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ON INVOLUTIVE LIE ALGEBRAS HAVING A CARTAN
DECOMPOSITION

A.J. CALDERON MARTIN

We introduce the concept of Cartan decomposition relative to a Cartan subalgebra
H in the sense of Y. Billig and A. Pianzola for involutive complex Lie algebras L
of arbitrary dimension. If L has such a decomposition and is infinite dimensional
and simple, we show it is #-isomorphic to a direct limit of classical finite dimensional
simple involutive Lie algebras of the same type A, B,C or D.

1. PRELIMINARIES

Let L be a complex Lie algebra. An involution on L is a conjugate-linear map,
*: L — L (z ~ z*), such that (z*)* = z and [z,y]* = [y*,z*] for any z,y € L. A Lie
algebra furnished with an involution is an involutive Lie algebra. A selfadjoint subset of
an involutive algebra is a subset globally invariant by the involution. If L; (i = 1, 2) are
involutive Lie algebras and f : L, — L is a morphism of Lie algebras, we say that f
is a *-morphism whenever f(z*) = f(z)* for all z € L,. We define the Annihilator of
an involutive Lie algebra L as the selfadjoint ideal given by Ann(L) = {z € L : [z,y]
=0forallye L}. We shall say that L is simple if the product is nonzero and its only
ideals are {0} and L.

Billig and Pianzola introduced in [2] the concept of Cartan subalgebra for Lie alge-
bras L of arbitrary dimension as follows:

DEFINITION 1.1: A subalgebra H of L is called a Cartan subalgebra if
(1) The elements of H act locally ad-nilpotently on H.
(2) H is its own normaliser in L, that is, Ny (H) = H.
If L is finite dimensional, then H is nilpotent by Engel’s theorem and the classical
definition of Cartan subalgebra is recovered.

In the framework of involutive Lie algebras we are interested in selfadjoint Cartan
subalgebras of L. From here, unless otherwise stated, throughout the paper H shall
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denote a selfadjoint Cartan subalgebra of an involutive complex Lie algebra of arbitrary
dimension L.
A root of L relative to H is a linear form commuting with the involution

o: (H,*) > (C,7),

that is, a(h*) = a(h) for any h € H, (where ~ denotes the conjugation operator on C),
such that there exists v, € L, v, # 0 satisfying [h, vs] = a(h)v, for any h € H. The root
space associated to a is the subspace L, = {v, € L : [h,v,) = a(h)v, for any h € H } It
is easy to prove that the root space associated to the zero root is contained in the Cartan
subalgebra and, by the Jacobi identity, that if o + B is a root then [L,, Lg] C La4s,
and if a + S is not a root then [L,,Lg] = 0. Let us also note that (L,)* = L_,.

Indeed, for any h € H and v € Lq, [hva]* = (a(h)va)’ = a(h)vs, and from here

[h*,v3] = —a(h)vl = —a(h*)v}, the facts H* = H and *? = * let us.conclude easily
the assertion. Given a set S of nonzero roots of L, we shall denote by Spz S the set of
mappings
n
Spz S = {Zpia,- :p; €Z and q; € S}.
=1
DEFINITION 1.2: We shall call that L has a Cartan decomposition relative to H if
(1) L=Heo (@La), where A is the set of all nonzero roots of L relative to
H agA .
(2) Each L,, a € A, is finite dimensional.
(3) For any finite set S C A we have Spz SN A is also finite.

(4) There exists v, € L, such that a([vs, v3)) € RY — {0} for any o € A.

By using the ideas in [11, 10, 16] one could characterise infinite dimensional simple
involutive Lie algebras over a field K of characteristic zero, however, we use entirely dif-
ferent methods to describe the complex case. In fact, the introduction of new techniques,
such as the connections of roots to construct a direct system of adequate finite dimen-
sional simple involutive Lie algebras, in the study of infinite dimensional Lie algebras is
perhaps the most interesting novelty in this paper.

