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The dimensional transition in turbulent jets of a shear-thinning fluid is studied via
direct numerical simulations. Our findings reveal that under vertical confinement,
the flow exhibits a unique mixed-dimensional (or 2.5-dimensional) state, where
large-scale two-dimensional and small-scale three-dimensional structures coexist. This
transition from three-dimensional turbulence near the inlet to two-dimensional dynamics
downstream is dictated by the level of confinement: weak confinement guarantees
turbulence to remain three-dimensional, whereas strong confinement forces the transition
to two dimensions; the mixed-dimensional state is observed for moderate confinement and
it emerges as soon as flow scales are larger than the vertical length. In this scenario, we
observed that the mixed-dimensional state is an overall more energetic state, and it shows
a multi-cascade process, where the direct cascade of energy at small scales and the direct
cascade of enstrophy at large scales coexist. The results provide insights into the complex
dynamics of confined turbulent flows, relevant in both natural and industrial settings.
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1. Introduction

The flow of a low-viscosity fluid at high speed is chaotic in nature. The energy injected
to sustain this state is transferred from large to small eddies, down to a particular scale
from which it is dissipated by the viscosity of the fluid (Kolmogorov 1941). Conventional
turbulence in three dimensions fulfils this description, whereas new phenomena appear
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in two dimensions. Energy transfer in two-dimensional (2-D) turbulence is dictated
by a double cascade scenario: an inverse cascade of kinetic energy to large scales,
and a direct cascade of enstrophy (squared vorticity) to small scales (Kraichnan 1967;
Batchelor 1969; Boffetta 2007). Certainly, no physical system is 2-D in reality, though
2-D turbulence becomes relevant if one spatial direction is greatly constrained, e.g. by
geometry (Boffetta et al. 2012; Boffetta & Ecke 2012). For instance, the large-scale
motions in atmospheric flows comply with 2-D turbulence (Charney 1971; Nastrom, Gage
& Jasperson 1984; Lindborg 1999). In this case, the flow domain is subdued to a large
aspect ratio: the horizontal lengths are much larger than the height of the atmospheric
layer.

The confinement in thin layers can induce a rich phenomenology in turbulent flows
that, if forced at intermediate scales, produces a split energy cascade (Smith, Chasnov
& Waleffe 1996; Celani, Musacchio & Vincenzi 2010; Alexakis & Biferale 2018). Under
these circumstances, a portion of the energy flows to the large scales in a 2-D fashion.
Conversely, the remaining part cascades toward the small viscous scales. Interestingly, a
direct cascade of enstrophy can develop simultaneously at scales smaller than the forcing
but larger than the thickness of the layer, and three-dimensionality becomes relevant
only at much smaller scales (Musacchio & Boffetta 2017). Nevertheless, the presence of
physical confinement (e.g. using solid boundaries) is not compulsory to observe the split
energy cascade. In fact, numerical simulations in a fully periodic box with one dimension
much smaller than the others have shown this phenomenon (Smith et al. 1996; Celani et al.
2010). Despite this, its occurrence changes with the boundary conditions. For example,
the development of the shear layer in wall-bounded flows restricts the development of 2-D
dynamics (Byrne, Xia & Shats 2011; Boffetta et al. 2023).

Here, we consider a planar jet, i.e. the flow is injected through a plane slit of half-width
h in a computational box periodic in the vertical direction z. We adopt a shear-thinning
fluid in which the viscosity decreases nonlinearly for increasing values of the shear rate.
A similar flow configuration, although at a much higher characteristic Reynolds number,
can be found at the outflow of a river into the sea. Differences in salinity, temperature
and density between the freshwater stream and the salt water can impede mixing, thus
leading to the formation of a stratified flow with a (thin) layer of freshwater flowing
over salt water. The presence of suspended bacteria and microalgae in the freshwater
stream grants non-Newtonian features to the fluid, such as shear-dependent viscosity
(Al-Asheh et al. 2002; Zhang et al. 2013). Our simulations are performed at a much
lower value of the Reynolds number, hence there is no direct application of our findings
to the flowing regimes found at the outflow of a river; the low value of the Reynolds
number allows instead for direct comparisons with experiments. The present configuration
can be achieved easily in laboratory experiments; the shear rheology of the fluid used
in our simulations corresponds to that of a 100:60 mM CPyCl:NaSal worm-like micelle
solution (Haward, Hopkins & Shen 2021). This work thus constitutes a preliminary
step in understanding the flow dynamics of geophysical flows, such as the outflow of a
river rich in bacteria or microalgae, which are instead characterized by a much larger
Reynolds number. The selected parameters make our numerical set-up easily testable
by experiments (recent experimental work by Yamani et al. (2023) addressed the flow
of a viscoelastic planar jet at low Reynolds number), whereas the effect of physical
confinement is attenuated by the shear-thinning characteristic of the fluid, which reduces
the extent of the shear layer (viscosity decreases at the wall boundaries in the experimental
set-up).
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Within this framework, we show that when the thickness of the domain is large,
the flow is completely three-dimensional (3-D), while when it is small, it is fully
2-D. Interestingly, for intermediate cases, the flow spatially transitions from 3-D close
to the inlet to 2-D further downstream, with the two regimes being connected by a
region of mixed-dimensional turbulent dynamics where the constraint modulates the
largest scales towards two dimensions, and the smaller ones remain 3-D. We indeed
observe, at intermediate levels of vertical constraint, a multi-cascade process, where both
a direct cascade of energy at small scales and a direct cascade of enstrophy at large
scales coexist.

