariance

〈ξ(x,i)(t)ξ(y,j)(t′)〉 = δijδ(x − y)δ(t − t′). (2.14)

The noise D1/2[ξ ] is interpreted as a Gaussian process with a spatial and field covariance
given by properties of D. Furthermore, the action of the symmetric positive definite linear
operator D, is expressed as

D(x,i)[ξ ] =
ds∑

j=1

∫
Ω

dyKij(x, y)ξ(y,j), (2.15)

where Kij is the kernel of the integral operator. Formally, (2.13) has the corresponding
Fokker–Planck equation

∂tP +
ds∑

j=1

∫
Ω

dx
δ

δs(x,j)

(
U(x,j)[s]P + 1

2

ds∑
k=1

∫
Ω

dyKjk(x, y)
δP

δs(y,k)

)
= 0. (2.16)

Making sense of (2.13) is an area of active research (see Hairer (2014) and Corwin & Shen
(2020)), where one must confront defining probability distributions over function spaces.
Defining integrals over function spaces has met with considerable difficulties, although
progress has been made (see Daniell (1919), DeWitt (1972) and Albeverio & Mazzucchi
(2016)).

With the formalism now set, the focus of this work is on methods for discretizing (2.3)
and (2.8) on subsets of state space that are typically thought of as chaotic or turbulent given
only trajectory information from (2.1) and (2.6), respectively. The data-driven methods
developed herein apply without change to the stochastic analogues.

2.3. Finite-volume discretization
To focus our discussion, we use the finite-dimensional and deterministic setting. We first
assume that the underlying dynamics are on a chaotic attractor associated with a compact
subset of state space M ⊂ R

d. We further assume that the dynamical system is robust
to noise in order to regularize the attractor and probability densities as in Young (2002)
and Cowieson & Young (2005). Statements about deterministic chaos in this manuscript
implicitly use a noise regularization where the zero noise limit is always the last limit

997 A1-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.658


A.N. Souza

taken in any computation, similar to Giannakis (2019). Whether or not such a limit
generally agrees with a Sinai–Ruelle–Bowen measure (see for example Young (2002),
Blank (2017) and Araujo (2023)) is unknown. Furthermore, in the presence of correlated
or state-space-dependent noise, one must be careful how a zero-noise limit is taken.

We introduce a partition of M into N cells which we denote by Mn for n = 1, . . . , N.
The coarse-grained discretization variables Pn are∫

Mn

dsP =
∫
Mn

P = Pn (2.17)

as is common in finite-volume methods. When unambiguous, we drop the infinitesimal
state space volume ds. Here Pn(t) is the probability in time of being found in the subset
of state space Mn at time t. Integrating (2.3) with respect to the cells yields

d
dt

Pn =
∫
Mn

[ d∑
i=1

∂

∂si
(Ui(s)P)

]
=
∫

∂Mn

U · n̂P, (2.18)

where ∂Mn is the boundary of the cell and n̂ is a normal vector. The art of finite-volume
methods comes from expressing the right-hand side of (2.18) in terms of the coarse-grained
variables Pn through a suitable choice of numerical flux.

We go about calculating the numerical flux in a roundabout way. We list some desiderata
for a numerical discretization.

(i) The discrete equation is expressed in terms of the instantaneous coarse-grained
variables Pn.

(ii) The discrete equation is linear, in analogy to the infinite-dimensional one.
(iii) The equation must conserve probability.
(iv) Probability must be positive at all times.

The first two requirements state∫
∂Mn

U · n̂P ≈
∑

m

QnmPm (2.19)

for some matrix Q. Thus, we want an equation of the form

d
dt

P̂n =
∑

m

QnmP̂m. (2.20)

We introduced a ‘hat’ to distinguish the numerical approximation, P̂n, with the exact
solution Pn. The third requirement states∑

n

P̂n = 1 ⇒ d
dt

∑
n

P̂n = 0 =
∑
mn

QnmP̂m (2.21)

for each P̂m, thus ∑
n

Qnm = 0 (2.22)

for each m, i.e. the columns of the matrix must add to zero. Moreover, the last requirement
states that the off-diagonal terms of Qnm must all be positive. To see this last point, we do
a proof by contradiction. Suppose there is a negative off-diagonal entry, without loss of

997 A1-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.658


Partitions of state space: theory and methodology

generality, component Q21. Then if at time zero our probability vector starts at P̂1(0) = 1
and P̂n(0) = 0 for n > 1, an infinitesimal time step dt later we have

P̂2(dt) = dt
∑

m

Q2mP̂m(0) = Q21 < 0, (2.23)

a contradiction since probabilities must remain positive at all times. Of all the
requirements, the combination of the second and the fourth ones restricts us to a
lower-order discretization since it is not possible to have a higher-order discretization that
is both positivity preserving and linear (Zhang & Shu 2011).

Motivation for (2.20) yielding an approximation of the underlying partial differential
equation comes directly from the ability of finite-volume methods to converge (under
suitable assumptions) to an underlying linear partial differential equation. An example
of a matrix, Q, with such a structure, can be seen in the appendix of Hagan, Doering
& Levermore (1989), where an approximation to an Ornstein–Uhlenbeck process is
constructed. See appendices C.2 and C.3 of Souza et al. (2023b) for examples on
analytically constructing coarse-grained operators of stochastic systems with these
properties and Appendix D for an example with the simple harmonic oscillator.

These four requirements, taken together, are enough to identify the matrix Q as the
generator of a continuous-time Markov process with finite state space. This observation
forms the backbone of the data-driven approach towards discretizing (2.3) and (2.8). The
diagonal entries of the matrix are related to the average amount of time spent in a cell, and
the off-diagonal entries within a column are proportional to the probabilities of entering a
given cell upon exit of a cell. The implication is that we construct the numerical fluxes on
a boundary through Monte Carlo integration of the equations of motion.

Intuitively, as a state trajectory enters passes through a cell, it becomes associated with
the cell. The time a trajectory spends within a cell is called the holding time from whence
it will eventually exit to some other cell in state space. A sufficiently long integration of the
equations of motion constructs the holding time distributions of a cell and exit probabilities
to different cells in state space. Furthermore, to perform calculations, we associate each
region of state space with a ‘cell centre’, which, in this paper, we call a Markov state.
The Markov state will serve as a centre of a delta function approximation to the steady
distribution in that region of state space. With the transition matrix Q and the Markov
states associated with a partition, we can perform calculations of moments, steady-state
distributions and autocorrelations of any variable of interest.

2.4. Time versus ensemble calculations
At this point, we have discussed the equation for statistics of a dynamical system, the
notation for the infinite-dimensional case and how to associate a continuous time Markov
process with a finite-volume discretization of the Liouville equation. We now discuss how
to perform statistical calculations from the discretization and how we will confirm that the
discretization captures statistics of the underlying Liouville equation. In short, we compare
temporal averages with ensemble averages and analogous calculations for autocorrelations.

We must introduce additional notation. As stated before, we assume that a chaotic
attractor exists and that there is an appropriately regularized invariant measure, which we
denote by I(s), associated with it (Cowieson & Young 2005). We further assume that the
zero noise limit is the last limit taken in all computations in order to relate computations to
deterministic systems. With regards to a turbulent flow, we are assuming that a statistically
steady-state exists and denote its probability density (formally) by I(s). The conditional
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invariant measure with respect to a cell Mn is denoted by In(s) and the probability of
a state being found in a cell Mn is P(Mn) = ∫

Mn
I so that the invariant measure is

decomposed as

I(s) =
∑

n

In(s)P(Mn). (2.24)

In addition, we introduce notation for the transfer operator T τ , which is defined through
the relation

P(s, t + τ) = T τP(s, t), (2.25)

where P is a solution to (2.3). Thus, the transfer operator is an instruction to evolve the
density, P , via (2.3) to a time τ in the future. Furthermore,

lim
τ→∞ T τP(s, t) = I(s) (2.26)

for arbitrary densities P(s, t), including δ(s − s′) for an initial state s′ ∈ M from our
assumption of ergodicity. (We are being sloppy with limits here, but this should be
understood where the limit to a delta function density is the last limit taken.)

