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Abstract

Shiftworkers have a higher risk of CHD and type 2 diabetes. They consume a large proportion of their daily energy and carbohydrate

intake in the late evening or night-time, a factor which could be linked to their increase in disease risk. We compared the metabolic effects

of varying both dietary glycaemic index (GI) and the time at which most daily energy intake was consumed. We hypothesised that glucose

control would be optimal with a low-GI diet, consumed predominantly early in the day. A total of six healthy lean volunteers consumed

isoenergetic meals on four occasions, comprising either high- or low-GI foods, with 60 % energy consumed predominantly early (breakfast)

or late (supper). Interstitial glucose was measured continuously for 20 h. Insulin, TAG and non-esterified fatty acids were measured for 2 h

following every meal. Highest glucose values were observed when large 5021 kJ (1200 kcal) high-GI suppers were consumed. Glucose

levels were also significantly higher in predominantly late high- v. low-GI meals (P,0·01). Using an estimate of postprandial insulin sen-

sitivity throughout the day, we demonstrate that this follows the same trend, with insulin sensitivity being significantly worse in high energy

consumed in the evening meal pattern. Both meal timing and GI affected glucose tolerance and insulin secretion. Avoidance of large, high-

GI meals in the evening may be particularly beneficial in improving postprandial glucose profiles and may play a role in reducing the risk

of type 2 diabetes; however, longer-term studies are needed to confirm this.
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The level of postprandial blood glucose is an independent

risk factor for the future development of type 2 diabetes(1).

Shiftworkers have a higher risk of CHD(2) and type 2

diabetes(3). They consume a large proportion of their daily

energy and carbohydrate intake in the late evening or

night-time, a factor which could be linked to their increase

in disease risk. There is a diurnal variation in insulin resist-

ance, with the greatest insulin resistance found at night(4).

We have demonstrated previously a relatively impaired post-

prandial glucose and lipid tolerance following meals eaten

at night, compared with identical meals consumed during

the day(5). In Western societies, most energy intake now

occurs in the evening.

We have also demonstrated that a low-glycaemic index

(LGI) diet reduces postprandial blood glucose, at the second

meal and over the 24 h period, suggesting that LGI may help

in the prevention of the metabolic syndrome(6).

We hypothesise that a large evening energy and carbo-

hydrate load will cause an increase in postprandial glucose

compared to the same in the morning and that the postulated

high glycaemic excursions in the evening could be amelio-

rated by decreasing the glycaemic index (GI) of the meal.

Experimental methods

Participants

A total of six healthy volunteers (four females, two males)

were recruited (mean age 30 (SEM 4·3) years, BMI 21·6

(SEM 1·3) kg/m2). The present study was conducted according

to the guidelines laid down in the Declaration of Helsinki; and

the experimental protocols and procedures involving human

subjects were approved by the University of Surrey Ethics

Committee (IC/2006/23/SBMS). Written informed consent

was obtained from all subjects. The study was carried out in
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the Clinical Investigation Unit (CIU) at Surrey University. We

used a four-way randomised crossover study methodology

as outlined next.

Diets

There were four diets:

(1) Low GI (average GI ¼ 34), with the majority of energy

load consumed in the morning (LGI-am)

(2) Low GI, with the majority of energy load consumed in the

evening (LGI-pm)

(3) High GI (average GI ¼ 84), with the majority of energy

load consumed in the morning (HGI-am)

(4) High GI, with the majority of energy load consumed in

the evening (HGI-pm)

The volunteers were randomised to each diet using random

number allocation carried out independently of the study per-

sonnel. Each diet had a total energy content of approximately

8368 kJ (2000 kcal) for the whole day and had identical macro-

nutrient content. However, as would be expected, the fibre

intake was higher and the glycaemic load lower in the low-

GI diets. For the morning load diet, energy was split 60 %

(5021 kJ (1200 kcal)) at breakfast, 20 % (1674 kJ (400 kcal)) at

lunch and 20 % (1674 kJ (400 kcal)) for the dinner (Tables 1

and 2). This was reversed on the evening load diet. This

approach decreased variation due to change in type of food.

