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Abstract
This study aimed to investigate the causal effect of dietary habits on COVID-19 susceptibility, hospitalisation and severity. We used data from a
large-scale diet dataset and the COVID-19 Host Genetics Initiative to estimate causal relationships using Mendelian randomisation. The inverse
variance weighted (IVW) method was used as the main analysis. For COVID-19 susceptibility, IVW estimates indicated that milk (OR: 0·82; 95 %
CI (0·68, 0·98); P= 0·032), unsalted peanut (OR: 0·53; 95 % CI (0·35, 0·82); P= 0·004), beef (OR: 0·59; 95 % CI (0·41, 0·84); P= 0·004), pork (OR:
0·63; 95 % CI (0·42, 0·93); P= 0·022) and processed meat (OR: 0·76; 95 % CI (0·63, 0·92); P= 0·005) were causally associated with reduced
COVID-19 susceptibility, while coffee (OR: 1·23; 95 % CI (1·04, 1·45); P= 0·017) and tea (OR: 1·17; 95 % CI (1·05, 1·31); P= 0·006) were causally
associatedwith increased risk. For COVID-19 hospitalisation, beef (OR: 0·51; 95 %CI (0·26, 0·98); P= 0·042) showed negative correlations, while
tea (OR: 1·54; 95 % CI (1·16, 2·04); P= 0·003), dried fruit (OR: 2·08; 95 % CI (1·37, 3·15); P= 0·001) and red wine (OR: 2·35; 95 % CI (1·29, 4·27);
P= 0·005) showed positive correlations. For COVID-19 severity, coffee (OR: 2·16; 95 % CI (1·25, 3·76); P= 0·006), dried fruit (OR: 1·98; 95 % CI
(1·16, 3·37); P= 0·012) and red wine (OR: 2·84; 95 % CI (1·21, 6·68); P= 0·017) showed an increased risk. These findings were confirmed to be
robust through sensitivity analyses. Our findings established a causal relationship between dietary habits and COVID-19 susceptibility,
hospitalisation and severity.
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The emergence of the COVID-19 pandemic, caused by the
severe acute respiratory syndrome coronavirus 2, has resulted in
a devastating impact, with over seven million fatalities reported
worldwide(1,2). Despite vaccines being the most effective
strategy against the pandemic, their efficacy has been unsatis-
factory due to mutations in the severe acute respiratory
syndrome coronavirus 2 virus, including the Omicron
variant(3,4,5). Thus, it is essential to identify potentially causal
factors that can effectively mitigate the risk of COVID-19. This
identification is critical for enhancing infection prevention
measures and optimising disease management strategies.

Numerous observational studies have reported an associa-
tion between dietary behaviours and the risk of COVID-19 or
influenza. For instance, Vu et al. discovered that in the UK
Biobank (UKB) cohort, consuming coffee, tea, fish and fruit
independently was associated with a decreased risk of future

pneumonia or influenza events. On the other hand, consuming
red meat was correlated with an increased risk(6). Additionally,
they also reported that higher consumption of coffee and
vegetables, being breastfed and reducing intake of processed
meat were associated with a reduced risk of COVID-19
infection(7). However, it is important to acknowledge that the
existing observational studies have not been able to establish a
causal effect between diet and COVID-19 due to the presence of
confounding variables and the inherent limitations. Therefore, it
is imperative to highlight the necessity for more rigorous study
designs that can effectively investigate the potential causal
impact of diet on COVID-19.

Mendelian randomisation (MR) is a widely used method in
epidemiology and genetics research to investigate causal
relationships between modifiable risk factors and the incidence
of outcomes(8,9). This approach employs genetic variants that are
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known to be linkedwith the risk factor of interest as instrumental
variables (IV) to establish causality. Based on the principles of
Mendelian genetics, where genetic variants are randomly
assigned at conception and unaffected by environmental factors
or reverse causation, MR provides a robust framework for
assessing causality(10). By utilising genetic variants as IV, MR
offers stronger evidence for causality compared with traditional
observational studies, which are susceptible to confounding and
reverse causation(11).