For an observable g : M → R, we calculate long time averages

〈g〉T = lim
T→∞

1
T

∫ T

0
g(s(t)) dt (2.27)

and compare with ensemble averages

〈g〉E =
∫
M

g(s)I(s). (2.28)

Furthermore, we compare time-correlated observables. The time-series calculation is

RT(g, τ ) = lim
T→∞

1
T

∫ T

0
g(s(t + τ))g(s(t)) dt, (2.29)

whence we obtain the autocovariance, CT , and autocorrelation, C̃T ,

CT(g, τ ) ≡ RT(g, τ ) − 〈g〉2
T and C̃T(g, τ ) ≡ CT(g, τ )/CT(g, 0). (2.30a,b)

The ensemble average version requires more explanation. We correlate a variable g(s(t))
with g(s(t + τ)), which involves the joint distribution of two variables. We first review a
fact about random variables X, Y with joint density ρ(x, y), conditional density ρ(x|y) and
marginal density ρy( y). The correlation of two observables is calculated as

〈g(X)g(Y)〉 =
∫∫

dx dy g(x)g( y)ρ(x, y) =
∫∫

dx dy g(x)g( y)ρ(x|y)ρy( y) (2.31)

=
∫

dy g( y)ρy( y)
[∫

dx g(x)ρ(x|y)
]

. (2.32)

To translate the above calculation to the present case, we consider ρy as the invariant
measure, I. The conditional distribution ρ(x|y) is thought of as the probability density at
a time τ in the future, given that we know that it is initially at state s at τ = 0.
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Partitions of state space: theory and methodology

Thus, in our present case, ρ(x|y) becomes T τ δ(s − s′) where the δ function density
is a statement of the exact knowledge of the state at time τ = 0. In total, the ensemble
time-autocorrelation is calculated as

RE(g, τ ) =
∫
M

ds′ g(s′)I(s′)
[∫

M
ds g(s)T τ δ(s − s′)

]
. (2.33)

The autocovariance, CE, and autocorrelation, C̃E, are

CE(g, τ ) ≡ RE(g, τ ) − 〈g〉2
E and C̃E(g, τ ) ≡ CE(g, τ )/CE(g, 0). (2.34a,b)

These calculations summarize the exact relations we wish to compare. However, first, we
will approximate the temporal averages via long-time finite trajectories and the ensemble
averages via the finite-volume discretization from § 2.3.

2.5. Approximations to time versus ensemble calculations
The prior section represents the mathematical ideal with which we would like to perform
calculations; however, given that we use a data-driven construction, we are faced with
performing calculations in finite-dimensional spaces and over finite-dimensional time.

Given the time series of a state at evenly spaced times at times tn for n = 1 to Nt with
time spacing �t, we approximate the mean and long time averages of an observable g as

〈g〉T ≈ 1
Nt

Nt∑
n=1

g(s(tn)), (2.35)

RT(g, τ ) ≈ 1
N′

t

N′
t∑

n=1

g(s(tn + round(τ/�t)�t))g(s(tn)), (2.36)

where the round function computes the closest integer and N′
t = Nt − round(τ/�t).

We use the construction from § 2.3 to calculate ensemble averages. Recall that in the
end, we had approximated the generator of the process with a matrix Q, which described
the evolution of probabilities associated with cells of state space. In addition, we select a
state σ [n] associated with a cell Mn as the ‘cell centre’ to perform calculations. We use
superscripts to denote different states since subscripts are reserved for the evaluation of the
component of a state. Furthermore, we do not require the Markov state σ [n] to be a member
of the cell Mn. For example, we could choose the σ [n] as fixed points of the dynamical
system or a few points along a periodic orbit within the chaotic attractor M.

The ensemble average of an observable is calculated by making use of the
decomposition of the invariant measure (2.24), but then approximating

In(s) ≈ δ(s − σ [n]) (2.37)

which is a simple but crude approximation. Thus, the ensemble averages are calculated as

〈g〉E =
∫
M

g(s)

[∑
n

In(s)P(Mn)

]
=
∑

n

[∫
M

g(s)In(s)

]
P(Mn), (2.38)

≈
∑

n

[∫
M

g(s)δ
(
s − σ [n])]

P(Mn) =
∑

n

g(σ [n])P(Mn). (2.39)

For the ensemble average version of time autocorrelations, we must, in addition to
approximating the invariant measure, approximate the transfer operator acting delta
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function density of the state, T τ δ(s − s′). We calculate

RE(g, τ ) =
∫
M

∫
M

ds′ ds g(s′)I(s′)g(s)T τ δ(s − s′) (2.40)

≈
∑

n

∫
M

∫
M

ds′ ds g(s′)δ(s′ − σ [n])P(Mn)g(s)T τ δ(s − s′) (2.41)

=
∑

n

g(σ [n])P(Mn)

∫
M

ds g(s)T τ δ(s − σ [n]) (2.42)

then additionally approximate

T τ δ(s − σ [n]) ≈
N∑

m=1

δ(σ [m] − s)[exp(Qτ)]mn. (2.43)

The matrix exponential exp(Qτ) is the discrete Perron–Frobenius/transfer operator. We
also directly consider the Perron–Frobenius operator at time scale τ and denote this
construction by F [τ ]. The matrix is a (column) stochastic matrix whose entries sum to
one. The intuition behind the approximation is to treat the forward evolution of the transfer
operator for delta distribution centred at state σ [n] as a weighted sum of delta functions
centred at state σ [m]. The weights are given by the probability of being in cell Mm a time
τ in the future, given that we started in cell Mn. Putting together the pieces results in

RE(g, τ ) ≈
N∑

n=1

g(σ [n])P(Mn)

[ N∑
m=1

g(σ [m])[exp(Qτ)]mn

]
. (2.44)

For finite state space ergodic Markov processes in statistical equilibrium, continuous or
discrete in time, the above equation is exact. In practice, we use (2.44) as an a posteriori
check on the fidelity of a partition by computing the autocorrelation of a few select
observables. When eigenvectors and eigenvalues of the underlying continuous operator
exist, the ability of (2.44) to properly represent autocorrelations relies on the data-driven
method’s ability to represent the underlying operator’s eigenvectors and eigenvalues.

In addition, all covariances and correlations are calculated using the above
approximations. This review completes the discussion of how to approximate ensemble
averages and covariances from the finite-volume discretization of the generator. However,
it remains to be shown how to construct the matrix, and Markov states, from data. The
construction of the generator is the subject of § 3.

2.6. Eigenvalues and eigenvectors of the generator
The generator has eigenvalues as well as (left and right) eigenvectors. The simplest
eigenvectors are the ones associated with the eigenvalue 0. Recall the requirement that the
column sum of matrix entries should add up to zero, for each column. This requirement is
a statement about the left eigenvector of Q. To see this denote 1 as the eigenvector of all
1s; then

1TQ = 0T = 01T . (2.45)

The first equality is exactly the statement that the column sum of the matrix should add up
to zero for each column and the second equality rewrites the zero vector as the zero scalar
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times the original vector. The latter inequality shows that it is an eigenvector of the system.
The assumption that the Q matrix is ergodic then implies that there is only one eigenvector
corresponding to the eigenvalue 0. We shall now discuss the other eigenpairs.

2.7. Global Koopman eigenvectors and modes
We do not ask ‘can we predict an observable of interest?’, but rather, ‘what can we
predict?’. The latter question is an emergent property of the system and captured by the
Koopman eigenvectors of the underlying system. Those Koopman eigenvectors whose
decorrelation time scales are long-lived constitute the most predictable features of the
system.

We use the same terminology introduced in Williams et al. (2015) to discuss the
Koopman operator and its eigenvectors. Koopman eigenvectors are observables as well
as left eigenvectors of the transition probability operator T τ . For example, if gλ is a left
eigenvector of T τ with eigenvalue eλτ then we have the following:

RE(gλ, τ ) =
∫
M

ds′ gλ(s′)I(s′)
[∫

M
ds gλ(s)T τ δ(s − s′)

]
(2.46)

=
∫
M

ds′ gλ(s′)I(s′)
[∫

M
ds gλ(s)eλτ δ(s − s′)

]
(2.47)

= eλτ
∫
M

ds′ gλ(s′)2I(s′) (2.48)

= eλτ 〈g2
λ〉E. (2.49)

Thus, the most useful Koopman eigenvectors, from a predictability standpoint, are those
such that they decorrelate slowly in time, i.e. real(λ) ≈ 0, but additionally have an
oscillatory component so that the ratio real(λ)/imaginary(λ) ≈ 0 holds.

If real(λ) = 0 on a chaotic attractor, then we expect this to be the ‘trivial’ observable
gλ(s) = c for a constant c. (The presence of pure-imaginary eigenvalues would imply the
existence of observables that are predictable for arbitrary times in the future on a chaotic
attractor.) Otherwise, we expect that real(λ) < 0 for all eigenvalues of Q, i.e. we expect
that all non-trivial observables will eventually decorrelate. This implies 〈gλ〉E = 0 since

〈gλ〉E =
∫
M

ds gλ(s)I(s) = lim
τ→∞

∫
M

ds gλ(s)T τ δ(s − s′) = lim
τ→∞ eλτ gλ(s′) = 0,

(2.50)
where s′ is an arbitrary state on the attractor M.

The following four statements about a Koopman eigenvectors gλ cannot hold
simultaneously:

(i) the Koopman eigenvector satisfies the relation gλ(s(t + τ)) = eλτ gλ(s(t));
(ii) the Koopman eigenvector gλ is a continuous function of state space;

(iii) there exist an arbitrary number of near recurrences on the dynamical trajectory;
(iv) the eigenvalue associated with the Koopman eigenvector satisfies real(λ) < 0.

