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Abstract

A permutation group is said to be quasiprimitive if every nontrivial normal subgroup is transitive. Every
primitive permutation group is quasiprimitive, but the converse is not true. In this paper we start a project
whose goal is to check which of the classical results on finite primitive permutation groups also holds
for quasiprimitive ones (possibly with some modifications). The main topics addressed here are bounds
on order, minimum degree and base size, as well as groups containing special p -elements. We also pose
some problems for further research.
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1. Introduction

A permutation group G on a finite set £2 of size n is said to be quasiprimitive on £2 if
every nontrivial normal subgroup of G is transitive on £2. The name 'quasiprimitive'
was suggested by Helmut Wielandt for this concept when it arose in work of Woflgang
Knapp in the 1970's on subconstituents of finite primitive permutation groups (see
[19,20]). The concept of quasiprimitivity arose again in the study of certain families of
arc-transitive graphs. In particular each finite, non-bipartite, 2-arc transitive graph was
shown in [29] to be a cover of a possibly simpler graph admitting an automorphism
group which was quasiprimitive on vertices as well as transitive on 2-arcs. It was
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this graph theoretic result which prompted a detailed study of finite quasiprimitive
permutation groups.

As suggested by the name, quasiprimitivity is a generalisation of the primitivity
property for permutation groups. A permutation group G on Q is said to be primitive
on Q if G is transitive, and there are no nontrivial G-invariant partitions of Q. (A
partition of Q is nontrivial if both the number and size of its blocks are greater than
1, and is G-invariant if the elements of G permute the blocks blockwise.) Every
primitive permutation group G on ft is quasiprimitive, since the set of orbits of
a normal subgroup of G is a G-invariant partition. However the converse is not
true since, for example, the permutation group induced by right multiplication of
a nonabelian simple group on the set of right cosets of a non-maximal subgroup
is quasiprimitive but not primitive. Hence, to some extent, a full understanding of
quasiprimitive permutation groups requires determination of all subgroups of finite
simple groups, which is a formidable (and in many ways hopeless) task. Still, we
show below that many of the classical results on primitive permutation groups can be
extended to quasiprimitive permutation groups.

More specifically, for finite primitive permutation groups G on ft there are bounds
available in terms of the degree n = |ft| for the order |G|, the minimum base size of
G, the minimum degree of G, and various other parameters. The purpose of this paper
is to investigate which of these bounds for finite primitive permutation groups hold
also for finite quasiprimitive groups. We show that many of them do carry over to
quasiprimitive groups, with some requiring small modifications. We also pose some
problems for further research.

The following basic observation seems to be rather useful, and already provides
some preliminary consequences. Let G be a finite quasiprimitive permutation group
on a set ft of n points, where n > 1. Then there is a G-invariant partition £ of ft
with blocks of size b, say, less than n, and with the blocks maximal with this property.
We call such a partition a maximal block system for G. Clearly G induces a primitive
permutation group on D. The kernel of this action is a normal subgroup of G which is
intransitive on ft (since | S | > 1), and hence is trivial (since G is quasiprimitive). Thus
G is isomorphic to a primitive permutation group on E of degree |E| = n/b < n.
This discussion suggests that many properties of primitive permutation groups may
carry over easily to quasiprimitive groups. In some cases this is so, while other cases
require more thought.

2. Elements of prime order in quasiprimitive permutation groups

Let G be a subgroup of the symmetric group Sym(ft) on ft, where |ft| = n, and
suppose that G is quasiprimitive on ft. In 1873 and 1875, Jordan ([15, 16] or see [13,
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Theorem 3.3E]) proved that if n > p + 3, where p is a prime, and if G is primitive on
£2 and contains a p -cycle, then G = Alt(£2) or Sym(£2). In particular if a primitive
group on Q contains a 3-cycle then Jordan proved that it contains the alternating group
Alt(£2). This result carries over easily to quasiprimitive groups.

THEOREM 2.1. Let G be a quasiprimitive permutation group of degree n such that
G contains a p-cycle, for some prime p. Then either G > Alt(fi), or n < p + 2 and
p > 5. In particular, if G contains a 3-cycle, then G contains

PROOF. AS discussed in the introduction, G acts faithfully on a maximal block
system E. Let g e G act on £2 as a p -cycle. Since G is faithful on E, the element
g must act nontrivially on E and hence must induce a p -cycle on E. However, if the
size of the blocks in E is b then g acts on Q as a product of b cycles of length p.
We conclude that the blocks of E have size 1 and G is primitive on Q., and hence the
result follows from Jordan's Theorem. •

This seminal result of Jordan was extended and applied in a number of ways during
the next century in the analysis of primitive permutation groups. Much of this analysis
applies equally well to quasiprimitive groups.