Given the current dearth of evidence regarding the causal
relationship between dietary habits and COVID-19, the purpose
of this studywas to examine the potential causal effect of twenty-
six dietary habits on COVID-19 susceptibility, hospitalisation and
severity, employing the MR method.

Materials and methods

Study design

The study design is presented in Fig. 1. A two-sample MR
approach was employed to evaluate the potential causal
relationship between dietary habits and COVID-19 susceptibil-
ity, hospitalisation and severity. First, they should exhibit an
association with the risk factor under investigation, which in this
instance pertains to dietary behaviour. Second, these genetic
variants should not be correlated with any confounding factors
influencing the relationship between the risk factor and the
outcomes of interest, namely COVID-19 susceptibility, hospital-
isation and severity. Lastly, the genetic variant’s impact on the
outcomes should solely occur through its influence on the risk
factor, without involvement in any other pathways, a concept
known as pleiotropy.

The analysis presented in this study is a secondary analysis of
publicly available data, and no new studies involving human or
animal subjects were conducted. All genome-wide association
study (GWAS) datasets utilised in this study were openly
accessible in the public domain, thereby eliminating the need for
individual ethical approval or informed consent. Moreover, the

study’s findings were reported in accordance with the
Strengthening the Reporting of Observational Studies in
Epidemiology Using Mendelian Randomisation guidelines from
2021(12).

Genome-wide association study summary statistics
data for dietary habits

The present study obtained GWAS data of dietary intake from a
cohort of approximately 500 000 individuals aged 40–69 years
between 2006 and 2010 in the UKB(13). Within the UKB,
information on dietary habits was retrospectively collected
during the baseline assessment through a concise food
frequency touchscreen questionnaire. The original list encom-
passed twenty-six dietary intakes, with corresponding sample
sizes, including milk intake (n 64 949), yogurt intake (n 64 949),
salted peanuts intake (n 64 949), unsalted peanuts intake
(n 64 949), salted nuts intake (n 64 949), unsalted nuts intake
(n 64 949), coffee intake (n 428 860), tea intake (n 447 485),
cheese intake (n 451 486), cereal intake (n 441 640), bread intake
(n 452 236), oily fish intake (n 460 443), non-oily fish intake
(n 460 880), beef intake (n 461 053), lamb intake (n 460 006),
pork intake (n 460 162), bacon intake (n 64 949), processedmeat
intake (n 461 981), cooked vegetable intake (n 448 651), raw
vegetable intake (n 435 435), fresh fruit intake (n 446 462), dried
fruit intake (n 421 764), red wine intake (n 327 026), beer intake
(n 327 634), SFA (n 114 999) and PUFA (n 114 999). The dataset
for each dietary pattern consisted of integer variables, such as the
average daily consumption of coffee in cups, and categorical
variables indicating the frequency of poultry consumption
(online Supplementary Table S1). To ensure the quality and
reliability of the data, any unreasonable responses were
excluded during the data submission process. Additionally,
the dietary habit assessment questions and detailed definitions of
measurement units (e.g. tablespoons or cups) utilised in this
study can be accessed through the UKB website (https://
biobank.ctsu.ox.ac./crystal/label.cgi?id=100052uk (accessed on
17 October 2023) and https://biobank.ctsu.ox.ac./crystal/field.

GWAS Data Preparation GWAS summary data for dietary intake

SNPs at the genome-wide significance level
SNPs with no significant linkage disequilibrium

SNPs with no significant association with outcome
SNPs with F statistics > 10

Inverse variance weighted
MR-Egger regression
Weighted median
Simple mode
Weighted mode

Heterogeneity
Horizontal pleiotropy

SNPs with a minimum allele frequency ≥ 0.05

GWAS summary data for COVID-19

IVs Selection

MR Analysis

Sensitivity Analysis

Fig. 1. Study design. GWAS, genome-wide association study; MR, Mendelian randomisation; IV, instrumental variable.
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cgi?id=1558uk (accessed on 17 October 2023)). The GWAS
summary statistics of dietary intake were derived from
individuals of European descent (Table 1).