The proof is as follows. Suppose that all four criteria are satisfied. Let s′
n be

near-recurrences of s some sequence of times {τn}, where τn → ∞, in the future so that
‖s − s′

n‖ < ε for some norm and all n uniformly. Continuity of gλ with respect to the
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norm implies
|gλ(s) − gλ(s′

n)| < δ (2.51)

but gλ(s′
n) = eλτngλ(s) by assumption, hence

|gλ(s)||1 − eλτn | < δ (2.52)

which is a contradiction since τn can be made arbitrarily large and δ arbitrarily small.
The non-existence of Koopman eigenvectors satisfying gλ(s(t + τ)) = eλτ gλ(s(t)) over all
of state space is corroborated by numerical evidence (Parker & Page 2020). In so far as
a turbulent attractor is mixing one does not expect a finite-dimensional linear subspace
for the Koopman eigenvectors (except for the constant observable). See Arbabi & Mezić
(2017) for a similar statement with regards to the Lorenz attractor. We take the above proof
as a plausible argument for the use of a piecewise constant basis in the representation of
Koopman eigenvectors.

For stochastic dynamical systems, one expects that the Koopman eigenvectors (the
Koopman operator is defined in terms of the adjoint of the Fokker–Planck operator in
that context) are more likely to be continuous functions of the state but no longer obey the
relation gλ(s(t + τ)) = eλτ gλ(s(t)). Heuristically, we expect better regularity because the
stochastic noise in the dynamics acts as a diffusion in probability space, which smooths
out non-smooth fields. For a stochastic differential equation

ṡ = U(s) + εξ , (2.53)

where ε is the noise variance and ξ is a d-dimensional white noise, the Koopman
eigenvector evolves according to

ġλ(s(t)) = λgλ(s(t)) + ε∇gλ(s(t)) · ξ , (2.54)

see (6.55) of Maćešić & Črnjarić-Žic (2020). The formula above follows from Ito’s lemma
and using that gλ as an eigenvector with eigenvalue λ. The composition with the state
variable is necessary because gλ : R

d → R, but one cannot consider the evolution of gλ
independently from where it is being evaluated in state space. In the limit that the noise
goes to zero, ε → 0, the gradient term, ∇gλ, can go to infinity at particular points in state
space, as would be expected in a one-dimensional stochastic dynamical system with a
two-well potential. Consequently, pathologies are unexpected in linear systems.

As another point, although they are often called Koopman eigenfunctions when the
dynamical system is a partial differential equation, they should perhaps more appropriately
be called Koopman eigenoperators (in analogy to eigenvectors and eigenfunctions in
lower-dimensional contexts), i.e. functionals that act on a state. The right eigenvectors of
the transfer operator act as projection operators of an observable to Koopman eigenvectors.
When a continuum of observables describe a field the result of the projection of this
continuum is called a Koopman mode, see Williams et al. (2015). Part 2 goes through
a concrete example, but we remain abstract here.

A continuum of observables indexed by spatial index x define statistical modes as

Gλ(x) ≡
∫
M

ds gx(s)vλ(s), (2.55)

where vλ is a right eigenvector of the transfer operator, i.e.

T τ vλ = eλτ vλ. (2.56)

Equation (2.55) projects the observable gx onto the appropriate Koopman eigenvector,
due to biorthogonality of left and right eigenvectors. The object Gλ(x), for a fixed λ is a
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Koopman mode. Whether or not the set of Koopman eigenvectors form a complete basis
so that gx = ∑

λGλ(x)gλ is unclear. The implication is that an arbitrary observable gx

could be fundamentally unpredictable if it cannot be expressed as a sum of Koopman
eigenvectors.

In the next section, we discuss the numerical approximation to Koopman eigenvectors.

2.8. Numerical approximation
The numerical Koopman eigenvectors are the left eigenvectors of the matrix Q, denoted
by gλ and their approximation as functionals acting on the state s ∈ Mn is given by

gλ(s) ≈ [gλ]n, (2.57)

where [gλ]n is the nth component of the eigenvector gλ. Thus, we first determine which
cell the state s belongs to and then use the integer label to pick out the component of
the eigenvector gλ. Thus, we use a piecewise constant approximation to the Koopman
eigenvector.

3. Methodology

In this section, we outline the general approach to constructing the approximate generator
in terms of trajectory data. The most critical component of a discretization comes from
defining a classifier C : R

d → {1, 2, . . . , N} which maps an arbitrary state s ∈ R
d to an

integer n ∈ {1, 2, . . . , N}. This function implicitly defines a cell through the relation

Mj = {s : C(s) = j for each s ∈ R
d} ∩ M, (3.1)

and thus we identify an integer j with a cell Mj. The intersection with the manifold M is
critical to the methodology’s success.

Furthermore, the Markov states (cell centres) are chosen to satisfy C(σ [n]) = n for each
n ∈ {1, . . . , N}. There is an extraordinary amount of freedom in defining the classifier,
and we will go through examples in § 4. We also comment on practical considerations
and generalizations in § 5. One can simultaneously solve for a classifier and Markov states
using a K-means algorithm (see Lloyd (1982)), but we do not wish to restrict ourselves
to that choice here. The classifier ‘classifies’ (in the machine learning sense) different
flow states with integers as the category labels. The classifier serves as a particular choice
of the nonlinear dictionary (basis) for observables of the system; see Appendix C and
Klus et al. (2016) for a discussion on this point. Choosing a good basis for observables
is difficult and may not even exist, but deep learning methods combined with novel loss
functions hold promise for their discovery (Bittracher et al. 2023; Constante-Amores et al.
2023). For now, we will assume that such a function is given and focus on constructing the
generator Q.

The classifier C transforms dynamical trajectories into sequences of integers, which we
interpret as the realization of a Markov process with finite state space. At this stage,
traditional methods can be employed to construct a transfer/Perron–Frobenius operator
from data, see Klus et al. (2016) and Fernex et al. (2021). Given that our interest is in
constructing a continuous time Markov process and quantifying the uncertainty of matrix
entries due to finite sampling effects, the algorithm will modify the traditional approaches.

To construct Q, two quantities must be calculated for each cell:

(i) the holding times – the amount of time a dynamical trajectory stays in cell Mn
before exiting;
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(ii) the exit probabilities – the probability of moving from cell Mj to Mi upon exiting
the cell Mj.

Let Tj be the distribution of holding times associated with cell j and Eij denote entries of
the exit probability matrix for i /= j. By convention we take Eii = −1 so that

∑
i Eij = 0

and for each j. The entries of the matrix Qij are constructed as follows:

Qij = Eij/〈Tj〉, (3.2)

where 〈Tj〉 denotes the expected value of the holding time distribution of cell j. The matrix
Q is decomposed into the product of the exit probability matrix E and inverse holding time
matrix R ≡ Diagonal(T )−1, Q = ER when numerically constructing the matrix entries.
The data-driven construction of the Perron–Frobenius operator F [�t] is similar and one
simply keeps track of the transition probabilities from cell Mj to Mi. A Markovian
assumption implies that the holding time is exponentially distributed in the generator case
and geometrically distributed for the discrete in time case. We re-examine the Markovian
assumption when applying the method in § 4.

In the subsections, we outline an empirical construction of the matrix from finite data
and a Bayesian approach incorporating uncertainty due to finite sampling effects. With
the latter approach, we do not treat the entries of the Qij matrix as deterministic numbers
but as distributions. The result is a random matrix representation of the generator that
incorporates uncertainty. We emphasize that our focus on using the generator of the
process is critical to the incorporation uncertainty since we assume that the data comes
from a continuous-time dynamical system.

3.1. Empirical construction
We start with an empirical construction of the generator. It suffices to focus on cell j
associated with the jth column of the matrix Qij. To calculate the empirical holding time
distribution and empirical mean, we count how often we see cell j before transitioning to
cell i /= j. For example, suppose that we have three cells, j = 1, and consider the following
sequence of integers given by the classifier applied to a time series with �t spacing in
time:

1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1. (3.3)

We group the sequence as follows:

(1, 1, 1), 2, 2, (1, 1), 3, (1), 2, (1, 1) (3.4)

to determine the holding times. Thus, the holding times for cell 1 would be

3�t, 2�t, �t, 2�t (3.5)

whose empirical expected value is 2�t implying a transition rate 1/(2�t).
To calculate exit probabilities for cell j, we count how often we see transitions to cells

i and divide by the total number of transitions. In the example, to calculate the exit
probabilities for cell 1 into cell 2 or 3, we group them together as follows:

1, 1, (1, 2), 2, 1, (1, 3), (1, 2), 1, 1. (3.6)

Thus, we observed three exits, two of which went to state 2 and one to state 3; hence, the
exit probabilities are E21 = 2/3 and E31 = 1/3.
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The rest are constructed analogously to produce the matrix

Q = ER =
⎡
⎣−1 1 1

2/3 −1 0
1/3 0 −1

⎤
⎦
⎡
⎢⎢⎢⎢⎣

1
2�t

0 0

0
2

3�t
0

0 0
1
�t

⎤
⎥⎥⎥⎥⎦ = 1

�t

⎡
⎣−1/2 2/3 1

1/3 −2/3 0
1/6 0 −1

⎤
⎦ .

(3.7)

We give an alternative method of constructing Q in Appendix C where we interpret
operations from an algebraic perspective. As described, the generator is only accurate to
order �t since we do not interpolate in time to find the ‘exact’ holding time. We do not
preoccupy ourselves with improving this since we believe that the primary source of error
comes from finite sampling effects.