2. Numerical method

The motion of the incompressible, shear-thinning fluid is governed by the mass and
momentum conservation equations,

∇ · u = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · [μ(γ̇ ) (∇u + ∇uT)], (2.2)

respectively. In the above equations, u is the local flow velocity, ρ is the density, p is the
pressure, and μ is the local viscosity. We adopt an inelastic, shear-thinning fluid, whose
behaviour is defined via the Carreau fluid model (Bird, Hassager & Abdel-Khalik 1974).
The local viscosity μ depends on the local shear rate γ̇ as

μ(γ̇ ) = μ∞ + (μ0 − μ∞)[1 + (λγ̇ )2](n−1)/2, (2.3)

where λ is the fluid consistency index, and μ0 and μ∞ are the zero-shear viscosity and the
viscosity for γ̇ → ∞, respectively. We set the power-law index n = 0.2, thereby obtaining
a strong shear-thinning effect. The local shear rate is defined as γ̇ = √

2S : S, where S =
(∇u + ∇uT)/2 is the shear rate tensor.

The Navier–Stokes equations are discretized on a uniform, staggered, Cartesian grid;
the fluid velocities are located at the cell faces, whereas pressure and viscosity are defined
at the cell centres. The fluid viscosity is updated at every time step following (2.3). The
spatial derivatives are approximated using second-order finite differences in all directions.
The system is advanced in time through a second-order Adams–Bashforth scheme coupled
with a fractional step method (Kim & Moin 1985). The divergence-free velocity field is
enforced by solving the Poisson equation for the pressure using an efficient solver based
on the fast Fourier transform. We resort to the domain decomposition library 2decomp
(http://www.2decomp.org) and the MPI protocol to parallelize the solver. The numerical
solver is implemented in the in-house solver Fujin (https://groups.oist.jp/cffu/code).

3. Problem set-up

We have addressed this study by means of 3-D direct numerical simulations; the
computational box has sizes Lx = 160h in the streamwise direction, Ly = 240h in the
jet-normal direction, and 0.83h ≤ Lz ≤ 13.33h in the spanwise direction. The vertical
length Lz is varied among simulations: we consider five distinct simulations with
Lz = 0.83h, 1.67h, 3.33h, 6.67h, 13.33h, respectively. The thinnest domain (Lz = 0.83h)
introduces a strong vertical constraint in order to allow the development of a 2-D
flow, which is progressively relaxed as Lz is increased, while still maintaining a thin
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computational domain, so Lz � Lx ∼ Ly. The planar jet is generated by fluid injected
with a uniform velocity U through a planar slit of width 2h spanning the entire
height of the domain (z direction). At the inlet boundary, we impose no-slip and
no-penetration boundary conditions, with an exception made for the inlet portion,
where we impose a plug-flow velocity profile. At the outlet boundary (x = Lx), we
use a non-reflective boundary condition (Orlanski 1976). At the side boundaries (y =
0 and y = Ly), we impose free-slip and no-penetration boundary conditions. Finally,
at the top and bottom boundaries (z = 0 and z = Lz), we impose periodic boundary
conditions.

We select a low value of the inlet Reynolds number (ratio of inertial to viscous effects)
Re = ρhU/μ0 = 20. It should be noted that Newtonian planar jets are laminar at this value
of Re (Sato & Sakao 1964; Sureshkumar & Beris 1995; Deo, Mi & Nathan 2008; Soligo
& Rosti 2023), thus any turbulent motion is caused exclusively by the shear-thinning in
the flow. Turbulence, however, is still Newtonian, as it originates by the prevalence of
inertial over viscous terms. The non-Newtonian character of the flow indeed promotes the
onset of the instability, so the transition to turbulence is at markedly lower Re compared
with Newtonian planar jets (Ray & Zaki 2015; Soligo & Rosti 2023; Yamani et al. 2023).
The non-Newtonian contribution is described using the Carreau number, defined as Cu =
hλ/U = 100. The ratio between the zero-shear viscosity and the infinite-shear viscosity is
set to μ0/μ∞ = 50.