Genome-wide association study summary statistics data
for COVID-19

This study analysed GWAS summary statistics for COVID-19
susceptibility, hospitalisation and severity obtained from
Round 7 of the COVID-19 Host Genetic Initiative dataset(14)

(https://www.covid19hg.org/results/r7/). The COVID-19
susceptibility trait was defined as ‘positive v. negative’ and
included 122 616 COVID-19-positive cases and 2 475 240
COVID-19-negative controls. The COVID-19 hospitalisation
trait was defined as ‘hospitalised positive v. non-hospitalised
positive’ and included 32 519 hospitalised COVID-19-positive
cases and 2 062 805 non-hospitalised COVID-19-positive cases.
The COVID-19 severity trait was defined as ‘severe positive v.
non-severe positive’ and included 13 769 severe COVID-19-
positive cases and 1 072 442 non-severe COVID-19-positive
controls. The details of each definition for the three COVID-19
traits are listed in online Supplementary Table S2. These GWAS
summary statistics were collected exclusively from individuals
of European descent, except for those who participated in the
UKB study (Table 1).

Selection of instrumental variables

We selected IV according to the following criteria: (1) SNP at the
genome-wide significance level (P< 5 × 10−8). However, since
milk, yogurt, salted nuts, unsalted nuts, salted peanuts and
unsalted peanuts had fewer than 5 SNP that met the genome-
wide significance (P< 5 × 10−8), we utilised a relaxed threshold
(P< 1 × 10−5) to select SNP for these diets. (2) We only selected
SNP with no significant linkage disequilibrium (R2 < 0·01,
kb> 5000). (3) SNP with a minimum allele frequency≥ 0·05
were included, while those with a lower frequency were
excluded due to their unstable association with dietary intake.
(4) We also excluded SNP that had a significant association with
the outcome of interest (P< 5 × 10−8). (5) Finally, we evaluated
the F statistics of SNP, and only those with F statistics> 10 were
included in the analysis. Here, we defined ‘F statistics’ as the
product of the variance of exposure explained by IV,
represented by R2, and the scaling factor of (n-2)/(1-R2), where
N denotes the sample size. Detailed information on the SNP used
in the analysis can be found in online Supplementary Table S3.

Mendelian randomisation analysis

The primary analysis employed in this study was the random
effect inverse variance weighted (IVW) method, a widely used
approach known for generating reliable causal estimates even in

Table 1. Characteristics of the summary datasets for this study

Trait Sample size P value set Ancestry Access link

Exposure
Milk intake 64 949 1 × 10−5 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-2966/
Yogurt intake 64 949 1 × 10−5 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-7753/
Salted peanuts intake 64 949 1 × 10−5 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-1099/
Unsalted peanuts intake 64 949 1 × 10−5 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-15555/
Salted nuts intake 64 949 1 × 10−5 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-15960/
Unsalted nuts intake 64 949 1 × 10−5 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-12217/
Coffee intake 428 860 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-5237/
Tea intake 447 485 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-6066/
Cheese intake 451 486 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-1489/
Cereal intake 441 640 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-15926/
Bread intake 452 236 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-11348/
Oily fish intake 460 443 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-2209/
Non-oily fish intake 460 880 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-17627/
Beef intake 461 053 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-2862/
Lamb intake 460 006 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-14179/
Pork intake 460 162 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-5640/
Bacon intake 64 949 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-4414/
Processed meat intake 461 981 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-6324/
Cooked vegetable intake 448 651 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-8089/
Raw vegetable intake 435 435 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-1996/
Fresh fruit intake 446 462 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-3881/
Dried fruit intake 421 764 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-16576/
Red wine intake 327 026 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-5239/
Beer intake 327 634 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/ukb-b-5174/
SFA 114 999 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/met-d-sfa/
PUFA 114 999 5 × 10−8 European https://gwas.mrcieu.ac.uk/datasets/met-d-pufa/