In certain cases, the data-driven construction given above can be obtained directly from
a data-driven construction of the Perron–Frobenius operator. For example, when a time
series is sampled with a time step of �t and a trajectory only spends one time step �t
within each cell, then the Q matrix is discretely related to the data-driven construction
Perron–Frobenius operator, F [�t], through the relation F [�t] = I + �tQ where I is the
identity matrix. This happens because the only transition probabilities observed are exit
probabilities. Furthermore, the relation F [�t] ≈ I + �tQ also holds in the limit that a
trajectory spends sufficient time within each cell j, i.e. the average holding times are
much greater than the time step size. See Appendix D for concrete examples using the
simple harmonic oscillator. The advantage of the continuous-time formulation comes from
uncertainty-quantification which yields sensible uncertainty estimates in both limits.

In the following section, we augment the empirical construction with uncertainty
estimates based on finite sampling and a Bayesian framework.

3.2. Bayesian construction
Our goal is to quantify the uncertainty of the discrete generator’s matrix entries due to
finite sampling effects from data-driven methods. To this end, we use a Bayesian method,
which requires choices for likelihood functions and prior distributions. In the case of a
generator matrix, we require four ingredients:

(i) a likelihood distribution for the holding times of each cell;
(ii) a prior distribution for the transition rates associated with the holding times;

(iii) a likelihood distribution for the exit probabilities of each cell;
(iv) a prior distribution for the probability values associated with the exit probabilities.

The likelihood distribution is the distribution we believe we are sampling from, and
the prior distribution encapsulates our uncertainty with respect to the parameters of
the likelihood function. Bayesian methods are computationally efficient under certain
likelihood and prior distribution assumptions (Gelman et al. 2013). In particular, if the
prior distribution and the posterior distribution are from the same family of distributions,
then it is only necessary to update the parameters of the prior/posterior distribution. For a
fixed likelihood function, in special cases, it is possible to determine a prior distribution
such that the posterior distribution comes from the same family as the prior. Such
distributions are called conjugate priors (conjugate with respect to the likelihood), and
we shall use them.
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We make choices for our likelihood function compatible with that of a continuous-time
Markov process:

(i) the likelihood distribution for the holding times is exponentially distributed with rate
parameter λi for each cell independently;

(ii) the likelihood distribution for exit probabilities is a multinomial distribution
with parameters p ∈ [0, 1]N−1 satisfying the relation

∑N−1
i=1 pi = 1 for each cell

independently.

Both the exponential distribution and the multinomial distribution have known conjugate
priors:

(i) the conjugate prior distribution for the rate parameter of the exponential distribution
is distributed according to the Gamma distribution with parameters (α, β), denoted
by Γ (α, β);

(ii) the conjugate prior distribution for the exit probabilities of the multinomial
distribution comes from a Dirichlet distribution with parameter vector α of length
N − 1, which we denote by Dirichlet (α).

Thus, the posterior distributions then come from the same family as the prior distributions,
e.g. posterior distributions are Γ (α′, β ′) and Dirichlet (α′) upon the observation of data;
see Gelman et al. (2013) and the section below for an example. Under the construction of
this section, a 3 × 3 matrix will always be of the form

Q =
⎡
⎣ −1 [D2]1 [D3]1

[D1]1 −1 [D3]2
[D1]2 [D2]2 −1

⎤
⎦
⎡
⎣G1 0 0

0 G2 0
0 0 G3

⎤
⎦ (3.8)

where Gi ∼ Γ (αi, βi), Di ∼ Dirichlet(αi) and [Di]j denotes the jth component of the
random vector Di.

As mentioned in the previous paragraphs, conjugate priors greatly expedite the Bayesian
update procedure; only the parameters of the Gamma and Dirichlet distributions need to
be updated to construct a posterior distribution. The parameters (αi, βi) and αi are updated
according to Bayes’ rule for each column upon data acquisition. For example, suppose that
we have observed the following empirical counts associated with cell i:

(i) M exits from cell i;
(ii) [M]j exits from cell i to cell j;

(iii) T̂1, T̂2, . . . , T̂M empirically observed holding times;

and that we start with (α0, β0) and α0 as the parameters for our prior distributions. The
relation

∑
j[M]j = M holds. (There can be an ‘off-by-one’ error here which we ignore for

presentation purposes.) The posterior distribution parameters (α1, β1) and α1 are

α1 = α0 + M, β1 = β0 +
M∑
i

T̂i and α1 = α0 + M . (3.9a–c)

In the limit that α0, β0 and |α0| go to zero, then the empirical approach from the previous
section agrees with the expected value from the Bayesian approach.

The current approach is one of many approaches to constructing matrices
with quantified uncertainties. See Singhal & Pande (2005) and Trendelkamp-
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Schroer et al. (2015) for other Bayesian examples of calculating uncertainties and Scherer
et al. (2015) for numerical implementations. We comment that the present methodology
also allows for uncertainty quantification of generators that satisfy detailed balance, see
Appendix B. Other probabilistically inspired methods of estimating generator entries
consist of methods such as the expectation maximization method in Otto, Peitz & Rowley
(2023), which yield maximum likelihood estimates.

The current uncertainty quantification is imperfect (e.g. when holding times do not
follow an exponential distribution or the system is not Markovian over infinitesimal steps).
Still, we hold the position that some quantification of uncertainty is better than none.
One of the benefits of the construction of this section is that it is robust to infinite
temporal resolution over a fixed period and, hence, is consistent with data that comes
from a continuous time process. We use uncertainty quantification to dismiss spurious
results rather than increase confidence in the correctness of an inference. Furthermore,
the assumptions that we made for the posterior and prior distribution still yield the
same empirical construction from (3.1) upon using uninformative priors. In the large data
limit, the Bayesian update procedure eventually yields a sharply peaked distribution that
converges to a Gaussian.

An example now follows.

4. Illustration of the methodology with the Lorenz equations

We apply the methodology from the previous section to the Lorenz equations. The
dynamics are given by

ẋ = −σ(x − y), (4.1)

ẏ = −y + (r − z)x, (4.2)

ż = −bz + xy, (4.3)

where we identify x = s1, y = s2, z = s3. The corresponding Liouville equation is given
by

∂tP + ∂x
([−σ(x − y)

]P)+ ∂y
([−y + (r − z)x

]P)+ ∂z
([−bz + xy

]P) = 0
(4.4)

where we use the notation x for s1, y for s2 and z for s3. We shall examine three different
methods of partitioning the chaotic attractor.

4.1. Fixed point partition
We choose the classic parameter values r = 28, σ = 10 and b = 8/3 for the Lorenz
system, which is known to exhibit chaotic solutions. Construction of the generator is
automated through the methodology of § 3 upon choosing the Markov states σ [n] and a
classifier C. We use the following fiction to guide our choices.

It is said that the coherent structures of a flow organize and guide the dynamics
of chaos (Cvitanović 2013). As a trajectory wanders through state space, it spends a
disproportionate time near coherent structures and inherits their properties. The coherent
structures then imprint their behaviour on the chaotic trajectory, manifesting in ensemble
averages. Thus, chaotic averages are understood in terms of transitions between simpler
structures.
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(a) (b) (c)

(d) (e) ( f )

Figure 1. Lorenz fixed point partition. Here, we show the emerging partition from several angles. The colours
correspond to the different partitions associated with trajectories that are ‘closest’ to a given fixed point.

This picturesque story motivates the use of fixed points, as Markov states,

σ [1] = [−
√

72, −
√

72, 27], (4.5)

σ [2] = [0, 0, 0], (4.6)

σ [3] = [
√

72,
√

72, 27], (4.7)

and partitioning state space according to the closest fixed point,

C(s) =

⎧⎪⎨
⎪⎩

1 if ‖s − σ [1]‖ < ‖s − σ [2]‖ and ‖s − σ [3]‖
2 if ‖s − σ [2]‖ < ‖s − σ [3]‖ and ‖s − σ [1]‖
3 if ‖s − σ [3]‖ < ‖s − σ [1]‖ and ‖s − σ [2]‖

(4.8)

where ‖ · ‖ denotes the standard Euclidean norm. The classifier determines the partition
by associating a trajectory with the closest fixed point. This partitioning strategy is
the intersection of the chaotic attractor, M, with a Voronoi tessellation over the full
state space, R

3. Figure 1 shows the partition induced by this choice. The regions are
colour-coded according to the closest fixed points.

We construct a time series from the Lorenz equations using a fourth-order Runge–Kutta
time stepping scheme with time step �t = 5 × 10−3. We take the initial condition to be
(x(0), y(0), z(0)) = (14, 20, 27) and integrate to time T = 105, leading to 2 × 107 time
snapshots. At each moment in time, we apply the classifier to create a sequence of integers
representing the partition dynamics. (One can think of this as defining a symbol sequence.)
Figure 2 visualizes this process.