DEFINITION 1.3: Let (I,<) be a directed set and {L;}ic; a family of involutive
Lie algebras such that for ¢ < j there exists a *-monomorphism ej; : L; — L; such
that ejieix = ejx and e; = Id for all 4,5,k € I with k < 7 < j. Then we shall say that
S := ({Li}ier. {eji}igs) is a direct system of involutive Lie algebras.

DEFINITION 1.4:  Given S we define a direct limit, lim S, as a couple (L, {ei}ier)
where L is an involutive Lie algebra, e; : L; — L is a *-monomorphism that satisfies
e; = e;ej; and (L, {e;}ier) is universal for this property in the sense that if (B, {t;}ies) is
another such couple, then there exists a unique *-monomorphism 6 : L — B such that
t; =fe;, 1€ 1.
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As in [3], we can prove that any direct system of involutive Lie algebras S has a direct
limit. It is also clear that liﬂS is unique up to *-isomorphisms.

2. THE DESCRIPTION THEOREM

Unless otherwise stated, throughout this section L shall denote an infinite dimen-
sional involutive Lie algebra with zero annihilator having a Cartan decomposition respect
to H, and A the set of all nonzero roots.

LEMMA 2.1. The following assertions hold:
(1) a(hy) # 0 for any 0 # hy € [La, L}], @ € A.
(2) If([La,Lg) = [L-qa,Lsg] =0 then B(hy) = 0 for any h, € (Lo, L%], a, 8 € A.
PRrROOF: 1. Similar to [5, Corollary 1], that is, if hy = [va,w}] With vs, wa
€ L, — {0} we first observe that for any § € A the following equation holds

(1) B(ha) = ra(ha)

with 7 € Q, this fact being consequence of V := L(Lgtja : § € Z), the linear space
generated by {Lgyjo : j € Z}, is a finite dimensional vector space invariant for ad(v,),
ad(w?) and ad(h,) = ad(v,) ad(w},) —ad(w}) ad(va) on which the trace of ad(h,) is 0 and
so mfB(ha)+ka(h,) = 0 with m # 0 and m, k € Z. Second, if a(h,) = 0 then by equation
(1), B(he) = 0 for all nonzero root S and so [hq, Lg] = 0. As hy € [La, L_g) C Lo, we
also have [hq, H| = 0 and then [ha, L] = 0. Hence, h, € Ann(L) and so h, = 0.

2. It is an easy consequence of the Jacobi identity and the fact L}, = L_,. 0

LEMMA 2.2. Forany a € A we havedimL, =1 and ZoN A = +a.

PROOF: We argue as in [15, Proposition 1.6], that is, Lemma 2.1 gives us, for
any nonzero elements v, € Lo, w}, € L7, such that (v, w}] # 0, that a([va, w}]) # 0
and so the subalgebra spang{va, w}, [va,w}]} is isomorphic to sl(2,C), we may with-
out loss of generality assume that a([ve,w}]) = 2. Condition 3 in Definition 1.2 im-
plies the operators ad(v,) and ad(w]) are locally nilpotent on L, by using now the
same arguments as for sl(2,C) (see [9, Proposition 2.4.7]) we obtain L is a locally fi-
nite spanc{va,w;, [va,w;]}-module with respect to the adjoint representation. Let us

(=]
consider the spang{vq, w}, [Ua, wy]}-submodule of L, V := Cw} + H + > Lna- As a
n=1
submodule of a locally finite module, V is also locally finite. Hence the representation

theory of sl(2,C) implies that the set of h,-eigenvalues on V' is symmetric with
dim V¥#{h,) = dim V~#(h,)

for each 4 € C. Now V~%(h,) = Cuw,, implies that dimV?(h,) = dimL, = 1 and
furthermore that
dimV?*(hy) =dim Lya =0

https://doi.org/10.1017/50004972700035930 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700035930

194 A.J. Calderén Martin [4]

for n > 1. Since we can replace a by —« in the argument, we have both conclusions of
the lemma. 0

Lemma 2.2 and condition 4 in Definition 1.2 show that given o € A there exists a
unique nonzero element of Ly C H of the form

(2) ho = [€a, €3]

with eq € Lo — {0}, and such that a(h,) = 2. Let us observe that e, is unique up to a
scalar factor of modulus 1. From now on h, shall denote this element.