One direction in which Theorem 2.1 was extended was in the study of elements of
prime order in primitive groups. If a primitive group G of degree n, other than An or
Sn, contains an element of prime order p with a small number q of cycles of length p,
then it was shown that the number n — qp of fixed points is bounded above by a linear
function of q. The best result from the early 20th century is due to Manning [24],
and dealt with the case q < (p + l)/2. A summary of these early results may be
found in [28] or [35]. The linear bound on n — qp cannot hold for larger values of
q because the alternating and symmetric groups Ac and Sc (c > p) acting primitively
on the n = (£) unordered pairs of distinct points from a set of size c contain elements
of order p with q = c — (p + l)/2 cycles of length p and a large number of fixed
points: for example, if c = (3p — l)/2 then these elements of order p haveg = p — 1
cycles of length p and n — qp = q(q — 2)/8 fixed points in this action. It was shown
in [28, Theorem A] that this action of alternating and symmetric groups on pairs was
essentially the only obstruction for a linear bound for numbers of cycles less than p.
The result in [28] is the best result of this type in the literature which does not depend
on the finite simple group classification, and it holds with a small modification for
quasiprimitive groups.

THEOREM 2.2. Let G be a quasiprimitive permutation group on a set Q ofn points,
such that, for some prime p, G contains an element of order p with q cycles of length
p in Q, where 2 < q < p. Then one of the following holds.

(0 n-qp <5q/2- 1;
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(ii) G = AnorSn;
(iii) G = Ac or Sc on unordered pairs (n = (£), c > p, q = c — (p + l)/2).

PROOF. If G is primitive on £2 then one of parts (i)-(iii) hold by [28, Theorem A].
So we may assume that G is imprimitive on £2. Let E be a maximal block system
for G in £2, with r blocks of length b, where n = br. Then G acts faithfully and
primitively on E. Let g e G be an element of order p with q cycles of length p in Q,
and let / := n — qp, the number of fixed points of g in £2. Then g acts nontrivially
on E, and each cycle of g of length p in £ corresponds to b cycles of length p of g in
£2. Since g < p , it follows that b < q < p, and consequently g has g' := g/& cycles
of length p in E, and / ' := f/b fixed points in E. Also q > b >2 (and in particular
p is odd), and since p divides \G\ we have r > p. Let 5 e E and a 6 B.

If p = 3, then q — b = 2 and # acts as a 3-cycle on E, so by Jordan's Theorem,
G > Ar. Therefore GB > Ar_i, and GB has Ga as a subgroup of index b = 2. It
follows that G = Sr, Ga = Ar-U n = br = 2r. However Ar is intransitive and so G
is not quasiprimitive. Thus p > 5.

Suppose first that G > Ar. Then GB = Ar_i or Sr_i, and Ga is a subgroup of GB

of index b < q < p — I < r — 1. IfGa contains Ar_!, then G = 5r, Ga = Ar_x and,
as above, G is not quasiprimitive. Hence Ga does not contain Ar_i. Thus Ga fi Ar_i
is a proper subgroup of Ar_x of index at most b < r — 1. Since r > p > 5, it follows
that either (a) Ga = GBiB', for some B' € E \ {B}, and b — p — I = r — I = q, or
(b) r = p = 7 and G a n A 6 = PSL(2,5), or (c) r = p — 5. In each of these cases, p
does not divide \Ga\, s o / = 0 and (i) holds. Thus we may assume that G does not
contain Ar.

Suppose next that q' = 1, that is, b — q. Then by Jordan's Theorem, / ' < 2, so
/ = bf < 2b = 2q < 5q/2 — 1, and (i) holds. Thus we may assume further that
q' > 2. Then one of cases (ii) or (iv) of [28, Theorem A] holds. If G = Ac or Sc

acting on E as on the unordered pairs from a set of size c, then (see the discussion
preceding the statement of the theorem) c = q' + (p + l)/2 > p so q' > (p — l)/2.
It follows that q' = (p — l)/2, so c = p and g has no fixed points in E, so (i) holds.
Also if/ ' < 5q'/2, then/ < 5q/2 and again (i) holds. •

Using [28, Theorem A] and the finite simple group classification, Liebeck and
Saxl [22] obtained a complete classification of the finite primitive permutation groups
which contain an element of prime order p with fewer than p cycles of length p.
This classification could be extended to give a classification of the quasiprimitive
permutation groups having this property. For the extension to quasiprimitive groups,
a careful analysis of the result of [22] will be needed to identify any extra quasiprimitive
almost simple examples.