To verify the independence of our results on the specific parameters selected, we
perform two additional simulations at a set Lz = 3.33h, and we double either the Reynolds
number (Re = 40) or the Carreau number (Cu = 200). The reference case (Lz = 3.33h,
Cu = 100 and Re = 20) exhibits a mixed-dimensional turbulent regime, where features
from 2-D and 3-D turbulence are found simultaneously in the flow (see figure 1). In the
cases at higher Re or Cu, we expect turbulence to be enhanced. The Reynolds number
is increased by reducing the zero-shear viscosity (and consequently the infinite-shear
viscosity, defined as μ∞ = μ0/50), whereas the Carreau number is increased by changing
the fluid consistency index λ, keeping the zero-shear and infinite-shear viscosities
unchanged. This way, the transition towards the infinite-shear viscosity occurs at a smaller
shear rate compared with the case at Cu = 100.

We adopt a uniform grid spacing in all spatial directions for all cases; in x and y,
the domain is discretized using Nx × Ny = 1536 × 2304 grid points, while the number
of points in the z direction depends on the height of the domain, namely Nz =
8, 16, 32, 64, 128 for increasing heights. We ensured that the grid resolution is adequate
by computing the ratio between the grid spacing Δ and the mean Kolmogorov length scale
η:

η =
( 〈ν〉3

〈ε〉
)1/4

, (3.1)

where ν is the local kinematic viscosity, and ε is the viscous dissipation; angle brackets
indicate averaging in time and in the vertical direction z. In the cases characterized by
the highest turbulence intensity, Re = 40 and Cu = 200, the Kolmogorov length scale
is always η � 0.5Δ (where Δ is the grid spacing, uniform in the three directions). The
smallest values of the Kolmogorov length scale are encountered at the jet centreline within
the region 15h < x < 30h; beyond x = 40h, the Kolmogorov length scale is always larger
than the grid spacing, thus ensuring that the grid resolution chosen is adequate for all
cases.
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Figure 1. Effect of the constrained dimension Lz in the turbulent planar jets. (a–c) Magnitude of the
instantaneous vorticity field ‖ω‖U−1h in the z = Lz/2 plane for the 3-D, mixed-dimensional and 2-D
planar jets, respectively. The insets show a zoomed view of the region near the inlet at x = [0, 20h], y =
[−5h, 5h]. (d–f ) Power spectra of the turbulent kinetic energy computed at the jet centreline at distances
x = 40h, 80h, 120h from the inlet. The spectra follow the typical f −5/3 scaling if turbulence is primarily 3-D
(red). In 2-D turbulence (blue), instead, the flow exhibits an f −3 decay that becomes steeper as x increases,
tending towards f −5 in the most constrained planar jet.

4. Results

4.1. Effect of vertical confinement
Figure 1 shows the impact of Lz on the turbulent planar jets, in which, as anticipated, the
constraint dictates the turbulent regime in the flow. Consequently, the morphology of the
vorticity structures changes significantly with Lz (see figures 1a–c). We first observe that
turbulence is 3-D if the flow is not constrained, i.e. for sufficiently large values of Lz. A
complete different flow structure is instead observed at low values of Lz, in which large
vortices form dipoles (pairs of counter-rotating vortices) that are advected downstream,
and no small-scale flow structures are observed, thus indicating that turbulence is mainly
2-D. The flow does not transition in bulk from 3-D to 2-D when changing Lz, with the
planar jet experiencing an intermediate state where both 3-D and 2-D structures are present
in the flow at the same time. This transitional regime, hereafter termed mixed-dimensional
(or 2.5-D), is characterized by the simultaneous coexistence in the flow of large-scale 2-D
and small-scale 3-D structures.