From the sequence of integers, we apply the method from § 3.2 to construct the
data-driven approximation to the generator with quantified uncertainty. For our prior
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Figure 2. Lorenz fixed point partition Markov chain. The dynamics of the x, y, z variables are shown in (a),
and the associated partition dynamics is shown in (b). As a dynamical trajectory moves through state space, it
is labelled according to its proximity to the closest fixed point.

distribution, we use an uninformative prior – i.e. initial parameters α = β = 0 for the
Gamma distribution and α = 0 for the Dirichlet distribution – so that the mean of the
random matrix agrees with the empirical construction from 3.1. The mean for each entry
of the generator (reported to two decimal places) is

〈Q〉 =
⎡
⎣−1.17 1.93 0.65

0.52 −3.86 0.52
0.65 1.93 −1.17

⎤
⎦ ≈

⎡
⎣−1.0 0.5 0.55

0.45 −1.0 0.45
0.55 0.5 −1.0

⎤
⎦
⎡
⎣1.17 0.0 0.0

0.0 3.86 0.0
0.0 0.0 1.17

⎤
⎦ ,

(4.9)

where we have decomposed the matrix into the exit probability matrix and the diagonal
rate matrix on the right-hand side.

In the matrix decomposition, the off-diagonals of the left matrix correspond to the exit
probabilities, and the right matrix is the rate matrix, whose entries are the inverse of the
time spent within a partition. From the latter matrix, we see that trajectories spend less
time in the partition associated with the zero fixed point (blue) since 1/3.86 < 1/1.17.
The apparent symmetry in the matrix results from the truncation to two decimal places
and the abundance of data. In Appendix A, we show how to incorporate symmetries of the
Lorenz equation and report ensemble mean statistics.

The utility of using a random matrix to represent uncertainty is summarized in figure 3.
The distribution of each matrix entry for various subsets of time is displayed. Using fewer
data (represented by a shorter gathering time, T) results in significant uncertainty for the
matrix entries. Additionally, using unconnected subsets of time demonstrates an apparent
convergence of matrix entries.

997 A1-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.658


A.N. Souza

0.5 0.6 0.7 0.8 1.5 2.0 2.5 –1.4 –1.2 –1.0
0

0.02

P
ro

b
ab

il
it

y

0.04

0.45 0.50 0.55 0.60 –4.0–4.5 –3.5

T ∈ [0, 103]

T ∈ [0, 105]

T ∈ [0, 104]
T ∈ [105 – 103, 105]

T ∈ [105 – 104, 105]

3.0 0.4 0.5 0.6
0

0.02

P
ro

b
ab

il
it

y

0.04

–1.2 –1.1 –1.0 1.6 1.7 1.8 1.9 2.0 2.1 2.2 0.550.50 0.650.60 0.70
0

0.02

P
ro

b
ab

il
it

y

0.04

Q11

Q21

Q31

Q12

Q22

Q32

Q13

Q23

Q33

0

0.02

0.04

0

0.02

0.04

0

0.02

0.04

0

0.02

0.04

0

0.02

0.04

0

0.02

0.04

(a) (b) (c)

Figure 3. Lorenz fixed point partition distributions of the generator. The uncertainty estimates for the entries of
the 3 × 3 generator are shown in the above figure. A one-to-one correspondence exists between the distributions
in the panel and the matrix entries. The different coloured distributions within a panel represent different
estimates of the entries based on the amount of available data, here presented in terms of the simulation time
of the Lorenz system. We see that as we increase the time interval of the simulation and thus have more data,
we become more confident about the matrix entries. Furthermore, the distributional spreads overlap with one
another.

We are now in a position to calculate statistical quantities. For simplicity, we only report
first-, second- and third-order moments calculated from the mean value of the generator,
〈Q〉. The steady-state distribution of 〈Q〉, corresponding to eigenvalue λ = 0, is reported
to two decimal places as

[P(M1), P(M2), P(M3)] ≈ [0.44, 0.12, 0.44] (4.10)

from whence we calculate the steady state statistics for any observable using the
approximations in § 2.4 and the Markov states σ [n] for n = 1, 2, 3. Explicitly, the ensemble
average of the observables,

g[1](s) = s3 = z, g[2](s) = (s3)
2 = z2, or g[3](s) = (s1)

2s3 = x2z (4.11)

is approximated via (2.39), repeated here for convenience,

〈g[ j]〉E = g[ j](σ [1])P(M1) + g[ j](σ [2])P(M2) + g[ j](σ [3])P(M3) for each j (4.12)

to yield

〈z〉E ≈ 27 × 0.44 + 0 × 0.12 + 27 × 0.44 ≈ 24, (4.13)

〈z2〉E ≈ 272 × 0.44 + 02 × 0.12 + 272 × 0.44 ≈ 642, (4.14)

〈x2z〉E ≈
(
−

√
72
)2 × 27 × 0.44 + 03 × 0.12 +

(√
72
)2 × 27 × 0.44 ≈ 1711. (4.15)

Table 1 shows the result from both the temporal and ensemble average (using full
machine precision for computations). There is a correspondence for all averages, with the
most significant discrepancy being those involving y2 terms, for which the relative error is
within 25 %. The fixed points of a dynamical system are unique in that they satisfy all the
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〈x〉 〈y〉 〈z〉 〈xx〉 〈xy〉 〈xz〉 〈yy〉 〈yz〉 〈zz〉
Ensemble −0.0 −0.0 23.8 63.5 63.5 −0.1 63.5 −0.1 642.4
Temporal −0.0 −0.0 23.5 62.8 62.8 −0.2 81.2 −0.2 628.9

〈xxy〉 〈xxz〉 〈xyy〉 〈xyz〉 〈xzz〉 〈yyy〉 〈yyz〉 〈yzz〉 〈zzz〉
Ensemble −0.3 1713.2 −0.3 1713.2 −3.4 −0.3 1713.2 −3.4 17346.1
Temporal −0.4 1879.7 −0.4 1677.2 −4.1 −0.4 1997.2 −4.2 18446.3

Table 1. Empirical moments of the Lorenz attractor. A comparison between ensemble averaging and
time averaging.

same dynamical balances of a statistically steady state, e.g. chaotic trajectories, periodic
orbits and fixed points of the Lorenz equation satisfy the relation

〈xy〉 = b〈z〉, (4.16)

and more generally
0 = 〈U(s) · ∇g〉, (4.17)

for any bounded and differentiable observable g, where U is vector field defined by the
right-hand side of the Lorenz equations, and the averaging brackets 〈·〉 are defined over
the trajectory. Thus, an accurate estimation of 〈xyzn−1〉 only depends on an accurate
estimate for 〈zn〉 for the fixed points of the Lorenz equation (using g(s) = zn). In this
case the ‘closure problem’ in fluid mechanics is a boon rather than a curse. A good
representation of a lower-order moment automatically yields a good representation of a
higher-order moment through the closure ‘problem’.

Although we focused on moments, one can compare the statistics of any observable, e.g.

〈z log(z)〉E ≈ 78.4 and 〈z log(z)〉T ≈ 76.0, (4.18a,b)

where we used z log(z) → 0 as z → 0. By symmetry, one expects

〈x〉 = 〈y〉 = 〈xz〉 = 〈yz〉 = 〈yyy〉 = 〈xxy〉 = 〈xyy〉 = 〈xzz〉 = 〈yzz〉 = 0 (4.19)

but finite sampling effects prevent this from happening. As done in Appendix A,
incorporating the symmetries allows ensemble calculations to achieve this to machine
precision.

In addition to containing information about steady-state distributions, the generator Q
provides temporal information: autocorrelations and the average holding time within a
given cell. We show the autocorrelation of six observables,

g[1](s) = x, g[2](s) = y, g[3](s) = z, g[4](s) =
{

1 if C(s) = 1
0 otherwise

, (4.20a–d)

g[5](s) =

⎧⎪⎨
⎪⎩

1 if x > 0
−1 if x < 0
0 otherwise

and g[6](s) =
{

1 if C(s) = 2
0 otherwise

(4.21a,b)

in figure 4, which are calculated via (2.36) and (2.44), with appropriate modifications
accounting for means and normalizing the height to one. Here, we see both the success
and limitations of the method at capturing autocorrelations. In general, the decorrelation
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Figure 4. Lorenz autocorrelations generator versus time series. Six autocorrelations of observables are shown.
The transparent purple line is calculated from the generator, and the black line is calculated from the time series.
Even a coarse partition can capture observables g[4] and g[5] but struggles with oscillatory correlations.

of an observable is captured by the Markov model if it is approximately constant within
a given cell, e.g. the observables g[4] and g[5]. However, sometimes it is possible to do
‘well’, such as g[1] or g[2], despite not being constant within a region.

The inability to capture the autocorrelation of g[6], which is constant within M2, is
partially due to the holding time distribution being far from exponentially distributed. To
see this mode of failure, we plot the holding time distribution of the cells in figure 5.
We show several binning strategies of the distribution to demonstrate the ability of an
exponential distribution to capture quantiles of the empirical holding time distribution.