Outcome
COVID-19 susceptibility 2 597 856 NA European https://www.covid19hg.org/results/r7

(122 616 cases, 2 475 240 controls)
COVID-19 hospitalisation 2 095 324 NA European https://www.covid19hg.org/results/r7

(32 519 cases, 2 062 805 controls)
COVID-19 severity 1 086 211 NA European https://www.covid19hg.org/results/r7

(13 769 cases, 1 072 442 controls)
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the absence of directional pleiotropy. To complement the MR
results, we also utilised other four methods, such as the
MR-Egger, weighted median, simple mode and weighted mode.
MR-Egger regression can identify directional pleiotropy, which
occurs when the genetic instrument affects the outcome through
a pathway that is independent of the exposure(15,16). Weighted
median is a robust approach that can provide consistent causal
estimates even if up to 50 % of the genetic instruments are
invalid(17). Simple mode estimates the causal effect of the
exposure on the outcome by taking the mode of the estimated
causal effects from each individual IV. Weighted mode is an
extension of the simple mode method that weights each IV by
the inverse of its variance(18). Using multiple methods can
provide a more comprehensive understanding of the causal
effect between dietary habits and the susceptibility, hospital-
isation and severity of COVID-19.

Sensitivity analysis

For the IVW analysis, we utilised the I2 index and Cochran’s Q
statistic to assess the heterogeneity of the effects of SNP related to
twenty-six dietary habits on COVID-19 susceptibility, hospital-
isation and severity. A P value greater than 0·05 indicated no
heterogeneity. Meanwhile, to detect potential pleiotropy and
evaluate its impact on the risk estimation, we employed MR
regression intercept test and calculated the Rucker’s Q statistic.
A P value greater than 0·05 indicated no pleiotropy.

Statistical analyses

We estimated the causal effect of dietary habits on COVID-19
susceptibility, hospitalisation and severity using the OR and a
95 % CI. To correct for multiple testing, we applied the
Bonferroni correction with a threshold of 0·0019 (0·05/26) to
control the false discovery rate. An association with a nominal
P value less than 0·05 but greater than 0·0019 was considered
suggestive, and an associationwith a P value less than 0·0019 was
deemed significant. We conducted all statistical analyses using
R software (version 4.2.1) and employed the ‘TwoSampleMR’
package to perform the IVW, MR-Egger regression, weighted
median, simple mode and weighted mode methods.

Results

Genetic instrumental variables for dietary habits

We selected 19 SNP for milk, 6 SNP for yogurt, 7 SNP for salted
peanuts, 22 SNP for unsalted peanuts, 11 SNP for salted nuts,
13 SNP for unsalted nuts, 26 SNP for coffee, 35 SNP for tea,
47 SNP for cheese, 25 SNP for cereal, 24 SNP for bread, 47 SNP for
oily fish, 7 SNP for non-oily fish, 8 SNP for beef, 21 SNP for lamb,
8 SNP for pork, 8 SNP for bacon, 15 SNP for processed meat,
10 SNP for cooked vegetables, 8 SNP for raw vegetables, 32 SNP
for fresh fruit, 30 SNP for dried fruit, 10 SNP for red wine, 11 SNP
for beer, 26 SNP for SFA and 42 SNP for PUFA as the IV. The
F-statistic for each genetic variant exceeded 10, which avoids
weak instrument bias. The details of each genetic variant for the
twenty-six dietary habits are listed in online Supplementary
Table S3.