PROBLEM 1. Classify all finite quasiprimitive permutation groups which contain
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an element of prime order p with fewer than p cycles of length p.

3. Quasiprimitive Jordan groups

In 1871 Jordan [14] initiated an investigation of a family of primitive permutation
groups which are now called Jordan groups. It was perhaps this investigation which
led a few years later to his theorem discussed in Section 2. Let G < Sym(fi) be a
transitive permutation group on Q, and let F be a subset of Q such that 1 < |F| < |£2|.
We shall say that F is a Jordan set for G in Q if the pointwise stabiliser G(nxn in G
of Q \ F acts transitively on F. In this case we shall call G a Jordan group on £2.
One family of examples of Jordan sets arises from fc-transitive permutation groups
G, namely the sets obtained by removing k — 1 points from Q. Such Jordan sets are
called trivial Jordan sets and all other examples are said to be nontrivial. A Jordan
group is called nontrivial if it has at least one nontrivial Jordan set.

In [14] Jordan studied primitive permutation groups which we would now call
primitive Jordan groups. He proved that, if G is primitive on Q and G(n\r) is primitive
on F, then F is a trivial Jordan set for G. He also proved that, if F is a Jordan set for a
primitive permutation group G on £2, and 1 < |F| < |fi|/2, then G is 3-transitive on
Q. The latter result was strengthened by Marggraf in 1892; Marggraf deduced that,
if 1 < |F| < \Q\/2 then G is Alt(ft) or Sym(ft) ([26], or see [35, Theorem 13.5]).
Both of these theorems hold also for quasiprimitive groups.

THEOREM 3.1. Let G be a quasiprimitive permutation group on a set Q ofn points,
and suppose that a subset F o/S2 is a Jordan set for G. Then:

(i) if G(a\r) is primitive on F, then F is a trivial Jordan set;
(ii) if I < |F| < n/2, then G = An or Sn.

PROOF. We may assume that G is imprimitive. Let E be a maximal block system
for G in £2. Then G is faithful and primitive on E. It follows that F is a union of
complete blocks of E, and that H := G(n\n is transitive on the set Fj; of blocks of E
contained in F. If F^ consisted of a single block of E, then H would be contained in
the kernel of G on E, which is not the case. Hence 1 < |FE | < |E|, and so Fj is a
Jordan set for G in E.

If H is primitive on F then, since a block of E contained in F is a block of
imprimitivity for the action of H on F, it follows that the blocks of E have size 1.
Hence G is primitive, which contradicts our assumption. Thus G must be primitive
in part (i), and so (i) is proved.

If 1 < |F| < n/2, then 1 < |FE | < |E|/2, and so G = Ar or Sr, where r = |E|.
For B € E, B £ F, the stabiliser GB = Ar_i or Sr-\ is transitive on B of degree
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b := \B\ > 1. In particular r > 3. However, H fixes B pointwise, and so the kernel
of GB on B is nontrivial. It follows that either (i) G = Sr, b = 2, and the pointwise
stabiliser G(B) = Ar_i, or (ii) r = 5, G(B) = Z2 x Z2, and 6 = 3|G : G'\. In case (i),
the normal subgroup Ar is not transitive on ft, so G is not quasiprimitive. In case (ii),
since 1 < |Fj; | < 5/2, we have |FE | = 2, and since the pointwise stabiliser of E \ Fj;
contains H (and so is nontrivial), we must have G = S5, and H = Z2. This however
contradicts the fact that H is transitive on the set F of 2b points. •

The finite primitive Jordan groups were studied in depth by Kantor in [17], and
when the finite simple group classification was complete, he was able to complete the
primitive Jordan group classification, see [18]. It is likely that this classification can
be extended to the quasiprimitive case. We propose the following.

PROBLEM 2. Classify all finite quasiprimitive Jordan groups.

4. Orders of quasiprimitive groups

Let G < Sym(ft) where |ft| = n, and suppose that G is quasiprimitive on ft.
In this section we analyse various upper bounds available for the orders of primitive
permutation groups to see which of them hold for quasiprimitive groups. The problem
of finding an upper bound 'much smaller than n!' for the order of a primitive group of
degree n which does not contain An was one of the central problems of 19th century
Group Theory. The best result from that period, due to Bochert [6] in 1889 (or see [35,
14.2]), is that such groups have orders at most n\/[{n + l)/2]!. Bochert proved that
a primitive subgroup of Sn of order greater than [(n + l)/2]! must contain a 3-cycle,
and then applied Jordan's Theorem (Theorem 2.1). It is very easy to extend this result
to quasiprimitive groups.