Depending on the time scale of interest, the M1 and M3 cells are approximately
exponentially distributed, although they become fractal-like in terms of the distribution
of holding times. In contrast, the holding time distribution of cell M2 is far from
exponentially distributed upon refining the bins of the histogram. This calls into question
using a Markovian, i.e. ‘memoryless’ model. There is an inherent assumption in the
construction of the generator that transition probabilities are independent of the amount
of time spent in a particular subset of state space. A better statistical model would
incorporate exit probabilities conditioned on the time spent in a cell. Stated differently,
memory is necessary to correctly reproduce the autocorrelation of a coarse discretization,
see Lin et al. (2023); however, the approach taken here is to view a given discrete
representation as inherently imperfect and subject to improvement upon refinement of a
partition.

Figure 6 summarizes the resulting statistical dynamics, where the generator and
transition probabilities define a graph structure. The graph structure contains information
about the topological connectivity between different regions of state space and the
‘strength’ of connectivity over different time scales as encapsulated by the transition
probabilities.

In the next section we consider two different partitioning strategies of the Lorenz
equations, over the same dataset.
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Figure 5. Lorenz fixed point partition holding times. An underlying assumption of using a generator for a given
partitioning strategy is that the time spent in a cell is exponentially distributed. Here, we examine quantiles of
the holding time distribution for a cell as given by the different binning numbers. The black dots correspond to
the equivalent exponential distribution quantile, where the generator gives the rate parameter.
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Figure 6. Lorenz fixed point partition graph. The generator (a) and transition probabilities over several time
scales are visualized as a graph. The transition probabilities change depending on the time scale.
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(a) (b) (c)

(d) (e) ( f )

Figure 7. Lorenz AB and sampling partitions. In (a–c), we show the partition of the Lorenz attractor according
to 128 points on the AB periodic orbit of Lorenz, and in (d–f ), we show the sampling partition associated with
128 randomly chosen points. The black dots are the Markov states (cell centres) associated with the cells of
each partition.

4.2. The AB and sampling partitions
We now show how the partition choice affects steady-state statistics and temporal
autocorrelations. We choose two partitions, both using 128 cells. The first partition uses
128 evenly spaced (in time) points on the AB periodic orbit of the Lorenz equation, see
Viswanath (2003), to define the cells of the partition, and our second partition uses 128
points sampled on the attractor. We call the former the ‘AB partition’ and the latter the
‘sampling partition’. Both methods define cells by first labelling the cell centres with
integers within 1 to 128, computing the distance to all 128 points, and then assigning a
cell by picking out the cell centre with the smallest distance, similar to what was done for
the three fixed points in (4.8). More succinctly, the points to define a Voronoi tessellation of
the domain using the same time series from § 4.1. In both cases, we use an uninformative
prior to construct the generator. See figure 7 for a visualization of the two partitioning
strategies.

The AB periodic yields partitions that are thin wedges. In this case, further refinement by
using more points on the periodic orbit does not yield a refinement strategy that converges
to the statistics of the Lorenz equations. For example, the maximum value of z can never be
approximated by points on the AB periodic orbit. On the other hand, the sampling partition
yields a partition with disproportionate cell sizes and clusters in regions of high probability
on the attractor. We expect that further refinement by choosing more random points yields
a higher fidelity partition, but have no proof on this matter. This latter strategy is readily
employable on any data set and can be thought of as a ‘go-to’ strategy in the absence of
system knowledge.

We show two statistical measures to assess the quality of the partition. The first is in
table 2. We see that the statistics of the AB partition are farther from the attractor for
many of the variables than the sampling partition. This discrepancy is because the AB
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〈x〉 〈y〉 〈z〉 〈xx〉 〈xy〉 〈xz〉 〈yy〉 〈yz〉 〈zz〉
AB 0.0 0.0 23.6 65.9 66.7 −0.1 91.4 −0.1 638.7
Sampling 0.0 0.1 23.5 61.7 62.3 1.3 79.7 −2.8 621.8
Temporal −0.0 −0.0 23.5 62.8 62.8 −0.2 81.2 −0.2 628.9

〈xxy〉 〈xxz〉 〈xyy〉 〈xyz〉 〈xzz〉 〈yyy〉 〈yyz〉 〈yzz〉 〈zzz〉
AB −0.9 2007.0 −1.2 1773.7 −4.5 −1.7 2215.2 −3.6 19203.6
Sampling −3.6 1831.8 −4.3 1673.6 69.0 −9.2 1981.2 −68.8 18018.4
Temporal −0.4 1879.7 −0.4 1677.2 −4.1 −0.4 1997.2 −4.2 18446.3

Table 2. Empirical moments of the Lorenz attractor. A comparison between ensemble averaging with two
different partitions, ‘AB’ and ‘sampling’, and time averaging.
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Figure 8. Autocorrelation for observables of the Lorenz system. The AB partition (red) captures oscillatory
behaviour, while the sampling partition (blue) better captures the decay of the temporally obtained
autocorrelation (black).

partition uses cell centres that are all on the periodic orbit and thus will represent a
compromise between the periodic orbit statistics and the attractor statistics. In figure 8,
we show the autocorrelations using the two partitions where the observables are defined in
(4.20a–d). We see that the AB periodic orbit partition better captures oscillatory behaviour
at the expense of the decay behaviour in the g[1] and g[2] autocorrelations. The g[3]

autocorrelations, exhibiting less decay than its g[1] and g[2] counterparts are better captured
by the periodic orbit partition. The oscillatory behaviour in g[3] is also captured by the
sampling partition, albeit with more dissipation. We expect that using more points on the
attractor for the sampling partition would yield better correspondence with the attractor.
See Giorgini, Souza & Schmid (2023) for a data-driven method that uses the methods
developed here as a baseline for improving convergence of autocorrelations in coarse
settings.

5. Conclusion

In summary, we have done three things:

(i) § 2 – reviewed a theoretical formulation for transforming a dynamical system into a
continuous time Markov process with finite state space;

(ii) § 3 – developed a Bayesian stream-based data-driven algorithm for constructing the
generator of a continuous-time Markov process with finite state space;

(iii) § 4 – applied the methodology to the Lorenz equations.
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We have seen that statistics are captured, even with a coarse discretization. In the
Lorenz case, we used the fixed points of the dynamical system as the Markov states
and the anchors for the partitioning strategy. Three states sufficed to capture the first
and second moments. Furthermore, even some autocorrelations and residency times were
well-captured with the coarse discretization, depending on the time scale of interest.
Furthermore, we explored two further partitioning strategies (using a periodic orbit and
random points of the attractor) and reported their resulting emulated statistics.

Future extensions of the present work include a detailed examination of convergence
properties by varying the number of states and choosing different classifiers. When the
number of cells becomes large, calculating the minimum distance of a state to a cell
centre is computationally expensive. In such a case, using a tree structure for the classifier
(e.g. a hierarchical k-means) is one option. Similar computationally expedient extensions
include the use of a tensor product basis such as Junge & Koltai (2009) or box-refinement
strategies used in Dellnitz & Junge (1999) and Dellnitz et al. (2001). Another option
is to borrow ideas from thermodynamics and divide state space into ‘macrostates’ and
‘microstates’. For example, we first divide a cell into energy shells and then only compute
distances within each energy shell. A noteworthy example of a physics-based partition is
found in Jiménez (2023), where the author constructed a Perron–Frobenius operator for
wall-bounded flows.

The present work suggests the feasibility of extending this approach to more complex
and high-dimensional systems. The only necessary step is to define a method for
classifying states. Part 2 of this series focuses on applying the methodology to the
compressible Euler equations with gravity and rotation (the model in Souza et al. (2023a)),
a high-dimensional dynamical system exhibiting geophysical turbulence. We will detail the
particular choices for the classifier and Markov states as applied to the Euler equations.
The investigation will include an analysis of different strategies for partitioning the
high-dimensional state space, a feature of the methodology that lends itself to adaptation
to various dynamical systems. Ultimately, the hope is that the present method enables
insights into high-dimensional spaces.
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Appendix A. Symmetries

In § 4.1, the symmetries of the Lorenz equations were not incorporated directly into
the generator. We rectify this deficiency here and outline a method for incorporating
symmetries. The Lorenz equations are invariant with respect to the transformation
(x, y, z) �→ (−x, −y, z). In so far as one chaotic attractor exists, this symmetry is expected
to apply to chaotic trajectories. To incorporate this symmetry, we take two steps.

The first step is to verify that the Markov states also satisfy this symmetry. Since
σ [1] �→ σ [3], σ [3] �→ σ [1] and σ [2] �→ σ [2] under the symmetry operation, the Markov
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〈x〉 〈y〉 〈z〉 〈xx〉 〈xy〉 〈xz〉 〈yy〉 〈yz〉 〈zz〉
Ensemble −0.0 −0.0 23.8 63.5 63.5 −0.0 63.5 −0.0 642.4

〈xxy〉 〈xxz〉 〈xyy〉 〈xyz〉 〈xzz〉 〈yyy〉 〈yyz〉 〈yzz〉 〈zzz〉
Ensemble 0.0 1713.2 0.0 1713.2 0.0 0.0 1713.2 0.0 17346.1

Table 3. Empirical moments of the Lorenz attractor. A comparison between ensemble averaging and
time averaging.

states, defined by the fixed points of the Lorenz equations, incorporate the symmetry.
Generally, one must apply the symmetry operator to each Markov state and include the
‘symmetry states’ as necessary.