Breakfast was given at 09.30 hours, lunch at 13.30 hours and

the evening meal at 20.30 hours. All volunteers completed

the four interventions, with a minimum of 7 d between

interventions. The GI values of the mixed meal in the exper-

imental diets were calculated according to the calibration

formula derived by Wolever(7). The glycaemic load was calcu-

lated by multiplying the GI by the dietary carbohydrate of the

individual food divided by 100(8). All foods were bought from

a single supplier, and all diets were prepared on the study day.

Blood sampling

Participants were asked to fast after supper the night before

each study day until the following morning and avoid alcohol

or heavy exercise. They attended the clinical investigation unit

at 08.00 hours. The study was conducted with the volunteers

seated throughout the day, with movement kept to a mini-

mum. For each study day, finger-prick capillary blood samples

were taken before and at 30, 60 and 120 min following every

meal. Blood was taken using preset lancets and collected

in fluoride oxalate tubes by the participants themselves. A

300ml sample was used to analyse for blood glucose, insulin,

NEFA and TAG. Once the blood samples were collected, they

were centrifuged in a refrigerated centrifuge for 10 min at

2000 g to harvest the plasma. The glucose measurements

were carried out directly on plasma on the same day using

the YSI 2300 STAT plus analyser (YSI Life Sciences) and then

the plasma samples were stored at 2808C until required.

Continuous glucose monitoring

On the day before the study day, between 15.00 and 16.00

hours, participants attended the CIU, where they were fitted

with the MiniMed continuous glucose monitoring system

Table 1. Nutritional breakdown of the high-glycaemic index (GI) diet used in the study*

High GI (am)

Weight (g) Energy (kJ) Fat (g) Protein (g) Carbohydrate (g) Fibre (g) GI GL

Breakfast
Fruit loaf 144 1674 6 10 77 5 90 64
Margarine 25 799 19 0 0 0
Skimmed milk 150 234 1 5 7 0 48 4
Cheese, cheddar 30 523 10 8 0 0 0 0
Strawberry low fat yoghurt 125 418 1 3 20 1 85 16
Mars bar 54 1029 10 2 38 0 68 26
Water 200 0 0 0 0 0 0 0
Glucose 15 247 0 0 16 0 100 16
Total 4925 46 28 157 6 83 126

Lunch 0
Strawberry low fat yoghurt 125 418 1 3 20 1 85 16
Cottage pie 300 1004 8 15 26 4 65 15
Water 200 0 0 0 0 0 0
Glucose 15 247 0 0 16 0 100 16
Total 1669 9 18 62 4 80 47

Dinner 0
Sultana Bran 90 1226 2 7 61 12 90 45
Skimmed milk 150 234 1 5 7 0 48 4
Water 20 0 0 0 0 0 0 0
Glucose 15 247 0 0 16 0 100 16
Cheese, cheddar 5 80 2 1 0 0 0 0
Total 1782 4 14 84 12 88 64

Total for the day 8376 59 59 304 22 84 236

GL, glycaemic load.
* The meal pattern and the energy load given in the morning. The meal pattern when the energy load was given in the evening was a reflection of the morning meal

pattern. There was a direct swap of the breakfast to dinner and the dinner to breakfast.

Meal timing effect on glucose and insulin 1287
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device. The MiniMed continuous glucose monitoring system

senses interstitial glucose by electrochemical detection in sub-

cutaneous interstitial fluid. It can provide an average glucose

measurement every 5 min for up to 72 h. A total of 288 glucose

readings every 24 h can be obtained from the sensor system.

The MiniMed continuous glucose monitoring system recorded

each participant’s interstitial glucose profile information until it

was removed at about 11.00 hours following the study day.

The same monitor was used for each subject to minimise

the variations due to inter-sensor variability. This methodology

had been reported by us before(6).

Postprandial insulin resistance

An index of postprandial insulin resistance (HOMA-PP) was

obtained for the three meals in each diet by using the follow-

ing equation(6,9):

HOMA-PP

¼ incremental area under the curve ðIAUCÞ glucose

ðmmol=l per minÞ

£ IAUC insulin ðmU=l per minÞ=22·5:

This technique has been validated against the intravenous

glucose tolerance test(10).