DEFINITION 2.3: A subset Ag of A is called a root system (relative to H) if it satis-
fies the conditions: o € Ay implies —a¢ € Ay and o, € Ay, o + B
€ A implies o + 8 € Ag. If we define Hy, as spanc{hs : @ € Ag} and Vy, = @ L,, it is

straightforward to verify that Ly, = Hj, ® Vi, is an involutive Lie subalgeb:: I;of L, with
Cartan subalgebra Hy, = H N Ly,, whose roots relative to H,, are precisely the roots in
Ap. We shall say that L,, is the involutive Lie subalgebra associated to the root system
Ap. Let us observe that if Aq is finite then Ly, is finite dimensional.

Our next goal is to prove the following result.

THEOREM 2.4. Let L be an infinite dimensional simple involutive Lie algebra
having a Cartan decomposition respect to H. Then there exists a direct system of
finite dimensional simple involutive Lie subalgebras S := ({L;}ier, {eji}ig;), with Cartan
subalgebras H; = H N L; and satisfying

(1) Ifi < j then L; is an involutive Lie subalgebra of L;, e;; is the inclusion
mapping and each root space of L; relative to H;, different to H;, is a root
space of L;. ‘

(2) limS = L.

The arguments we are going to use in the proof of Theorem 2.4 are close to the ones
developed in [6, Section IV]. For the convenience of the reader we summarise some of the
results in [6, Section IV] with a sketch of the proofs, and some auxiliary lemmas before
proving Theorem 2.4.

LEMMA 2.5. Let Ly, be the involutive Lie subalgebra associated to a finite root
system Ag. Write (-,-) the Killing form on Ly,. Then the following assertions hold:

(1)  (ha,ha) # 0 for any a € A,.

(2) (h,ua) =0 for any h € Hp, and v, € Ly, a € Ao.

(3) (va,vg) =0 for any v, € L,, v € Lg, a,B € Ay and B # —a.

(4) (va,v—q) # 0 for any 0 # v € Lig, © € {£1} and a € A,.

PROOF: 1. We have (hq, ho) = trz(ad(ha) 0 ad(ha)) = a(he)?+ 3 7(ha)®

y€Ao—{a}
As in the proof of Lemma 2.1-1 we obtain y(h,) = rya(h,) with 7, € Q, and finally we

conclude from a(h,) = 2 that (he, ha) =4+4 3 12 #0.
v€Ao—{a}
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2. Since (-,-) is invariant in the sense of [8, p. 69], we have
1 1
(h,va) = 5(h, [ha, va]) = 5{[h: ha] va) = 0.

3. Tt is clear that (vs,vg) = trz(ad(va) o ad(vg)) = 0.
4. Since L}, = L_,,

(Rar Bo) = ([€a, €], Ba) = (€q, [ha, €5]) = —2(ea, €5).

By applying 1. we have (eq, e%) # 0. Hence, as dim Ly, = 1 we conclude (va,v_o) # 0. [
LEMMA 2.6. Under the hypothesis of Lemma 2.5, if {(z,Ls,) = 0 for some z
€ Lp, then z € Hy,.

PROOF: Writez = h+ Y. wq € Ly, with b € Hy, and w, € L,. Since (z,v_4) =0
a€Ap
for any v_, € L_q, @ € Ag, Lemma 2.5-2,3 shows {(w,,v_,) = 0, and therefore w, = 0

by Lemma 2.5-4. 0

PROPOSITION 2.7. The involutive Lie subalgebra Ly, associated to a finite
root system Ag in L is semisimple.

PROOF: Let us firstly observe that if we denote by [La,, La,] := spanc{[z,¥] : z,y
€ Ll\o}) then [LAoyLAo] = LAO and

Rad(LAo) C HAO'

Indeed, if z € L, then

2= Y dahot 3 va= 3 Aalea €] + 5 3 [has vl € (Lo, Lo

a€lg a€lg a€Ag a€Ao

and so [La,, Lr,] = La,- Since the radical of a finite dimensional Lie algebra L is
characterised as the ideal Rad(L') = {a: €L :(z,[L',L])= 0}, where (-, -) denotes the
Killing form (see [8, p. 73]), the fact [Lay, La,) = La, and Lemma 2.6 show Rad(L,,)
C Hp,

Secondly, we assert that

Rad(Ly,) = Ann(Ly,).