THEOREM 4.1. Let G be a quasiprimitive permutation group of degree n such that
An £ G. Then \G\ < n\/[(n + l)/2]!.

PROOF. By Bochert's result we may assume that G is quasiprimitive and imprimitive
on ft of degree n. Then, as discussed in the introduction, G is isomorphic to a primitive
permutation group of degree r where r is a proper divisor of n. Thus | G\ < r\, and it
is easy to show that r\ < n\/[(n + l)/2]!. •

The first significant improvement on Bochert's bound was made in 1969 by
Wielandt. He proved [36, Theorem 8.7] that a simply primitive group (that is, a
primitive ;>"oup which is not 2-transitive) of degree n has order less than c", for some
constant c < 24. Wielandt's bound was extended in 1980 in [30] to all primitive
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groups not containing An, and the value of the constant was reduced to c = 4. The
bound has a number of advantages in applications, sometimes over asymptotically
better bounds, since it is a simple function of n, and it holds for primitive permutation
groups of all degrees n. With a little care we prove that the result of [30] holds also
for finite quasiprimitive groups.

THEOREM 4.2. Let G be a quasiprimitive permutation group of degree n > 1. Then
either \G\ < 4" or G = An or Sn.

PROOF. By [30], we may assume that G is quasiprimitive and imprimitive on £2
of degree n. Let E be a maximal block system for G in £2 with r — n/b blocks of
size b. Then G is isomorphic to a primitive permutation group on S and, since G is
imprimitive on Q, b > 1. If G £ Ar or Sr, then by [30], \G\ < 4r < 4". So we may
assume that G = Ar or Sr. Since G is quasiprimitive G = Ar is transitive on £2.

Let a e £2, and let a e E be the block containing a. Then G'a is a proper subgroup
of G'a — Ar_,. There is a maximum positive integer i such that G'a < Ar_,. If
i > 2 then there is a second maximal block system <E> for G in £2 comprising the
unordered pairs from E. Since G does not induce the full alternating or symmetric
groupon<J>, we have from [30] that \G\ < 41*1 < 4". Thus we may assume that / = 1.
Moreover, since \G\ < r\ and we have r\ < 4r < 4" for r < 7, we may assume that
r > 8. Then, in this final case, Ga = Ar_i or 5r_i induces a faithful quasiprimitive
permutation group on the block o of degree b. Moreover, since i = 1, this action
is not the natural action of degree r — 1, and hence, again by [30], \Ga\ < 4b so
\G\ = r\Ga\ < r-Ab < 4". •

Not long after the exponential bound was proved, Babai obtained the first sub-
exponential upper bound for the orders of primitive groups. Again the 2-transitive
groups were treated separately from the simply primitive groups: for G < Sn, it was
shown that \G\ < exp(4n1/2(log«)2) if G is simply primitive (of any degree n > 1)
in [2, Section 3] and, for n sufficiently large, that \G\ < expexp(1.18(logn)1/2) if G
is 2-transitive, and An 2 G, in [3, Theorem 1.1]. The bound for 2-transitive groups is
better than the one for simply primitive groups, and moreover the 2-transitive bound
was improved by Pyber in [34] to | G\ < exp(32 log3 n) if G is 2-transitive of degree
n > 400 and An £ G. Thus the simply primitive bound holds for all primitive groups
not containing A„ provided that n > npr, for some constant npr. Babai [3, p. 473] gave
a 'rough estimate' of npr as 5-105, and pointed out in [2, Comment in Section 3] that the
simply primitive bound is close to best possible, since G = Sc acting on n = c(c— 1 )/2
unordered pairs from a set of size c satisfies |G| = exp((l/\/2 + 0(l))H1/2logrt). We
show that the simply primitive bound holds also for quasiprimitive groups (with a
larger constant «0)-
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THEOREM 4.3. Let Gbea quasiprimitive permutation group of degree n, such that
An £ G. There is a constant n0 such that, ifn > n0, then \G\ < exp(4n1/2 log2 n).

PROOF. Set / (n) = exp(4/i1/2 log2 n), and let npr be a constant such that npr > 8
and Babai's Theorem 'holds for npr', that is, for n > npr, a primitive group of degree
n which does not contain An has order less than / (n). Let n0 :— npr\. Now suppose
that G is a quasiprimitive permutation group on Q of degree n > n0. Then by Babai 's
Theorem we may assume that G is imprimitive on SI. Let E be a maximal block
system for G in Q with r = n/b blocks of size b, so that G is isomorphic to a
primitive permutation group on £ and, since G is imprimitive on fi, b > 1. If r were
less than npr, then we would have \G\ < r! < «pr! = n0 < n and G could not be
quasiprimitive of degree n. Thus r > npr.