The second step is to incorporate symmetries into the resulting partition dynamics. For
example, in the case of the Lorenz equations, if we observe the sequence

first sequence = 1, 1, 1, 2, 2, 3, 3, 1, 1. (A1)

Then, applying the symmetry operation to the above sequence yields

second sequence = 3, 3, 3, 2, 2, 1, 1, 3, 3. (A2)

We then apply the Bayesian matrix construction on the first sequence and calculate the
posterior distributions. We then use these posterior distributions as the new prior for
a Bayesian matrix construction for the second sequence. Doing so yields a matrix that
incorporates symmetry through data augmentation. Note, one can apply the symmetry
operation to the underlying state time series first, and then apply the classifier to generate
a new sequence of integers.

We show the expected values of the generator under this symmetry augmentation in
table 3. We see that the expected values of quantities that should be zero are now zero.

Similar considerations apply to other types of symmetries. For example, continuous
symmetries can approximated as discrete symmetries, which can then use the methodology
here; and detailed balance can be satisfied through data augmentation, e.g. reverse the
partition dynamics and apply the Bayesian update procedure.

Appendix B. Matrix decomposition into reversible and irreversible dynamics

To further understand the time scales associated with the generator Q, we decompose the
matrix into a negative semidefinite component and a component with purely imaginary
eigenvalues. First, we assume that the generator Q is ergodic so that it has one zero
eigenvalue, and all other eigenvalues have strictly negative real parts.

Let P = [P(M1), . . . , P(Mn)] be the normalized eigenvector corresponding to
eigenvalue λ = 0, where we take the normalization to be

1T
P = 1, (B1)

where 1 is the vector of all ones. We further assume that all entries of the vector P are
strictly positive.
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We split the matrix Q into a negative semidefinite and pure imaginary part as follows:

Q = 1
2 Q + PQTP−1︸ ︷︷ ︸

negative semidefinite

+1
2 Q − PQTP−1︸ ︷︷ ︸

imaginary eigenvalues

(B2)

where P = Diagonal(P) is a diagonal matrix whose entries along the diagonal are the
steady state distribution P. The relation P−1

P = 1 holds. The proof that the matrix Q +
PQTP−1 is negative semidefinite is as follows. First, recall that the autocovariance of an
observable, RE(g, τ ), was defined in (2.44). We first need to show that RE(g, τ ) � RE(g, 0)

for an arbitrary time τ > 0. We introduce the notation [g]n = gn, [exp(Qτ)]mn = wmn, and
[P]n = wn. We rewrite RE(g, τ ) and then use the Cauchy–Schwarz inequality,∑

mn

gnwngmwmn =
∑
mn

(
gn

√
wnwmn

) (
gm

√
wnwmn

)
(B3)

�
√∑

mn

g2
nwnwmn

√∑
mn

g2
mwnwmn. (B4)

The two terms in the square root are both individually RE(g, 0) since∑
mn

g2
nwnwmn =

∑
n

g2
nwn

∑
m

wmn =
∑

n

g2
nwn = RE(g, 0) (B5)

and ∑
mn

g2
mwnwmn =

∑
m

g2
m

∑
n

wmnwn =
∑

m

g2
mwm = RE(g, 0). (B6)

In the first line, we used the fact that the column sum of the operator is one, and in the
second line, we used that wn is an eigenvector with eigenvalue 1 of the wmn matrix. More
intuitively, the relation RE(g, τ ) � RE(g, 0) states that ‘observables decorrelate in time’.

Then,

RT(g, dt) = gT exp(Q dt)Pg ≈ gTPg + dtgTQPg ≤ gTPg ⇒ gTQPg � 0. (B7)

Since QP is negative semidefinite and we can rescale g as h = P−1/2g, the symmetric
part of the matrix Q̃ = P−1/2QP1/2 is negative semidefinite. Noting the similarity
transformations

Q + PQTP−1 = P1/2
[
P−1/2QP1/2 + (P−1/2QP1/2)T

]
P−1/2, (B8)

Q − PQTP−1 = P1/2
[
P−1/2QP1/2 − (P−1/2QP1/2)T

]
P−1/2 (B9)

completes the proof since similar matrices have equivalent eigenvalues.
The matrix S = (Q + PQTP−1)/2 and its matrix exponential exp(Sτ) satisfies detailed

balance since
SP = PST ⇔ exp(Sτ)P = P exp(Sτ)T . (B10)

A way to directly show the latter is to use (B8) by first enacting the transformation
S = P1/2S̃P−1/2 where S̃ is symmetric and then noting that the matrix exponential of a
symmetric matrix is symmetric. This matrix has been commented on before by Froyland
(2005) when constructing a Perron–Frobenius operator for a time-reversible Markov chain.
The antisymmetric matrix is viewed as the appropriate model for a Hamiltonian system
since its matrix exponential yields a unitary operator.
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For a continuous time process with finite state space the equation for the evolution of
probability densities is given by

ṗf = Qpf (B11)

and for the reverse time process (see Anderson (1982) for the continuous state space
analogue), the evolution of probability densities is governed by

ṗr = −PQTP−1pr, (B12)

where the above equation must be evolved backwards in time. The purpose of the second
equation is to determine ‘where I was, given that I know where I am’. Stated differently,
the matrix

PQTP−1 = 1
2

(
Q + PQTP−1

)
− 1

2

(
Q − PQTP−1

)
(B13)

is the generator that one would get if the partition dynamics time series is reversed. Both
Q and PQTP−1 have the same steady state distribution P.

Appendix C. Algebraic interpretation and connection to dynamic mode
decomposition

In the main text we have specified a classifier C that maps state vectors to integers. Now
consider the case where we have a data matrix whose columns are the state vector sn at
time t = tn where we shall assume that the times are evenly spaced. Given m snapshots in
time so that the data matrix D ∈ R

n×m, we assume the extreme case where every state is
mapped to a different integer, e.g. C(sn) = n, so that the sequence of integers becomes

state dynamics = [1, 2, 3, 4, 5, . . . , m]. (C1)

In this case the generator becomes

Q = 1
�t

⎡
⎢⎢⎣

−1 0 0 0 . . .

1 −1 0 0 . . .

0 1 −1 0 . . .
...

...
...

...
. . .

⎤
⎥⎥⎦ , (C2)

where Q ∈ R
m×m. The last column is ambiguous since we have never observed a transition

from the state, but we can simply take the last column to be the zero vector. An alternative
is to artificially add the transition from m → 1 so that the last column has a first entry as
1/�t and the last entry as −1/�t. The ‘last column’ issue becomes negligible in the large
data limit.

Consider the following example where we have

state dynamics = 1, 2, 3, 4, 5 and Q = 1
�t

⎡
⎢⎢⎢⎣

−1 0 0 0 0
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 0

⎤
⎥⎥⎥⎦ . (C3a,b)

Now consider grouping together states according to

C1 = (1, 4), C2 = (2, 5) and C3 = (3) (C4a–c)
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to transform into the partition dynamics

coarse partition dynamics = C1, C2, C3, C1, C2. (C5)

For simplicity we will drop the ‘C’ and simply write

partition dynamics = 1, 2, 3, 1, 2. (C6)

We can account for the partitioning of states algebraically through the introduction of a
new matrix C. The rows of C are associated with a partition and the columns are Boolean
values that assign each time column to a partition. For our example, the matrix C ∈ R

3×5

is

C =
⎡
⎣1 0 0 1 0

0 1 0 0 1
0 0 1 0 0

⎤
⎦ . (C7)

Upon choosing the pseudoinverse

C+=

⎡
⎢⎢⎢⎣

1/2 0 0
0 1 0
0 0 1

1/2 0 0
0 0 0

⎤
⎥⎥⎥⎦ , (C8)

the reduced matrix

Q̃ = CQC+=
⎡
⎣−1 0 1

1 −1 0
0 1 −1

⎤
⎦ (C9)

agrees with the data-driven construction from § 3.1 using the partition dynamics equation
(C6).

In connection to dynamic mode decomposition, we comment that if we take the first
m − 1 columns of E and denote it by X and the last m − 1 columns of C and denote it by
Y , then the Perron–Frobenius operator is given by

Perron–Frobenius = YX+, (C10)

where X+ is the Moore–Penrose inverse of X. In the common parlance of the Koopman
literature, for example Colbrook (2023), we take our nonlinear dictionary to be an indicator
function for partitions, e.g. that is Ψn(s) = 1 if s ∈ Mn and 0 otherwise, i.e. a one-hot
encoding of the partition label. See Klus et al. (2016) for a similar discussion on connecting
the Perron–Frobenius operator to the Koopman operator.