Indeed, Ann(L,,) is a solvable ideal and therefore is included in Rad(La,). If h
€ Rad(Ly,) C Ha, we have, by the character of ideal of Rad(La,), [k, vo] € Rad(La,)
C Hy, for any 0 # v, € L, and a € Ao, therefore a(h) = 0. Hence, we have for any

S LAo:

[h,x) = [h, > Aabat+ Y va] = [h, > /\ahn] + 3 [hva] =0

a€Ao a€Ag a€ho a€lg
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and so b € Ann(L,,).
Finally, as by Levi’s theorem, ([8, p. 91]),

LAo = RB.d(LAO) (5] TAo:
with T}, a semisimple subalgebra of L,,, we have
Ll\o = [LAo’ LAo] = [Ann(LAo) 7] TAoa Ann(LAo) @ TAo] C [TAO’TAO] C TAo

and so Ly, = Th,, the proof is complete. 0

We shall say that a finite set of nonzero roots {e;} of L is linearly independent if
the set {hy,} is linearly independent. We also recall that an L*-algebra is defined, (see
(13, 14, 7]), as a complex involutive Hilbert-Lie algebra for which the inner product
(- | -) satisfies the H*-identities

(lz, 9] | 2) = (v | [z*, 2]) = (z | [2,97]).

J.R. Schue introduced for any non zero root o of a semisimple L*—algebra L' with
inner product (- | -) and with a Cartan decomposition L' = H'+ 5. L., the elements
0 # hl, € [L,, L] satisfying a(h') = (h' | h,) for any h' € H' (see [1, pp. 513-514] or
(13, pp. 71-72}). It is well known, (see [4, Proof of Proposition 3.1] or the ideas in [12]),
that any complex finite dimensional semisimple 'I’;ie algebra with a Cartan decomposition

L = H+ ) L, and with the expression L =  L;, where L; are simple Lie algebras,
j=1

admits an, essentially unique, involution «' arid inner product (- | -) that make L an
L*—algebra admitting the same Cartan decomposition L = H + Y L,, and such that
(L; | Lj) = 0 for i # j. Since we can see a finite dimensional semisimple involutive Lie
algebra having a Cartan decomposition L = H+)_ L, as a Lie algebra which also admits
the Cartan decomposition (in the classical sense}) L = H+)_ L,, the above considerations
imply in this framework h, = kh, with 0 # k € C — {0}, and joint with {1, Lemma 1]
and [1, Corollary 2] give us the following two results:

LEMMA 2.8. Let L be a finite dimensional semisimple involutive Lie algebra
m

having a Cartan decomposition relative to H. Write L as L = € L; where L; are simple
=1
Lie algebras. If a is a nonzero root relative to H, then L, belongs precisely to one L;. If

we denote by
Aj={a:L, CLj},
then spanc{[va,u_a] o € A,-} is a Cartan subalgebra H; of L; and the restrictions to
H; of the a € A; are precisely the roots of L;.
COROLLARY 2.9. Let L be as in Lemma 2.8. Let us suppose {ay,,...,an} is
a linearly independent set of nonzero roots of L. If there exists a root v of L such that
n

v =Y co; ¢ #0, then all o; and vy are roots of the same simple component L;.

=1
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LEMMA 2.10. Let L be asin Lemma 2.8. If o and 8 are two nonzero roots such
that @ # +f then o and f are linearly independent.