The result follows from Babai's Theorem unless G contains Ar, so we may assume
that G = Ar or Sr. Let a € Q andcr e £ be the block containing a. Then G'a = Ar-X,
and arguing as in the previous proof, we may assume that a is the unique element of
£ fixed setwise by Ga. Since G is quasiprimitive, G'a is transitive on a, and since
Ar_\ is a nonabelian simple group, Go is quasiprimitive on a of degree b. Clearly
b > r — 1, and as we have just observed, the action of Ga on a is not the natural
action of degree r — 1, so (since r — 1 ̂  6) i> > r > npr. Applying Babai's Theorem
again, to the action of Ga on a, we find |G\ < rf (b) < / ( « ) . •

As we mentioned above, the bound of Babai is almost best possible for primitive
groups not containing An. Better bounds for primitive group orders are available if we
specify a larger class of exceptions than just An and Sn, but the proofs usually rely on
the classification of the finite simple groups. One of these bounds, namely nclog", was
obtained by Cameron [7, Section 6], or see [9, Theorem 5.8]. We show below that
this bound also carries over for quasiprimitive groups with a larger class of exceptions
than in the primitive case.

THEOREM 4.4. Let G be a quasiprimitive permutation group of degree n. Then
there exist constants c, d such that either

(a) |G| <ncXo*n,or
(b) for positive integers m, k, I such that k < c', I < d and m > 4c', we have
G<SmiS, with soc(G) = A'm and (Am^)' < soc(G)a < (Sm_, x Sk)' n soc(G).

PROOF. By the result [7, Theorem 6.1(S)] of Cameron, either (a) or (b) holds,
for some constants c, d, when G is primitive on Q. so we may assume that G is
imprimitive. Let E be a maximal block system with blocks of size b > 1. Then
applying Cameron's result again we deduce that either (a) holds or, for some m > Ad
and / < d, we have Al

m < G < Sm l St and for every choice of E there is an integer
k < d such that the action of G on E is its product action with Am acting on £>subsets.
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Assume that the latter holds, set N = soc(G) = A'm, and choose E with k (k < d) as
large as possible. Let a e E. Then Na = ((Sm_* x Sk) D Am)'. For i — 1 , . . . , / , let
7r, denote the projection of Na onto the copy of Sm_* in the r"th direct factor of Na.

Consider the subgroups 7ti(Na), where a e a and 1 < / < /. Since G is
quasiprimitive, N is transitive on fi, so G = NGa. Hence Ga permutes transitively
by conjugation the / simple direct factors of N, and also permutes transitively the
subgroups 7ij(Na) (1 < i < I). In particular either all or none of the nj(Na) are
transitive subgroups of Sm_*. Suppose first that ni(Na) is intransitive. Then 7t\(Na)
leaves invariant a subset of size k', where 1 < k' < (m — k)/2 and so Na < (5m_^ x
Sk')' n soc(G). By our assumption in the previous paragraph about maximal block
systems, it' < d. Thus k+k' < 2d < m/2, and since Na < (Sm-k-k>xSk+k,)'r\soc(G),
our assumption about maximal block systems implies that k + k' < d, but this
contradicts the maximality of k.

Thus ni(Na) is transitive. Suppose next that 7ti(Na) does not contain Am_k. Then
\x\(Na)\ < \S\(m-k)/2\ 1 S2\ (for by Theorem 4.2 or 4.3 primitive groups have smaller
order than this, and the upper bound given is the largest order of an imprimitive
subgroup). Thus

™ ' ^ 0(m-i);/2

and so ml < 2log2 b + (d)2. Since \G\ < ml'll it follows that (a) holds (with a
possibly modified constant c). Thus we may assume that n\(Na) contains Am-k. The
derived group N'a is therefore isomorphic to Ar

m_k for some r < /. If r = I then
part (b) holds, while if r < / then b > |Am_jt| and arguing as before we find that (a)
holds. •

In case (b), G has a maximal block system E such that the action of G on E is
faithful and permutationally isomorphic to the product action with Am or Sm acting on
^-subsets. The proof of Cameron's result, and hence also of this result, relies on the
finite simple group classification. The original statement of Cameron's theorem [7,
Theorem 6.1(S)] gave an even smaller bound n0^^" with a longer list of exceptional
primitive groups, namely either

(a) G has an elementary abelian regular normal subgroup, or
(b) T' < G < Aut(T) i Si (/ > 1) in product action where T is either an alternating

group acting on ^-subsets, or a classical group acting on an orbit of subspaces (or in
the case of PSL(d, q), on pairs of subspaces of complementary dimension).