Statistical analyses

From a previous study we had conducted, we postulated that

the difference between the 12 h glucose area under the curve

would be 90 with an SD of 70 assuming a power of 90 and an

a of 0·01, and estimated the number of volunteers needed to

be five(6). Data were checked for normality and expressed as

means with their standard errors. Differences were assessed

by repeated-measures ANOVA and located with a Duncan’s

post hoc test.

Results

Interstitial glucose levels, obtained from the continuous glu-

cose monitor for the four meal patterns are shown in Fig 1.

The total area under the glucose response curve and the 2 h

postprandial areas under the response curves for insulin,

TAG and NEFA are shown in Table 3. Glucose and insulin

responses showed broadly similar patterns. Both meal timing

and quality of carbohydrate affected postprandial glucose and

insulin responses (P,0·01). The area under the glucose and

insulin response curves was greatest for the HGI-pm meal

regimen. The HGI-pm meal regimen produced a significantly

greater postprandial area under the glucose curve than for any

of the other three meal regimens (P,0·05). The postprandial

area under the insulin curve was significantly greater than

both the LGI regimens (P,0·05). Postprandial insulin resist-

ance measured by homeostatic model assessment was also

significantly greater for the HGI-pm meal than for the two

LGI meals (P,0·05). Postprandial TAG and NEFA levels

were not affected by meal timing or carbohydrate quality.

Discussion

It has been known for some time that low-GI foods lower the

postprandial glycaemic response(11) and low-GI foods taken

throughout the day lower 12 and 24 h postprandial glycae-

mia(12). To our knowledge, this is the first study that simul-

taneously explores (a) the effect of energy load and high- or

low-GI diets given at different times of the day in a traditional

Table 2. Nutritional breakdown of the low-glycaemic index (GI) diet used in the study*

Low GI (am)

Weight (g) Energy (kJ) Fat (g) Protein (g) Carbohydrate (g) Fibre (g) GI GL

Breakfast
Pumpernickel bread 180 1414 2 9 70 6 41 26
Black cherry yoghurt 150 837 9 5 24 1 17 4
Semi-skimmed milk 150 314 3 5 7 0 25 2
Apple 133 268 0 0 15 3 38 5
Margarine 12 377 10 0 0 0 0 0
Fruit and nut 90 1715 24 6 42 5 15 6
Total 4929 47 26 159 15 29 42

Lunch 0
Lasagne 280 1159 7 14 37 3 28 10
Probiotic orange drink 200 544 2 4 23 1 30 7
Total 1703 9 18 60 4 29 16

Dinner 0
All-bran 80 1092 1 8 56 23 42 14
Semi-skimmed milk 150ml 314 3 5 7 0 25 2
Orange juice 200ml 352 0 1 20 0 50 10
Total 1757 4 14 83 23 43 26

Total for the whole day 8389 60 59 302 42 34 87

GL, glycaemic load.
* The meal pattern and the energy load given in the morning. The meal pattern when the energy load was given in the evening was a reflection of the morning meal pattern.

There was a direct swap of the breakfast to dinner and the dinner to breakfast.
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three-meal eating pattern and (b) the effect of the quality of

carbohydrate (in this case, GI) on postprandial metabolic

responses. There were clear differences in circulating insulin

and glucose when the large energy load was given in the eve-

ning compared to the morning, with the higher energy intake

meal causing a significantly greater glucose and insulin

response in the evening compared to the same meal con-

sumed in the morning. This may be due to a relative insulin

insensitivity in the evening, thought to be induced by

increases in NEFA, although we were unable to demonstrate
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Fig. 1. Interstitial glucose levels in six healthy volunteers obtained every 5 min following either a high-glycaemic index (GI) diet ( ) or a low-GI diet ( )

with the majority of energy consumed either (a) early (early meal pattern) or (b) late (late meal pattern). Values are means with their standard errors represented

by vertical bars. 5021 kJ is equivalent to 1200 kcal and 1674 kJ is equivalent to 400 kcal.