Next, we inspect the energy spectra in figures 1(d–f ). Note that we compute the velocity
spectra in time rather than in space by recording velocity data over time from a probe
placed on the centreline of the jet, similarly to what is done in experiments. Computing the
power spectra in time rather than in the vertical direction allows us to have a wider energy
spectrum that is not limited by the height of the domain. The equivalence of time and
space spectra has been demonstrated in the past (Namer & Ötügen 1988; Soligo & Rosti
2023). As is clearly shown in the figures, Lz influences the energy cascade, which depicts a
different behaviour depending on the regime of turbulence. First, the least constrained jet
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shows the conventional f −5/3 scaling for 3-D turbulence (Kolmogorov 1941). Consistently,
we observe the energy cascade typical of 3-D turbulence: the jet instability gives energy
to the flow, and it generates large structures that break down in progressively smaller and
smaller eddies. As the vortices move downstream, the characteristic shear rate reduces –
hence viscosity increases – and energy is dissipated. We expect to recover the power-law
scaling for the 3-D turbulence energy cascade as the turbulent motions are Newtonian:
they are generated by the competition of inertial and viscous terms (Soligo & Rosti 2023).
Eventually, dissipation becomes relevant at every scale, and the cascade is impeded:
the scaling f −5/3 is not present at x = 120h. On the other hand, the most constrained
case exhibits 2-D flow and scaling f −3. Here, the 3-D cascade is clearly disrupted, and
2-D phenomena become dominant (Kraichnan 1967; Batchelor 1969). The change in
the flowing regime observed here is due only to the vertical confinement: we adopt a
non-Newtonian fluid model that is characterized by the presence of shear-thinning alone
(there are no viscoelastic effects). The spectrum becomes steeper as x increases, and it
eventually seems to saturate at f −5. The steepening of the energy spectrum agrees with
the appearance of dispersed large-size coherent vortices in the flow (Basdevant et al.
1981; McWilliams 1984; Benzi et al. 1986; Legras, Santangelo & Benzi 1988). Note that
the change in the vertical constraint also alters the instability in the region close to the
inlet: for strong vertical constraint (small Lz), we observe a flapping motion of the shear
layers, whereas puffing motion dominates when the constraint is relaxed (large Lz). The
flapping dynamic is associated with the antisymmetric, sinuous mode that destabilizes
the flow more substantially, thus injecting more energy (Mattingly & Criminale 1971),
as also observed by the energy spectra close to the inlet, which are shifted upwards in
two dimensions compared with the 3-D case. Finally, the mixed-dimensional planar jet
exhibits features from both 3-D and 2-D planar jets: the scaling f −5/3 is found close to
the inlet, and it changes towards f −3 downstream. The spectrum becomes slightly steeper
further downstream, consistent with the appearance of the coherent vortices. Similarly
to the 2-D jet, the flow is more energetic close to the inlet. Very close to the inlet, the
vorticity fluctuations look closely related to those in the 3-D case, implying the existence
of puffing events connected to the varicose mode (Sato 1960; Mattingly & Criminale
1971). However, flapping motions soon become dominant, and the macroscopic vorticity
structures resemble those from the 2-D planar jet, thus indicating the presence of the more
energetic sinuous mode.

To better characterize the different natures of the turbulent fluctuations at each scale,
we now calculate the longitudinal velocity differences 	u(r) = (u(x + r) − u(x)) · r/|r|.
Concretely, we introduce the third-order structure function S3(r) = 〈(	u)3〉, where the
angle brackets indicate averaging in time and in space, shown in figure 2 for the different
cases analysed. Appendix A reports in detail how the computation of the structure
function was performed. A remarkable property of S3 is that it denotes whether the flow
scales are 2-D or 3-D, depending on its sign (Kolmogorov 1991; Lindborg 1999), and
it can help in understanding the direction of the energy and enstrophy fluxes (Bernard
1999; Cho & Lindborg 2001; Cerbus & Chakraborty 2017). In the particular case of
2-D turbulence, S3 is positive (Lindborg 1999), whereas it is negative if turbulence is
3-D (Kolmogorov 1991). Indeed, we observe that S3 is positive (2-D flow) for the most
constrained case (Lz = 0.83h), whereas it is negative (3-D flow) for the least constrained
case (Lz = 6.67h, 13.33h). Furthermore, the scaling of S3 outlines the preferred cascade
process, thus indicating the direct cascade of enstrophy in the 2-D case (S3 ∼ r3), and the
direct cascade of energy in the 3-D counterpart (S3 ∼ −r). While the scaling S3 ∼ r3 is
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Figure 2. Third-order structure functions S3 of the longitudinal velocity fluctuations for different
vertical constraints Lz. We compute S3 at x = 40h at the flow centreline for each planar jet: Lz =
0.83h, 1.67h, 3.33h, 6.67h, 13.33h. We show the absolute value |S3| for clarity, and we indicate with colours
whether S3 is positive (blue) or negative (red), so that the corresponding turbulent scales are either 2-D or
3-D. Consequently, the scaling for |S3| changes as Lz is shifted towards larger values. We report also the two
scalings: S3 ∼ r3 if turbulence is 2-D, corresponding to a direct cascade of enstrophy, and S3 ∼ −r if it is 3-D,
thus denoting a direct cascade of energy. The plots are shifted vertically for better readability.