A similar treatment to that in the proof above should identify the finite quasiprimitive
permutation groups of degree n which have order greater than n

cloglogn.

PROBLEM 3. Classify the quasiprimitive permutation groups of degree n and order
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greater than nclo*iosn.

If a quasiprimitive permutation group has a nontrivial abelian normal subgroup,
then it is in fact primitive of affine type, see [29]. This means in particular that
a soluble quasiprimitive permutation group is primitive, so for example, a result of
Palfy and Wolf [27, 37] may be restated as: a quasiprimitive soluble permutation
group of degree n has order at most 24~1/3n1+Co, where c0 — 2.243 Finally in this
section we mention a result of Pyber [32] (or see [33, Theorem 2.10]) on the orders
of the cyclic composition factors of a primitive group, which extends immediately to
quasiprimitive groups (because a quasiprimitive group is faithful on a maximal block
system).

THEOREM 4.5. Let G be a quasiprimitive permutation group of degree n. Then

(a) the product of the orders of the cyclic composition factors of G is at most
24~1/3n1+co, where c0 is the same constant as in the Pdlfy-Wolf result mentioned
above, and
(b) the number of non-cyclic composition factors of G is at most log n.

5. Bases of quasiprimitive groups

A base of a permutation group G on a set Q is a sequence a i, a2,... , ab of elements
of fi such that the only element of G which fixes each of the a, is the identity element.
By considering the chain of stabiliser subgroups

(1) G>Gai> Gaia2 > > Gaia2...ab = {1G}

it is clear that \G\ < nb. Thus a bound on b yields a bound on \G\. In fact,
the subexponential bound of Babai [2] for simply primitive groups of degree n was
proved by showing that such groups have a base of size at most 4,/n log n. For such
estimations it is therefore sensible to require that each of the inclusions in (1) be
proper. Such a base is said to be irredundant. Moreover we are interested in the
minimum base size b(G) for a permutation group G. Of course a base of minimum
size is irredundant, and we have 2*(G) < \G\ < nb(G). It therefore follows from [34]
that for n sufficiently large, a 2-transitive group G of degree n, such that G does not
contain An, also has b(G) less than Babai's simply primitive bound above, so this
bound holds for all primitive groups of degree n which do not contain An. The crucial
but elementary fact which allows results about base sizes for primitive groups to be
extended to quasiprimitive groups is the following lemma.

LEMMA 5.1. Let G be a quasiprimitive permutation group on a set £2 of size n, and
let S be a maximal block system for G in Q. Let bn(G), bz{G) denote the minimal
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base sizes of the permutation groups induced by G on SI and E respectively. Then
ba(G) <

PROOF. Let au o2,... ,o-b be a base for G in E, and let a, € a, for each i =
1,. . . , b. Suppose that g € G fixes each of the a,-. Then g also fixes each of the cr,
setwise and hence acts trivially on E, since ax,a2,... , ob is a base. It follows that
g — 1 since G is faithful on E. Hence (*i, a2 , . . . , ab is a base for G in £2. •

Using Lemma 5.1, it follows immediately that the bound discussed above for base
sizes of primitive groups also holds for quasiprimitive groups. Let n0 be as in the
previous section.

THEOREM 5.2. Let G be a quasiprimitive permutation group of degree n > n0 such
thatAn £ G. Then b(G) < 4^/nlogn.

A number of additional results on bases for primitive groups have immediate
consequences for quasiprimitive groups, in terms of actions on maximal block systems.
We provide two examples below.

It follows from Liebeck's base bound [21] for primitive groups that, if G is a
quasiprimitive permutation group of degree n, then either

(a) b(G) < 9 log n, or
(b) Al

m < G < Sm I St (I > 1) and G induces a product action on a maximal block
system, where the action of Am is on ^-subsets (k > 1).

The second example concerns the proof in [23] of a conjecture of Cameron and
Kantor (see [8, Conjecture 3.4], or [10, page 260]) that, for almost simple primitive
groups G, in 'most' cases b(G) is bounded above by an absolute constant c. A group
G is said to be almost simple if T < G < Aut(T) for some nonabelian simple group
T. If G is an almost simple classical group with socle T and natural module V over a
field of characteristic p, then a subgroup H of G is called a subspace subgroup if one
of the following holds.