The causal effect between dietary habits and COVID-19
susceptibility

Fig. 2 illustrates theMR estimates obtained from the IVWmethod,
depicting the causal effect of twenty-six dietary habits on
COVID-19 susceptibility. Our findings showed that milk intake
(OR: 0·82, 95 % CI (0·68, 0·98), P= 0·032), unsalted peanuts
intake (OR: 0·53, 95 % CI (0·35, 0·82), P= 0·004), beef intake
(OR: 0·59, 95 % CI (0·41, 0·84), P= 0·004), pork intake (OR: 0·63,
95 % CI (0·42, 0·93), P= 0·022) and processed meat intake
(OR: 0·76, 95 % CI (0·63, 0·92), P= 0·005) were suggestively
associated with a lower risk of COVID-19 susceptibility, while
coffee intake (OR: 1·23, 95 % CI (1·04, 1·45), P= 0·017) and tea
intake (OR: 1·17, 95 % CI (1·05, 1·31), P= 0·006) were
suggestively associated with a higher risk. The results from
the other four methods were consistent with these findings,
as shown in online Supplementary Table S4.

The causal effect between dietary habits and COVID-19
hospitalisation

Fig. 3 displays the MR estimates obtained from the IVWmethod,
depicting the causal effect of twenty-six dietary habits on
COVID-19 hospitalisation. Our findings showed that beef intake
(OR: 0·51, 95 % CI (0·26, 0·98), P= 0·042) was suggestively
associated with a lower risk of COVID-19 hospitalisation,
while tea intake (OR: 1·54, 95 % CI (1·16, 2·04), P= 0·003),
dried fruit intake (OR: 2·08, 95 % CI (1·37, 3·15), P= 0·001) and
red wine intake (OR: 2·35, 95 % CI (1·29, 4·27), P= 0·005) were
associated with a higher risk. The results from the other four
methods were consistent with these findings, as shown in online
Supplementary Table S5.

The causal effect between dietary habits and COVID-19
severity

Fig. 4 depicts the MR estimates obtained from the IVW
method, showing the causal effect of twenty-six dietary habits
on COVID-19 severity. Our findings showed that coffee intake
(OR: 2·16, 95 % CI (1·25, 3·76), P= 0·006), dried fruit
intake (OR: 1·98, 95 % CI (1·16, 3·37), P= 0·012) and red wine
intake (OR: 2·84, 95 % CI (1·21, 6·68), P= 0·017) were
suggestively associated with a higher risk of COVID-19
severity. The results from the other four methods were
consistent with these findings, as shown in online Supplementary
Table S6.

Sensitivity analysis

Online Supplementary Tables S7–S9 present the results of the
MR-Egger intercept test and MR-Egger regression, which can
identify unmeasured pleiotropy and generate estimates while
accounting for horizontal pleiotropy, respectively. Despite the
presence of heterogeneity in certain findings, we persisted in
using the IVWmethod as the primary analyticalmethod due to its
efficacy in controlling pooled heterogeneity. Additionally, the
MR-Egger intercept test did not identify any horizontal pleiotropy
that could have influenced the MR results.
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Discussion

To the best of our knowledge, this is the first study to investigate
the causal effect between dietary habits and the susceptibility,
hospitalisation and severity of COVID-19. In the current study,
we have established a causal relationship between certain
dietary habits and the risk of COVID-19 susceptibility, hospital-
isation and severity. Our results suggested that consuming milk,
unsalted peanuts, beef, pork, processed meat, coffee and tea
had a causal effect on the risk of COVID-19 susceptibility.
Additionally, the consumption of beef, tea, dried fruit and red
wine had a causal effect on the risk of COVID-19 hospitalisation.
Finally, the consumption of coffee, dried fruit and red wine may
be causally linked with a higher risk of COVID-19 severity.
Overall, our findings emphasise the need for a comprehensive
approach to COVID-19 prevention that includes lifestyle
modifications, such as dietary changes.

Beef is a good source of protein and essential nutrients such
as Fe and Zn, which are important for maintaining a healthy
immune system(19). The causal relationship observed between
beef intake and COVID-19 hospitalisation risk may be due to a
number of factors, including the nutritional content of beef and
its potential effects on the immune system or underlying health
conditions(20). For example, previous studies have suggested
that certain nutrients in beef, such as Zn and vitamin B12, may

have a beneficial effect on the immune system, potentially
reducing the risk of viral infections(21,22,23). Further research is
needed to fully understand the mechanisms underlying this
relationship.