visible for 2-D turbulence, we do not observe a clear S3 ∼ −r scaling for all 3-D turbulence
cases. We do not find evidence of an inverse mechanism of energy transfer toward the
large scales in the 2-D case. This is not surprising if we consider that energy is injected
in the flow through the planar slit, thus not forcing the flow at any intermediate scale
(Boffetta 2007; Boffetta & Ecke 2012). More interestingly, turbulence is characterized
by a mixed-dimensional regime for the right choice of Lz. The 2-D and 3-D scales are
present simultaneously in the flow for Lz = 1.67h, 3.33h. In these cases, large scales are
2-D, while the small ones are 3-D, with the transition between regimes happening at some
intermediate scale. This transition is strongly dependent on the height of the domain, and
it can be delayed further in x for increasing values of Lz.

To further investigate the transition between regimes, we choose a mixed-dimensional
planar jet, in particular Lz = 3.33h, and we calculate S3 repeatedly at several distances
from the inlet. Results are summarized in figure 3(a). Close to the inlet, the flow is 3-D;
the effect of the vertical constraint does not hinder the development of the 3-D regime.
The largest flow scale is smaller than the geometrical constraint, thus not compromising
the energy cascade of the 3-D flow. We report the presence of a single scaling, S3 ∼
−r, typical of the direct energy cascade. At intermediate distances x = [40h, 100h],
a mixed-dimensional regime appears: both 2-D and 3-D regimes coexist, with 3-D
turbulence characterizing the small scales, and 2-D turbulence characterizing the large
scales. Here, the vertical confinement hinders the development of 3-D turbulence at the
largest scales, while it has no effect on the 3-D turbulence at the smallest scales. In this
case, we have the simultaneous presence of a direct energy cascade (S3 ∼ −r) at small
scales and a direct enstrophy cascade (S3 ∼ r3) at large scales. We report in the inset of
figure 3(a) the scale at which the structure function changes sign, i.e. the scale where the
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Figure 3. Third-order structure functions S3 of the longitudinal velocity fluctuations at different distances
from the inlet. (a) Plots of S3 computed at distances x uniformly separated along the jet centreline (x =
20h, 30h, . . . , 140h) for the 2.5-D turbulent planar jet with Lz = 3.33h. We indicate whether the turbulent
scales are 2-D or 3-D with colours, similarly to figure 2. The plots are shifted vertically for better readability.
The inset shows the scale r at which S3 changes its sign. Red and blue markers are used for fully 3-D and 2-D
structure functions, respectively, with purple markers for those showing both regimes. Note that if S3 does not
change sign, then we mark either the largest 3-D scale or the smallest 2-D one. Plots of S3 for (b) the least
constrained (Lz = 13.33h) or 3-D jet, and (c) the most constrained (Lz = 0.83h) or 2-D jet, are shown in a
fashion similar to that in (a), where we computed S3 at three distances x = 40h, 80h, 120h at the jet centreline.
In these cases, S3 has the same sign throughout x, thus displaying a single scaling at all distances dependent on
the dimensionality of the flow.

flow transitions from 3-D to 2-D, so the largest 3-D scale in the flow. We observe that
as soon as the jet thickness, which corresponds to the largest r, reaches the size of the
vertical confinement, the largest scales become 2-D. (The jet thickness is defined as the
distance from the centreline at which the streamwise velocity equals half of the centreline
velocity.) However, some scales between the largest ones and the vertical confinement Lz
remain 3-D, causing the largest 3-D structures to be anisotropic. Moving downstream,
the anisotropy of the largest 3-D structures grows up to a value approximately 3Lz at
x ≈ 60h, after which the flow becomes more and more 2-D. Eventually, we observe that
the flow becomes completely 2-D at the farthest distances from the inlet, x ≥ 120h, where
the characteristic flow scales are the largest, and the vertical confinement impedes the
development of 3-D flow at all scales. We indeed observe a scaling of S3 compatible with
the direct enstrophy cascade (S3 ∼ r3). The range of scales observed at each distance from
the inlet depends on two factors: the characteristic length scale of the jet (the jet thickness)
and the local viscosity. Both of these quantities increase with increasing distance from the
inlet of the jet; the jet thickness determines the largest scale in the flow, while the local
viscosity is among the factors determining the eventual development of 3-D turbulent
motions.
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The 2.5-dimensional turbulence in shear-thinning jets