(1) H is the stabiliser in G of a proper nonzero subspace U of V, where U is totally
singular, non-degenerate, or, if G is orthogonal and p=2,a. non-singular 1-space (U
is any subspace if T = PSL( V));
(2) T = PSL(K), G contains a graph automorphism of T, and H is the stabiliser

of a pair U, W of proper nonzero subspaces of V such that dim V = dim U + dim W
and either U £ W, or V = U 0 W;
(3) T = Sp2m(q), where q = 2" > 2 and H n T = O£,(9).

Note that, in (3), T = O2m+X(q) and under this isomorphism H n T is a stabiliser
of a (2m)-dimensional subspace of the natural (2m + 1)-dimensional module. A
subspace action of a classical group G is an action of G by right multiplication on
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the set of right cosets of a subspace subgroup. It follows immediately from [23,
Theorem 1.3] and Lemma 5.1 that there exists an absolute constant c such that, if G is
an almost simple quasiprimitive permutation group on a finite set fi, then one of

(a) b(G) < c; or
(b) G is Am or Sm and the action of G on a maximal block system in £2 is its action

on it-subsets of {1 , . . . , m] or on partitions of {1 , . . . , m] into k parts of size m/k
(k> l);or
(c) G is a classical group and G induces a subspace action on a maximal block

system in fi.

Moreover, excluding groups in parts (b) and (c), the probability that a random c-tuple
of elements of fi forms a base for G tends to 1 as | G\ —> oo.

PROBLEM 4. Extract more information about the action of G above, beyond the
information given about its action on a maximal block system.

6. Quasiprimitive groups with restricted sections

Many of the bounds discussed in Sections 4 and 5 can be improved if the quasiprim-
itive group satisfies certain restrictions on the nature of its composition factors or
sections. (A section of a group G is a quotient group of a subgroup of G.) The
first result of this nature was due to Babai, Cameron and Palfy [4] in 1982. They
obtained a polynomial bound on the order of primitive groups which satisfied certain
restrictions on their non-cyclic composition factors. Their proof relies on the finite
simple group classification. The size of the exponent in this polynomial bound was
investigated further in [5], and in that paper a refinement was given for the definition
of the restricted family of groups involved. For a positive integer d, let Vd denote the
class of groups which do not involve the alternating group Ad as a section. Since a
quasiprimitive permutation group acts faithfully on a maximal block system, the result
of [4] (or see [33, Theorem 2.8]) yields immediately the following information about
quasiprimitive groups.

THEOREM 6.1. Let G e Td, and suppose that G is a quasiprimitive permutation
group on a set fl of size n. Then | G\ < nc{d), for some constant c(d).

It was shown by Pyber [32] (or see [33, Theorem 2.9]) that c(d) is bounded above
by a linear function of d.

These results suggest that the minimum base size b(G) for a quasiprimitive group
G € Fd may be bounded by a linear function of d. That this is the case for primitive
groups was proved recently by Liebeck and the second author in [23, Theorem 1.4],
and extends immediately to quasiprimitive groups.
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THEOREM 6.2. Let G e Td, and suppose that G is a quasiprimitive permutation
group of degree n. Then b(G) is bounded above by a linear function of d.

7. Minimal degree and fixity for quasiprimitive groups

One of the early ways of investigating the orders of primitive groups was to study
their minimal degrees. For G < Sym(ft), the minimal degree m(G) of G is the
minimum number of points of ft moved by a non-identity permutation in G. If we
wish to specify the set acted upon, we write mn(G) for m(G). A lower bound on
m(G) in terms of n could be used to obtain an upper bound on \G\ since, clearly,
\G\ < n"-m<C). More recently it has become convenient to study the fixity fix(G) of
a subgroup G < Sym(ft) which is defined as the maximum of the number fix(g) of
points of ft fixed by non-identity elements g e G: so m(G) + fix(G) = |ft|.

There is a simple inequality relating the minimal degree of a quasiprimitive group
with the minimal degree of its action on a maximal block system.

LEMMA 7.1. Let G be a quasiprimitive permutation group on a set ft of size n, and
let E be a block system for G in ft with blocks ofsize s < n. Thenmn(G) > sm^(G).

PROOF. Set m := mz(G) and let g e G \ {1}. Since G is faithful on E, g
moves at least m blocks of E. Then, since g moves all of the points of ft in the
blocks of £ which it moves, it follows that g moves at least ms points of ft. Hence
mn(G) > s • mz(G). •

The best lower bound on m(G), for primitive permutation groups G, obtained
before the classification of finite simple groups follows from the work of Babai [2]
discussed in Section 4. If G is simply primitive of degree n, then Babai showed that
m(G) > (y/n — l)/2. That this inequality (and indeed better ones!) also hold for
2-transitive groups not containing An was known already in the 1930's from work of
Manning [25] (or see [35, Theorem 15.1]). We show that Babai's bound holds for
quasiprimitive groups.