PROOF: Suppose o and § are not linearly independent, then h, = chg with 0 # ¢
€ C. Let consider L as an L*-algebra with inner product (- | -). By the above observation,
there exist non zero elements h, hjy € H such that a(h) = (h | h,) and B(h) = (h | h})
for any h € H and h{, = koha, hjy = kghg with k4, kg € C — {0}. Hence,

a(h) = (h | kaha) = (1] kachg) = (h | kacky'hj) = kack; B(R)

for any h € H. From the theory of finite dimensional split semisimple Lie algebras, this

is only possible if @ = +4. 1]
DEFINITION 2.11: Let o and § be two nonzero roots of an involutive Lie algebra
with zero annihilator, we shall say that a and g are connected if there exist o;,..., 0, €A
such that
{on, 01 + 0,00 +az+a3,...,01 + -+ any +an}

is a family of nonzero roots, a; is a fixed element of {a@, —a} and a; +- - -+ @y, + @, = B.
We shall also say that {a1,...,an} is a connection from a to 8.

It is clear that
p-1

3) GEEY o p=2,.,n
i=1

We denote by
A :={B € A: xand S are connected}

Let us observe that {a} is a connection from « to itself and therefore a € A,.

LEMMA 2.12. Under the hypothesis of Lemma 2.8, and if in addition o and 8
are two connected nonzero roots, then L, and Lg belong to the same simple Lie algebra
L.

PrROOF: We have ay,...,a, € A such that

{or, a1 +ag, ...+ - + Qnmy + an}

are nonzero roots, ¢, is a fixed element of {@,—a} and a; + -+ ap_; + 0, = 8. If
we consider a;, as, and @ + az, by (3) a; # +a;, then Lemma 2.10 gives us that a;
and oy are linearly independent and finally Corollary 2.9 let us conclude L,,, Lo,and
Ly, +a, belong to the same simple Lie algebra L;. The same argument with a; + a2, a3
and o) + as + a3 gives us Lg,, La,+a240; C Lj. Following this process we finally obtain
La,Ls C L;. 0

PrOPOSITION 2.13. Let L be an infinite dimensional simple involutive Lie
algebra having a Cartan decomposition respect to H, and let o be a nonzero root. Then
the following assertions hold:
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(1) A, is a root system.

(2) There exists B € A, such that 8 # +a.

(3) If v is a nonzero root such that v ¢ A, then [Lg, L,] = 0 and ~y(hg) = 0
for any B € A,.

PROOF: 1. If B € A, then there exists a connection {¢4,...,a,} from a to . It is
easy to check that {—a;,..., —ay} is a connection from a to —f and therefore —f3 € A,.
If B,7 € Aq and B + v € A, then there exists a connection {o,...,a,} from a to §.
Hence, {ai,.-.,@n,7} is a connection from a to 8+ v and so 8+ v € A,.

2. Firstly, let us observe that there exists v € A, ¥ # +a such that either [Lq, L,]
# 0 or [L_s,L,] # 0. Indeed, if we suppose [Lq, L] = [L_q4,L,] = 0 for any v € A,
v # ta, as L_, = L} then by Lemma 2.1-2 we have y(h,) = 0 for any v € A,y # *a.
Let us consider

[:=Cha®La®L_,.
By the above, it is easy to prove that [I, L] C I, therefore I is a nonzero finite dimensional
ideal of an infinite dimensional simple involutive Lie algebra L, a contradiction. Hence,
there exists a nonzero root v # %« such that either [L,, L,] # 0 or [L_,, L,] # 0. In the
first case, {a, v} is a connection from « to 8 := a + 7, therefore 8 € A, and 8 # +a. In
the second case we argue similarly.

3. Let us suppose there exists 8 € A, such that [Lg,L,] #0. If {ay,...,an} is a
connection from « to 8, we have {ay,...,a,,7} is a connection from « to 8 + ~. Since
A, is a root system then y € A,, a contradiction. Therefore [Lg, L,] = 0 for any 8 € A,
and v ¢ As. As —f € A, for any 8 € A,, we also have [L_g, L,] = 0. Finally, by Lemma
2.1-2 we conclude y(hg) = 0. 0

PROPOSITION 2.14. Let L be an infinite dimensional simple involutive Lie
algebra having a Cartan decomposition respect to H. Then there exists a connection
from « to B for any a, B € A.