Table 3. Total area under the curve for interstitial glucose (0–20 h), postprandial plasma insulin, TAG and NEFA (0–2 h after each meal) in six healthy
volunteers following either a high-glycaemic index (HGI) or a low-glycaemic index (LGI) diet, with most of the energy consumed either early (LGI-am,
HGI-am) or late (LGI-pm, HGI-pm)

(Mean values with their standard errors)

Glucose (mmol/l £ h) Insulin (pmol/l £ h) HOMA-PP‡ TAG (mmol/l £ h) NEFA (mmol/l £ h)

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

LGI-am 104* 1·3 753* 134 6·1* 1·4 6·03 0·85 2·54 0·28
HGI-am 110* 1·1 951† 188 17·1 3·9 6·40 0·46 2·26 0·29
LGI-pm 106* 1·5 668* 156 6·6* 1·8 6·20 0·92 2·34 0·40
HGI-pm 116 3·9 1142 230 24·2 5·6 5·04 0·79 2·49 0·51

HOMA-PP, postprandial homeostatic model assessment.
*Mean value was significantly different from that of the HGI-pm condition (P,0·05).
†Mean value was significantly different from that of the LGI-pm condition (P,0·05).
‡HOMA-PP is expressed in arbitrary units.
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significant differences in circulating NEFA levels between the

meal regimens(13). Another possible explanation is that the

LGI-pm dietary pattern increases SCFA production from colo-

nic fermentation and this reduces hepatic glucose production

leading to improved insulin sensitivity, an observation that has

been made by Thorburn et al.(14). An insight into the effect of

the four meal patterns on insulin sensitivity has been given by

the HOMA-PP calculation. This suggests that the HGI-pm meal

pattern has the most detrimental effect on insulin resistance

over the day compared to both LGI meal patterns which

would fit with the observations by Thorburn et al.(14) dis-

cussed previously. In an earlier study where we measured

day profiles of insulin and glucose during low- and high-GI

diets, where the greatest energy load was given in the eve-

ning, we also demonstrated deterioration in insulin sensitivity

during the high-GI diet(6). The reasons for this are not under-

stood at the present time.

The LGI meals lowered the impact of the high energy intake

on glucose and insulin metabolism both in the morning and

evening. This was most marked in the evening, lowering the

AUC by approximately 50 %. The effect of lowering blood glu-

cose is a fundamental aspect of low-GI diet. The mechanisms

behind the metabolic effects are multifactorial and could

include food matrix, decreased gastric emptying rate, slower

small-intestinal absorption of glucose and an attenuated insu-

lin response(7). As reported previously, a low glycaemic intake

lowered the total 24 h glucose regardless of whether the high-

energy meal was taken in the morning or evening(6).

We have previously shown an impaired postprandial lipid

tolerance when meals are consumed at night, compared

with the daytime(13). TAG levels were unaffected by meal regi-

men in the present study; however, this is probably because

the meals contained a relatively low percentage of fat, and

blood sampling was only carried out for 2 h postprandially

whereas peak postprandial TAG levels occur between 4 and

6 h. It is of interest that the HGI-am diet has the same insulin

response as the HGI-pm diet; however, the glucose response

over the day is significantly lower with the HGI-am diet.

This suggests that in the case of a HGI diet, the timing of

the major energy load makes a significant impact on nutrient

handling. This may be due to the metabolic differences occur-

ring during the day, such as the increase in NEFA in the

evening.

Our hypotheses around meal composition focused on the

effect of the GI of the diets. Although we controlled the

total energy, fat and protein, the dietary fibre was higher

and the glycaemic load lower in the LGI group. This is imposs-

ible to avoid when using commonly consumed foods. It

cannot be discounted that some of the effects are due to the

increase in cereal-based fibres. A recent study has shown

that inert cereal dietary fibre does have an effect on insulin

sensitivity(15).

The present study reports the acute changes observed in the

extremes of GI and meal patterns. The potential health ben-

efits of an individual moving from their habitual high evening

energy intake to a meal pattern where energy intake is greater

in the morning with a low GI need to be assessed, as with the

potential long-term benefits.

The traditional eating patterns in many Western societies of

having the largest energy load in the evening may contribute to

the metabolic syndrome through deterioration in postprandial

glucose and insulin. This study indicates that avoidance of

large, high-GI meals in the evening, in the context of a high-

GI diet, may be particularly beneficial in improving glucose

profiles and may lead to reduced risk of type 2 diabetes and

CHD.
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