THEOREM 7.2. Let G be a quasiprimitive permutation group on a set ft of size n
such that G^Anor Sn. Then m(G) > (y/n - l)/2.

PROOF. We may assume that G is imprimitive on ft. Let £ be a maximal block
system for G in ft, and let |Z| = r and s = n/r. Now G is primitive and faithful
on E of degree r, and since G is quasiprimitive all nontrivial normal subgroups of
G are transitive on ft. This means in particular that G has no normal subgroups
acting regularly on E, and hence r > 5. If G ^ Ar or Sr then by Babai's result and
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Lemma 7.1, /HQ(G) > s(JT — l)/2, and since r > 5, this latter quantity is at least

Thus we may assume that G = Ar or Sr, and we have that G' = Ar is transitive
on S2. Let a e E, and CK e a. Then Ga < GCT = Ar_, or 5r_i, and {G')a = Ar_, is
transitive on a (since G is transitive on £2). Suppose that Ga is quasiprimitive and
faithful on a. This is certainly true if r > 6 since Ar_i is transitive on CT. Let A
be a maximal block system for Ga in a with blocks of size s' > 1, and let 5 e A
be the block containing a. By Lemma 7.1, m^CC) > 5' • mA(Ga). Now GCT is
faithful and primitive on A since Ga is faithful and quasiprimitive on a and since A
is maximal. It follows from Babai's result that either (i) Ga = As/,. or S,/,., or (ii)

Consider first case (i). Here s/s' = |A| = r — 1, and provided r ^ 7, it follows
that Ga is contained in the stabiliser of two elements of E,so G has a second maximal
block system on which it acts as A r or Sr on unordered pairs. In this case the theorem
follows from Babai's result applied (as above) to this second block system. If r — 1
then either this argument is valid or Gs = PSL(2, 5) or PGL(2, 5) and is transitive on
E \ [a}. Let x e G, x ^ 1. Since G is faithful on E, the number/ of blocks of E
fixed setwise by x is at most 5. Since Ga is faithful on A, it follows that x moves at
least 2s' points in each of the / blocks of E it fixes setwise. Hence x moves at least
2s'f + \a I (7 - / ) = 2s'f + 6s'(7 - f) = s'(42 - 4 / ) > 22s' points of Q, and this
is greater than (x/4~2? - l)/2 = {Jn - l)/2.

Now consider case (ii). Herem(T(G<T) > s'-(y/\K\-\)/2 > (^/s-l)/2. Let* e G,
x 5̂  1, and suppose that x fixes setwise exactly/ blocks a of E. We have just shown
that the number of points of each such a moved by JC is at least ma(Ga) > (,/s — l)/2.
Thus x moves at least/ ( V ? - l)/2 + (r-f)s > r(.^s - l)/2 > ( V « - l)/2 points
of Q.

The remaining case to be considered is the case where r = 5 and (G')a = A4 is
transitive on a but its normal subgroup Oi((G')a) of order 4 is intransitive. Hence
s = 3,6 or 12 according as O2((G')a)-orbits in a have length 1, 2 or 4. Since G
is faithful on E each non-identity element of G moves at least two blocks of E and
hence at least 2s points of £2. Since 2s > (V5s — l)/2 for all possible values of s,
the result follows in this final case also. •

8. A density result for quasiprimitive groups

In 1982 Cameron, Neumann and Teague [11] showed that the number of integers
n < x which occur as degrees of primitive permutation groups, other than An and Sn in
their natural action, is at most O(x/ logx). By the prime number theorem there are at
most O(x/ logx) integers n < x which are primes, and indeed the leading term in the
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estimate given in [11] for the density of primitive group degrees is accounted for by
primitive groups of degree p (for example Zp) or p + 1 (for example, PSL(2, p)), for
primes p. It is somewhat surprising that this result can be extended for quasiprimitive
permutation groups. Indeed we have

THEOREM 8.1. There is a constant c such that, for all x > 0, at most ex/ logjc
integers n < x occur as degrees of quasiprimitive permutation groups other than An

and Sn in their natural actions.

Thus for most integers n the only quasiprimitive permutation groups of degree n
are An and 5n acting naturally; in particular, for most integers n every quasiprimitive
group of degree n is in fact primitive. Another by-product of Theorem 8.1 is that the
set of indices of subgroups of finite simple groups excluding that of An_i in An has
density zero. The proof of Theorem 8.1, which relies heavily on the finite simple
group classification and subgroup structure, will appear in [31].
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