PROOF: Let consider the root system A, and the involutive Lie subalgebra associated
Ly, =Hpx, ®Va,.

We assert that L, is a nonzero ideal of L. Indeed, by Proposition 2.13-3 we have
[Lg,L,] =0 and [hg, L,] = 0 for any 8 € A, and v ¢ A,. Hence,

[La,, L) = [Z Chg+ Y Lg,H+ (Z L7> + (E Lv)] C La,.

BEAa BEAq Y€Aa T¢Aa

The simplicity of L implies Ly, = L and therefore A, = A. 1]
COROLLARY 2.15. Let L be as in Proposition 2.14. Then, for a fixed ap € A,

we have

L=span{hs:B€ Ao} + Y Lg.
C BENag
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DEFINITION 2.16: From now on, we shall consider the classical finite dimensional
simple Lie algebras (of types A, B,C, or D) endowed with the standard involution given
by (ai;)* = (@;:). These algebras become involutive Lie algebras with the standard
involution and will be called classical finite dimensional simple involutive Lie algebras.

Given a classical finite dimensional simple involutive Lie algebra L of a fixed type
A, B,C or D, we shall give the name canonical Cartan subalgebra of L to the one de-
scribed in [8, Chapter IV, 6] for each type.

PROOF OF THEOREM 2.4: 1. Let S be a non empty finite subset of A, from
condition 3 in Definition 1.2, Spz SN A is a finite root system and then we can consider
the finite dimensional involutive Lie subalgebra associated L(SPZ sna), that we shall denote
by Lg := L(SPZ snay- By Proposition 2.7, Lg is semisimple. It is well known from the
theory of finite dimensional semisimple Lie algebras that Lg can be written

ns
Ls =P Ls,
i=1

with Lg,, i = 1,...,ng, finite dimensional simple Lie algebras. By Lemma 2.12, we
conclude that for any nonzero root a of Lg respect to H N Lg, L, belong precisely to
one Lg, and so any Lg, is an involutive Lie algebra. Hence, we can consider the family
of finite dimensional simple involutive Lie subalgebras of L,

{LS.' }Sef,ie{l,...‘ns})

where F denotes the family of all non empty finite subset of A. We wish to prove that

S := ({Ls;}serseq,.msh isizy 1)

where {is.»,T,»} are the inclusion mappings is the required direct system. We assert that
given
LS."LT,‘ € {LS-'}SE}',iE{l,...,ns},
there exists
Lo, € {Ls;}ser el1, .ns}
such that Ls,L1; C Lg,, - Indeed, let us fix ap € S;. By Proposition 2.14, for any

B € S; UT; there exists a connection from ag to 8, which we denote by C,, 5. We

have that @ := |J Cq,p is a finite set of A and therefore we can consider the finite
Bes;UT; nQ
dimensional semlslmple involutive Lie subalgebra associated Lq. Write Lg = @ Lg;, Lg,

being simple subalgebras of Ly. By Lemma 2.8, there exists Lq, such that Lao C Lg,-
Finally, by Lemma 2.12, Ls,, L1; C Lg,,- Therefore, S is a direct system with the
inclusion which clearly satisfies assertion 1. of the theorem.

2. Let us denote limS = (L', {ej};)- As (L,{i;};), where i; denotes the inclu-
sion mapping, satisfies the conditions of the direct limit for S, the universal property
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of the direct limits shows the existence of a unique *-monomorphism & : L' — L

such that ® oe; = ¢;. Since L' = Uej(Lj), (see for instance [3]), we have ®(L')

= <I>(U ej(Lj)) UL , and therefore ® is a *-isomorphism from L’ onto UL Fi-
J

nally, we assert that L = UL Indeed, if + € L, by Proposition 2.14 and Corol-

lary 2.15, z = Z/\a,ha, + Ev., w1th ®,v; € A, vy; € L,; and A,; € C. Consider

T={a:1= Lntu {7, j =1,...,m} C A and, following the above notation,
U Csos: 50 bemg a fixed element of T. We have T" is a finite set of A that
BET

gives us the semisimple finite dimensional involutive Lie algebra associated L. Write
Ly = @LT/ where Ly, i = 1,...,7 are simple finite dimensional involutive Lie al-
gebras. As S is a direct system for the mclusmn then there exists a finite dimensional

simple involutive Lie subalgebra Lp, such that U LT/ C Lp, and therefore £ € Lp,. The
=1

proof of 2. is complete. 0

THEOREM 2.17. Let L be an infinite dimensional simple involutive Lie algebra

having a Cartan decomposition respect to H. Then L is *-isomorphic to a direct limit of

classical finite dimensional simple involutive Lie algebras of the same type A, B,C or D.