Finally, we perform the same analysis on the least (Lz = 13.33h) and most (Lz =
0.83) constrained jets at several locations on the jet centreline, x = 40h, 80h, 120h (see
figures 3b,c). In these cases, S3 has the same sign throughout x, indicating that turbulence
is either 3-D (S3 < 0) or 2-D (S3 > 0) in the planar jet. For the 3-D planar jet, the structure
function approaches the scaling for the direct cascade of energy, S3 ∼ −r, at intermediate
values of the separation distance r. On the other hand, the scaling for S3 in the 2-D
planar jet shifts towards S3 ∼ r3, indicating instead the presence of the direct cascade
of enstrophy. More interestingly, the scaling holds for small separation distances further
from the inlet. This is in good agreement with the concept of the enstrophy cascade as
a space-filling phenomenon, thus being present at very small scales (Benzi et al. 1986).
Additionally, S3 follows an anomalous behaviour at large and intermediate r. As observed
in figure 1, large-size coherent vortices emerge far away from the inlet, which interrupt the
enstrophy cascade. At these distances, turbulence becomes more intermittent as velocity
fluctuations are localized in the vortexes.

4.2. Effects of Re and Cu in 2.5-D turbulence
In the previous subsection, we observed that constraining the flow in the vertical direction
leads to a transition in the turbulent flow, from 3-D turbulence (large Lz), to a mixed
2.5-D state (intermediate Lz), and finally to 2-D turbulence (low Lz). We now consider an
intermediate case, Lz = 3.33h, characterized by mixed-dimensional (2.5-D) turbulence,
and investigate the sensitivity of the flow dimensionality on the problem parameters. We
separately test the effect of a flow parameter, the inlet Reynolds number Re, and of the
fluid rheology. Specifically, we consider a case at a higher Reynolds number, Re = 40,
and a case at a higher Carreau number, Cu = 200. An increase in either parameter results
in a higher local Reynolds number. The increase in the inlet Reynolds number is attained
by halving the reference, zero-shear viscosity μ0 (the infinite-shear viscosity is reduced
accordingly, μ∞ = μ0/50), whereas the Carreau number is increased by doubling the fluid
consistency index λ with all other parameters left unchanged. The effect of the power-law
index n was not tested, as a reduction of n leads to negligible changes in the fluid rheology,
and an increase of n leads to a laminarization of the jet fluid, due to an increase in the
local viscosity. An increase in the Carreau number shifts the transition towards the
infinite-shear viscosity at lower values of the local shear rate γ̇ .

We report data from these two additional cases, for Re = 40 (figures 4a,c) and Cu = 200
(figures 4b,d). The turbulent kinetic energy power spectrum (figures 4a,b) shows similar
results to the reference case (Lz = 3.33h, Re = 20 and Cu = 100): 3-D and 2-D regimes
coexist (large 2-D scales and small 3-D scales). Near the inlet, x = 40h, we observe
3-D turbulence characterized by the f −5/3 scaling of the energy spectrum; as we move
downstream, the vertical constraint forces turbulence to the 2-D regime, as indicated by
the scaling f −3. However, for the case at larger Carreau number, Cu = 200, we observe a
steepening of the power spectrum away from the inlet: at x = 120h, the power spectrum
approaches the scaling f −5, similarly to what is observed in the more constrained cases.
The cases at higher Re or Cu are characterized by a widening of the region where the
power-law scalings are observed: the wider separation of scales is due to the higher value
of the local Reynolds number. Also, the third-order structure functions S3, reported in
figures 4(c,d) at three different streamwise positions, show that the flow is characterized
by a mixed-dimensional regime, similarly to what is observed for the reference case,
figure 3(a). We observe that for the Cu = 200 case, the onset of the mixed-dimensional
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Figure 4. Effects of Re and Cu in the mixed-dimensional turbulent planar jet (Lz = 3.33h). (a,b) The power
spectrum computed at the jet centreline at distances x = 40h, 80h, 120h from the inlet. The 3-D turbulence
scaling f −5/3 (red) and the 2-D turbulence scaling f −3 (blue) are reported for reference. (c,d) The third-order
structure function S3 at increasing streamwise distances, x = 40h, 80h, 120h. Red markers identify 3-D
turbulence, and blue markers identify 2-D turbulence. The expected scalings r (3-D) and r3 (2-D) are reported
for reference. (e) The transition scale r at which S3 changes sign as a function of the streamwise position.
Markers identify the different cases: squares for Re = 40, diamonds for Cu = 200, and circles for the reference
case (Re = 20, Cu = 100). The colour of the marker defines the dimensionality of the flow: red for 3-D
(S3 < 0), blue for 2-D (S3 > 0), and purple for 2.5-D (S3 changes sign). The inset reports the transition scale r
normalized by the local jet thickness 2δ.
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regime occurs at a larger distance from the inlet: at x = 40h, the structure function is
negative at each scale, thus denoting the absence of 2-D turbulence. At positions further
downstream, both the Re = 40 and Cu = 200 cases show a transition between 2-D and
3-D very similar to the reference case.