The study found that coffee intake was causally associated
with an increased risk of COVID-19 susceptibility and severity.
However, the mechanisms by which coffee intake could affect
COVID-19 outcomes are not entirely clear. One possibility is that
caffeine, which is found in both tea and coffee, may have
adverse effects on the immune system and contribute to
inflammation(24,25). Caffeine has been shown to increase the
release of cortisol, a stress hormone that can suppress immune
function and increase inflammation. Another possible explan-
ation is that tea and coffee intake may be associated with other
lifestyle factors or underlying health conditions that increase the
risk of severe COVID-19 outcomes(26). For example, people who
consume large amounts of tea or coffee may have a higher
overall intake of caffeine, which can disrupt sleep patterns,
increase stress levels and contribute to the development of
chronic health conditions such as diabetes and CVD(27,28).

The study revealed a causal association between red wine
consumption and an elevated risk of COVID-19 hospitalisation
and severity. However, the potential explanations for this
relationship may be related to the compounds present in red
wine. Alcohol consumption, including redwine, has been linked

Fig. 2. Causal effect of dietary habits on COVID-19 susceptibility: MR estimates from IVW method. MR, Mendelian randomisation; IVW, inverse variance weighted.
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to various health conditions, such as liver disease, cancer
and CVD, which can heighten the risk of developing severe
COVID-19 complications and hospitalisation(29,30). Furthermore,
excessive red wine consumption could detrimentally affect the
immune system and overall health, potentially increasing
the susceptibility to viral infections and severe COVID-19
outcomes(31,32). It is important to note that the study did not
investigate the specific mechanisms underlying the impact of red
wine intake on COVID-19 hospitalisation and severity.
Therefore, further research is necessary to comprehensively
understand the underlying mechanisms of this association.

The present study has several notable strengths. First, the use
of a MR design allowed for the investigation of causal
relationships between dietary habits and COVID-19 outcomes,
thereby mitigating potential confounding factors that can affect
observational studies. Second, a large and diverse sample of over
500 000 individuals was analysed, providing robust statistical
power for the analysis. Third, a comprehensive dietary assess-
ment tool was employed to capture a wide range of dietary
habits, including food and beverage intake. Last, the study
examined the relationship between dietary habits and three
distinct COVID-19 outcomes, namely susceptibility,

hospitalisation and severity, thereby offering a more compre-
hensive understanding of the potential impact of dietary habits
on COVID-19 outcomes. Overall, these strengths increase
confidence in the causal relationships between certain dietary
habits and COVID-19 outcomes identified in the study.

However, our study is not without limitations. First, the use
of self-reported dietary data is subject to recall bias and
measurement error, and the study did not account for changes
in dietary habits during the study period. Second, the sample
consisted primarily of individuals of European descent, which
may restrict the generalisability of the findings to other
populations. Third, the study was limited to three COVID-19
outcomes, namely susceptibility, hospitalisation and severity,
and did not investigate other important outcomes such as
mortality and long-term complications. Fourth, the study did
not account for potential confounding factors such as social
determinants of health and healthcare access that may
influence COVID-19 outcomes. Fifth, it is important to
acknowledge that there exist overlapping sets of participants
among the twenty-six dietary habits. However, a study by
Minelli et al.(33) demonstrated that the majority of two-sample
methods can be applied safely in the context of one-sample MR

Fig. 3. Causal effect of dietary habits on COVID-19 hospitalisation: MR estimates from IVW method. MR, Mendelian randomisation; IVW, inverse variance weighted.
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studies with a substantial sample size. Taken together, caution
is advised when interpreting the findings of the study, and
further research is warranted to validate our findings and
explore the underlying mechanisms.

Conclusions

Our findings established a causal relationship between certain
dietary habits and COVID-19 susceptibility, hospitalisation and
severity, highlighting the importance of maintaining a healthy
diet to reduce the risk of COVID-19.
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