PROOF: Let us consider the direct system of finite -dimensional simple involutive
Lie algebras S given in Theorem 2.4. We can suppose all of the L; are isomorphic to
classical simple Lie algebras of a same type A, B,C or D. Indeed, the infinite dimensional
character of L let us remove the exceptional Lie algebras of S, and secondly that (i) each
L; is contained in one isomorphic to one of type A or else (ii) there exists L;, such that
L; D L;, implies that L; is isomorphic to one of type B, C or D. In each of the two cases
is possible to define a subsystem satisfying assertions 1. and 2. of Theorem 2.4.

If all of the L; are isomorphic to classical simple Lie algebras of type A and we denote
by ¢; : L; = A; such isomorphisms, we assert that if consider A; as an involutive Lie
algebra with its standard involution, then there exists a *-isomorphism &; from L; onto

A;. Indeed, ¢@; induces on A; a unique Cartan decomposition A; = H'® ( &P (Ai)a,) and
o' €A
involution *' that make ¢; a *-isomorphism. On the other hand, if we consider A; with

its canonical Cartan decomposition given in 8, p. 136-137], A; = H" & ( &b (Ai)a,,),
Y

it is well known from the theory of finite dimensional Lie algebras, see [8, Chzipter IX,

Theorem 3}, that there exists an automorphism p; : A; — A; satisfying p;(H') = H". As

a consequence, we can express the roots o’ as a”(h") = o/ (p; (k")) for a certain root

o/. This gives us a a bijection &’ — o satisfying that the Cartan matrices associated

to a fixed simple system of roots (o, . .., a}), (2(cf, o) [{as, a})) and the one associated

to (af,...,a}) are identical. Let en, (eag)", ha: as in (2), the canonical generators for
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A; associated to (o, ...,a,), and Epg € Loy, Egp € Loy, Egy — Eyq € H", (where E,,
denotes the elemental matrix), the canonical generators for A; associated to (af,.. ., o)
(see [8, p- 136-137]). By applying the Isomorphism Theorem, {8, Theorem 2 on p. 127},
there exists a unique automorphism 7;; of A; mapping e, on Eyp,, (eog)"' on E;, and hyy on
Eyp — Eqq. Moreover, as {eq1, (€x1)”', hay } generates A;, ([8, Property XVIII on p. 123]),
we can assert 7); is a *-automorphism from (A;, *') onto (A;,7), 7 being the standard
involution (a; ;)" := (@;;). Finally, we have & := 7; o ¢; is *-isomorphism from L; onto
the ‘classical simple involutive Lie algebra A; as we wished to prove.

If all of the L; are isomorphic to classical Lie algebras X; of a same type B,C or
D, we argue as in the previous case to find a *-isomorphism &; from L; onto the classical
simple involutive Lie algebra X;.

From now on X denotes a classical simple involutive Lie algebra of a fixed type
X = A,B,C or D. For any couple %,j € I with i < j, let e;; be the inclusion mapping
and f; the unique *-monomorphism making commutative the following diagram

&
LJ‘ - Xj
(4) ei T t S
Li — X,'
&i

It is clear that

8 = ({Xikier, {fiigeriss)
is a direct system of classical finite dimensional simple involutive Lie algebras of a same
type X. Finally, since for any 7,7 € I with 7 € j, we have the *-isomorphisms ¢; :
Li = X;, & : Lj > X; and the commutativity of the diagrams (4) we conclude li_n;S is
*-isomorphic to l_i_x_gSu and the proof is complete. 0
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