In general introducing a matrix E and pseudoinverse C+ will not agree to within
machine precision with the data-driven construction from § 3.1 and will differ in the
column associated with the last partition in the partition dynamics sequence; however, the
matrix method presented here suggests an extension of the methodology. The columns of
the C matrix can instead be replaced by values that sum up to one. If in addition we require
the entries to be positive we can interpret the columns as probabilistic classifications.
Furthermore, the original Q matrix could be approximated with higher-order difference
formulae. The choice of which pseudoinverse to use offers additional flexibility.
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Appendix D. Simple harmonic oscillator analysis

Consider the system
ẋ = −y and ẏ = x, (D1a,b)

and take the initial condition to be x(t = 0) = 1 and y(t = 0) = 0. The solution is

x(t) = cos(t) and y(t) = sin(t), (D2a,b)

and the analytic generator for this trajectory is

∂tP = −∂s(UP), (D3)

where s ∈ [0, 2π) is the angle, the velocity U = 1, and the domain for the partial
differential equation is periodic. The eigenvalues and eigenvectors for the right-hand side
are (λ)k = ik for k ∈ Z and vk = exp(λks).

Now assume that the data matrix is sampled with frequency

�t = 2π

M
, (D4)

where M is a fixed natural number, i.e. M ∈ N, and that the columns of the data matrix
go from represent the solution from t ∈ [0, 2π] so that discretely the entries of the data
matrix X are

tj = 2π

M
( j − 1), X1j = cos(tj) and X2j = sin(tj) (D5a–c)

for j = 1, . . . , M + 1. First, consider partitioning the system into N = M states where the
classifier is given by which sector of the circle the state is in, for example. We take the
classifier to be

C(x, y) =
[

floor
(

arctan(x, y)
2π

N
)]

%N + 1, (D6)

where the floor function converts rounds down a real number to the closest integer
and arctan(x, y) is a (non-standard) two-argument arctangent function whose range
is [0, 2π), e.g. arctan(1, 0) = 0, arctan(1, 1) = π/4, arctan(−1, −1) = π/4 + π and
arctan(X1j, X2j) = tj mod 2π, see figure 9. We now show that the Perron–Frobenius
operator corresponding to time step �t is consistent with the generator construction. Based
on the data matrix the entries Perron–Frobenius operator F [�t] and generator Q would be
given by

[F [�t]]ij = δi( j+1)%N and Qij = 1
�t

(−δij + δi( j+1)%N
)

(D7a,b)

for example; for M = 4 the matrices are

X =
[

1 0 −1 0 1
0 1 0 −1 0

]
, F [�t] =

⎡
⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎦ and

Q = 1
�t

⎡
⎢⎣

−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1

⎤
⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (D8a–c)

The Perron–Frobenius operator F [�t] is exact for this time scale. The identity F [�t] = I +
�tQ holds for all N. Applying the classifier to X yields the partition dynamics 1, 2, 3, 4, 1.
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Figure 9. State space partition of the simple harmonic oscillator. Here, we partition the state space of the
simple harmonic oscillator into four segments.

Both F [�t] and Q are circulant matrices, so the columns of the discrete Fourier transform
operator are the eigenvectors. The eigenvalues of F [�t] and Q are then given by

(λF )k = exp(i�tk) and (λQ)k = 1
�t

(exp(i�tk) − 1) , (D9a,b)

where k ∈ {0, . . . , N − 1}, respectively. The eigenvalues and eigenvectors of the
continuous state-space Perron–Frobenius operator, formally the matrix exponential of
(D3), e.g. exp(−∂xU·), are aliased to the finite set of values given by (λF )k due to the
time scale �t of observation. The operator norm of the difference ‖F [�t] − exp(Q�t)‖2
is bounded below by 1 + exp(−2) for all even N � 4 (as can be seen by choosing
k = N/2 ⇒ exp(i�tk) = −1). Thus, the two operators do not converge in norm to one
another; however, there is a sense in which the two operators converge to similar answers,
as we will see shortly.

To compare the two eigenvalues, we take the logarithm of λF and divide by �t.
Furthermore, we fix k and consider the limit as N → ∞, i.e. the number of partitions
goes to infinity and �t → 0. In this limit, we have

(λQ)k − ln[(λF )k]
�t

= −�tk2/2 − i�t2k3/6 + O(�t3k4). (D10)

Thus, we see that as �t → 0, for a fixed k, the two constructions agree with one
another; however, to first order, the generator construction induces an extra dissipation
of order −�tk2. We obtain first-order convergence to the real part of the eigenvalue and
second-order convergence to the imaginary part.

To see where this dissipation comes from, we make use of the decomposition from
Appendix B to split the matrix Q into reversible and irreversible dynamics

Qij = 1
�t

(−δij + δi( j+1)%N
)

(D11)

= 1
2�t

(−2δij + δi( j+1)%N + δi( j−1)%N
)+ 1

2�t

(
δi( j+1)%N − δi( j−1)%N

) ; (D12)
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e.g. for M = 4

Q = 1
�t

⎡
⎢⎣

−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1

⎤
⎥⎦ (D13)

= 1
2�t

⎡
⎢⎣

−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

⎤
⎥⎦+ 1

2�t

⎡
⎢⎣

0 −1 0 1
1 0 −1 0
0 1 0 −1

−1 0 1 0

⎤
⎥⎦ . (D14)

The first matrix is the discrete Laplacian on a periodic grid, and the latter is the central
difference operator on a grid. Both matrices are circulant matrices and, therefore, commute
with one another. (The matrix logarithm of F [�t] divided by �t is a Fourier spectral
differentiation matrix, see Trefethen (2000).) The Q matrix is precisely the form of a
finite-volume upwinding approximation to the advection operator on a periodic grid.
Furthermore, their eigenvalues are given by the real and imaginary parts of the eigenvalues
of Q, and the contribution to the dissipative part of the spectrum comes purely from the
discrete Laplacian part of the decomposition.

Concretely, we use that �s = U�t, where here the velocity is U = 1, �s is the size of
the state-space volume, and then multiply the discrete Laplacian by 1 = �s/�s to obviate
the grid-scale-dependent diffusivity constant of U�s/2 in front of the discrete Laplacian,

Q = U�s
2�s2

⎡
⎢⎣

−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

⎤
⎥⎦+ U

2�s

⎡
⎢⎣

0 −1 0 1
1 0 −1 0
0 1 0 −1

−1 0 1 0

⎤
⎥⎦ (D15)

≈ U�s
2

∂2
s − U∂s. (D16)

Thus, the amount of dissipation automatically decreases upon cell refinement. In summary,
the data-driven method of § 3 provides the implicit regularization common to upwinding
schemes for this example. We expect that such an implicit regularization is generally true
for other systems, and thus, the generator approximation will be overly dissipative.

Given that we know the simple harmonic oscillator is purely periodic, we can achieve
higher-order convergence to the eigenvalues of F [�t] simply by removing the dissipative
part of the spectrum. Doing so respects the algebraic structure of the continuous system.

We now describe another limit where the Perron–Frobenius operator and generator
converge in norm to one another. We now consider the limit with a fixed number of
partitions but finer �t data resolution and infinite data. Here, we fix the number of
partitions to N and examine the limit as M = LN for L → ∞. This refinement increases
the temporal resolution of the data matrix for the same physical time. The classifier

C(x, y) =
[

floor
(

arctan(x, y)
2π

N
)]

%N + 1 (D17)

divides the circle into N evenly spaced sectors, each with the same discrete number of
points inside, see figure 9. A trajectory spends the same physical time 2π/N inside a
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given partition. For all L � 1 the Q matrix is given by

Qij = N
2π

(−δij + δi( j+1)%N
)

(D18)

since the amount of time spent remains constant. We now examine the convergence of
ln(F [�t])/�t where �t = 2π/(LN) and ln is the matrix logarithm, to the Q matrix. For
L = 1, we have

[F [�t]]ij = δi( j+1)%N (D19)

as before, and the general case is

[F [�t]]ij = L − 1
L

δij + 1
L

δi( j+1)%N . (D20)

The intuition behind the above formula is that we observe L − 1 transitions within a sector
and 1 transitions out of a sector of the circle. We observe that the identity

(F [�t] − I)/�t = Q (D21)

holds for all L and thus

ln
(F [�t]) = ln (I + �tQ) ≈ �tQ + O

(
�t2

)
(D22)

as �t → 0. Hence ln(F [�t])/�t → Q (in the operator norm) as L → ∞ or equivalently
�t → 0.

Note the difference between the two notions of convergence. In the first, we examine
the infinite partition limit with the finest level of refinement, whereas the latter uses
a finite partition but examines convergence to the Q matrix. We see two things in the
simple harmonic oscillator case. First, the generator approximation is consistent with the
Perron–Frobenius operator in the dual limit �t → 0 and N → ∞. In the simple harmonic
oscillator case, the Perron–Frobenius operator was exact (due to aliasing). Thus, all the
errors are in the generator approximation, which is equivalent to a first-order upwinding
scheme. In the fixed partition and �t → 0 limit, the generator approximation remains the
same for all data resolutions for which a trajectory spends at least a �t amount of time
within a partition. In this case, the Perron–Frobenius operator converges to the generator
approximation in the infinite temporal resolution limit. All cases were examined in the
infinite data limit, e.g. T → ∞. Thus, we always first took the T → ∞ limit, followed
by either the dual limit where �t → 0 and the number of states went to infinity N → ∞
simultaneously, or kept the number of states N finite while refining �t.
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