The scale at which we observe transition between 2-D and 3-D turbulence is reported in
figure 4(e) for different streamwise positions. This transition scale is defined as the scale r
where the third-order structure function changes sign, from S3 < 0 (3-D) to S3 > 0 (2-D),
and corresponds to the largest 3-D scale attained at the specific streamwise position. We
use markers to differentiate the various cases (squares for Re = 40, diamonds for Cu =
200, and circles for the reference case) and colours to identify the regime: red for 3-D
turbulence (r corresponds to the largest scale, 2δ), purple for 2.5-D (r corresponds to the
transition scale), and blue for 2-D (r corresponds to the smallest scale considered). As seen
in figure 4(d), the case at higher Cu shows a later transition, at x > 60h, whereas the case at
higher Re exhibits a transition length scale very similar to the reference case. The transition
from 3-D to 2.5-D turbulence is initiated at a scale similar to twice the jet thickness,
r ≈ 1.5δ, as shown in the inset in figure 4(e), and as we move downstream, it becomes
much smaller than the jet thickness. For the reference and Re = 40 cases, we observe
a non-monotonic trend in the transition scale r (purple markers), initially increasing up
to x = 60h and decreasing past this streamwise position. The decreasing pattern for x ≥
70h is shown as well by the Cu = 200 case, which instead shows only the monotonically
decreasing trend (for x ≥ 70h, the first streamwise position at which mixed-dimensional
turbulence is reported). The maximum transition scale, achieved at approximately x =
70h, is approximately 3Lz for all cases. We report as well a difference in the transition
from 2.5-D to 2-D among the three cases: the flow becomes 2-D for both the Cu = 200
case (at x = 140h) and the reference case (at x = 130h). The Re = 40 case remains instead
characterized by mixed-dimensional turbulence and does not show a transition to 2-D
turbulence within the length of the simulation domain. Nevertheless, we observe that the
size of the transition scale r decays with the streamwise position, thus indicating that
eventually the flow will become 2-D at a large enough distance from the inlet. We attribute
the difference in the 2.5-D to 2-D transition to the lower viscosity of the fluid: the Re = 40
case is characterized by a lower reference zero-shear (and also infinite-shear) viscosity,
thus delaying the transition to 2-D turbulence.

5. Conclusions

We have studied via direct numerical simulations how the vertical confinement of a
turbulent planar jet can alter its dimensionality. We show that under the right constraint,
a mixed-dimensional (2.5-D) turbulent regime appears, that is characterized by the
simultaneous presence of large-size 2-D and small-size 3-D scales. The onset of this
particular regime is dictated by the size of the constrained dimension Lz: as soon as
the flow scales become larger than Lz, 2-D flow structures appear. This transition is
postponed further downstream as the flow is less constrained (increasing Lz). Therefore,
for sufficiently large Lz, turbulent scales are simply 3-D along the jet, and the direct
cascade of energy is enabled. Conversely, a strong confinement (small Lz) makes the
flow 2-D: the direct cascade of energy is disrupted, and the direct cascade of enstrophy
takes place. Both cascades are conserved wherever the mixed-dimensional turbulent state
is present: the direct cascade of energy is active at small scales, whereas the direct cascade
of enstrophy dominates at large scales. The generality of these findings has been tested:
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two additional cases, one at a higher inlet Reynolds number and one at a higher Carreau
number, have been investigated for the mixed-dimensional case, Lz = 3.33. We report that
the mixed-dimensional turbulent regime is still observed at both higher Re and higher Cu:
the flow is still characterized by large 2-D and small 3-D scales. The largest transition
scale, marking the largest 3-D turbulent scales, is attained at x = 70h for the three cases
(Re = 40, Cu = 200 and reference case). Minor differences are observed in the transition
from 3-D to 2.5-D, with the Cu = 200 case showing 2.5-D turbulence further downstream,
and in the transition from 2.5-D to 2-D, which does not occur within the computational
domain for the Re = 40 case. We expect that considering a turbulent Newtonian jet (at
a comparable inlet local Reynolds number) would have similar effects of increasing the
inlet Reynolds number (Re = 40 case, see figure 4e): the region characterized by 2.5-D
turbulence widens, and the transition to 2-D flow shifts downstream. A Newtonian fluid
lacks any shear-thinning properties, so it is not characterized by a local viscosity increasing
with the streamwise position, thus allowing smaller turbulent structures to exist over a
longer distance from the inlet. To better quantify this effect, a complete comparison with
Newtonian turbulence is required, and may be the object of a future study. In addition,
when increasing either the Reynolds number or the Carreau number, we found that the
mixed-dimensional configuration is an overall more energetic state, thus partially retaining
the three-dimensionality in the flow while deferring the emergence of 2-D strong vortical
structures further downstream from the inlet. The direct enstrophy and energy cascades,
and the respective scalings that we report here, are the same as for a Newtonian fluid: the
Carreau fluid is a non-Newtonian fluid model characterized by shear-thinning alone, which
allows us to attain Newtonian turbulence at a relatively low Reynolds number.
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Appendix A. Structure function in planar jets

The pth-order structure function is defined as the pth moment of velocity differences
(Frisch 1995):

Sp(r) = 〈(	u)p〉. (A1)

Angle brackets indicate averaging in time, in the vertical direction z, and over velocity
differences separated by the same distance r = |r|.

The structure function is computed within a cylinder (in red in the sketch in figure 5) at
a set distance D from the inlet. The cylinder axis is aligned with the vertical direction z,
and its radius is equal to the jet thickness at distance D from the inlet, i.e. δ(D). The jet
thickness δ is defined as the distance from the centreline at which the streamwise velocity
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Figure 5. Calculation of the differences of velocity 	u in the planar jet. The differences of longitudinal
velocity u|| between points separated by a distance r are computed among points within the red cylinder.

equals half of the centreline velocity. Longitudinal velocity differences

	u(r) = u||(x + r) − u||(x) = (u(x + r) − u(x)) · r/|r| (A2)

are computed across points located at distance r lying within the cylinder; structure
function data are then averaged over time and over a couple of points separated by the same
separation distance r (angle brackets in (A1)). As the slenderness of the cylinder changes
among different vertical constraints and different streamwise positions (for instance,
slender cylinder for x = 40h and Lz = 13.33h, or stocky cylinder for x = 120h and
Lz = 0.83h), we investigated the effect of different cylinder aspect ratios on the computed
structure function. The third-order structure function was thus recomputed considering
only a couple of points lying on the same x–y plane, thus eliminating the effect of the
separation in the z direction. Direct comparison among the structure functions computed
within a cylinder and computed on x–y planes showed minimal differences in the values
of the third-order structure function, and no difference in its sign (see figure 6).

The jet thickness δ increases with the distance from the inlet D: as we move away
from the inlet, the maximum separation distance 2δ increases as well. The maximum
separation distance is divided in Nr = 60 uniformly spaced bins; the width of the bins
is thus proportional to the jet thickness, and generally increases with the distance from the
inlet D. The smallest width of the bin, found close to the inlet, is about the same size as the
grid spacing; as one moves away from the inlet the width of the bin increases, resulting in
a limited loss of spatial resolution at the smallest scales (nonetheless smaller than ten grid
spacings at the farthest distance considered in the present work). Therefore, in some cases,
very small scales may still show 3-D turbulence (and a direct energy cascade); however,
they may not be fully detected by the structure function, as they are averaged over the
smallest separation distance considered.

In this study, we utilize the third-order structure function S3, which we show to be a
reliable tool to inspect the flow dimensionality and the preferred turbulent cascade process
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Figure 6. Third-order structure functions S3 computed for the cases with (a) Lz = 13.33h and (b) Lz = 0.83h,
at a distance x = 40h from the inlet. Markers denote whether velocity differences were calculated within a 3-D
cylinder (filled circles) or they were limited to x–y planes (black crosses).

scale by scale. The first derivation of S3 resulted in the celebrated Kolmogorov 4/5 law in
3-D turbulence (Kolmogorov 1991): S3(r) = −4

5εr, where ε is the mean energy dissipation
per unit mass. The S3 laws in 2-D turbulence were derived in the late 1990s (Bernard 1999;
Lindborg 1999): for the inverse energy cascade, S3(r) = 3

2 Pr (where P is the mean energy
injection per unit mass), and for the direct enstrophy cascade, S3(r) = 1

8ζ r3 (where ζ is
the mean enstrophy dissipation per unit mass). Cerbus & Chakraborty (2017) related S3(r)
to the flux functions:

S3(r) = −3
2

Π
(a

r

)
r + 1

8
Z

(a
r

)
r3 + · · · , (A3)

with Π and Z being the fluxes of energy and enstrophy, respectively, and a being an
O(1) numerical constant (the quantity a/r can be thought of as a wavenumber, k ∼ a/r).
Equation (A3) expresses S3(r) as a combination of the energy and enstrophy fluxes, and
its sign is affected by values of both fluxes. The previous laws for 2-D turbulence can be
derived easily from (A3) (Cerbus & Chakraborty 2017).
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