
6

Cryptanalysis

Computation and communication are secured by cryptography. For example, a

user’s data can be made private, along with messages that they send or receive,

from malicious agents who interfere to try to learn the sensitive information. A

set of algorithms collectively called a cryptosystem endows the security. The

attempt to break security is known as cryptanalysis, which has its own set

of algorithms. Historically, both cryptography and cryptanalysis considered

classical, polynomial-time algorithms as the only realistic ones. The advent of

quantum computation forces us to consider attacks via quantum algorithms.

Generally, we want to know what is the best algorithm for cryptanalysis, in

order to understand the effect on the cryptosystem in the worst case. Quantum

attacks can void the security of widely used cryptosystems (see Section 6.1 on

breaking cryptosystems). More broadly, quantum cryptanalysis can reduce a

cryptosystem’s security (see Section 6.2 on weakening cryptosystems), such

that it becomes more expensive to implement in a secure manner. While the

properties of quantum mechanics can also be used to devise more secure cryp-

tosystems (e.g., quantum key distribution) [121, 834, 1058], we consider this

area of cryptography to be outside the scope of the present discussion on quan-

tum algorithms.

The authors are grateful to Matthew Campagna and Samuel Jaques for

reviewing this chapter.

98

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

6.1 Breaking cryptosystems 99

6.1 Breaking cryptosystems

Overview

Much of modern cryptography relies on computational assumptions.1 A cryp-

tosystem is a protocol to achieve some security goal, such as hiding informa-

tion, ensuring integrity of information, or computing a function correctly. A

cryptosystem is secure if, assuming a particular mathematical problem is hard

to solve (or assuming the existence of certain functions, e.g., pseudorandom),

an adversary cannot compromise the security goal. The earliest such cryptosys-

tems used particular problems from number theory, and variants are widely

deployed to this day [605]. These cryptosystems are in the class of public-key

or asymmetric cryptography. Public-key cryptography uses key pairs: a private

key known only to one user, and a public key that can be widely distributed

to allow any user to perform tasks like encryption. In contrast, symmetric-key

cryptography uses a single secret key that must be preshared between commu-

nicating parties.

Quantum computers use quantum algorithms to solve computational prob-

lems, and in some cases they provide a speedup over the best known classical

techniques. When they are applied to the underlying computational task in

a cryptosystem, a large speedup over classical methods can break the cryp-

tosystem, in that an adversary efficiently learns the secret key or the encrypted

information to a non-negligible degree. One of the first discovered and most

famous applications of quantum computing is Shor’s algorithm [937], which

breaks or solves the integer factorization problem, and both the general dis-

crete logarithm problem and the elliptic curve discrete logarithm problem.

These problems are believed to be classically hard, and are the basis of se-

curity for the most common public-key cryptosystems, like Diffie–Hellman,

Rivest–Shamir–Adleman (RSA), and elliptic curve cryptography (ECC). The

applications of these public-key cryptosystems include encryption to hide the

contents of a message, signatures that prevent tampering and impersonation,

and key exchange to generate a key for symmetric-key cryptography [126]. In

this section, we restrict our focus to two of the most widely used cryptosys-

tems: RSA and ECC.

Actual end-to-end problem(s) solved

The RSA cryptosystem [875] relies on a user choosing a large number N that

is the product of two prime numbers; arithmetic is done modulo N. Denote by

n = ⌈log2(N)⌉ the number of bits specifying N. Along with the modulus N, two

integers e and d are used as exponents, such that (me)d = m mod N for all val-

1 An example of a cryptosystem not requiring computational assumptions is the one-time pad.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

100 6. Cryptanalysis

ues 0 ≤ m < N. The pair (N, e) is the public key, and the value d is the private

key. A message m is encrypted as me mod N. Exponentiation with d performs

decryption, recovering m as specified in the relation above. Some applications

store the factors of N, which must also be kept private. The user generates e

and d using their knowledge of the prime factors of N. First, a suitable e is

generated, and then d is computed from the prime factors of N and e using

some number-theoretic facts together with the extended Euclidean algorithm.

However, if an adversary is able to find the factors of N after the construction

by the user, they can also solve for d and thereby decrypt messages. The secu-

rity of RSA is based on the observed difficulty of factoring large numbers like

N, that is, the integer factorization problem.

ECC is based on a different problem, the elliptic curve discrete logarithm

problem (ECDLP), which has the advantage of smaller key sizes for equiv-

alent security levels, compared to RSA. Consequently, fewer resources (e.g.,

communication, complexity of encryption and decryption) are required to im-

plement ECC. Elliptic curves are constructed over a finite field K, as the set of

solutions to the equation

y2 = x3 + ax + b , a, b ∈ K ,

which specify points on an elliptic curve [639, 763]. The set of solutions

P = (x, y) forms an abelian group under a specially defined addition opera-

tion. Collectively, the set of parameters K, a, b and a so-called base point G

(a solution to the equation of prime additive order N, i.e., NG is the additive

identity) specify the cryptosystem. A private key is a random integer k satis-

fying 1 ≤ k < N, and a public key is the value P = kG, the result of adding

G to itself k times. The assumption of hardness is in the following problem

(ECDLP): Given P and G, where P = kG for some secret value k, find k. ECC

is constructed from the observation that calculating P from k,G is efficient,

whereas it is computationally infeasible for an adversary to compute k from

points P and G.

Dominant resource cost/complexity

Shor’s algorithm [937] solves the number-theoretic problem of order finding:

given n-bit positive integer N and x coprime to N, find the smallest integer

r such that xr = 1 mod N. Factoring was shown to reduce to order finding.

In particular, there is an efficient, otherwise classical algorithm, of classical

complexity O(n3) [801], that uses order finding as a quantum subroutine. To

describe the quantum algorithm for order finding, let the function f denote

modular exponentiation, that is, f (e) = xe mod N, and note that f is periodic

with (unknown) period r. Also, let L be a large integer such that an interval of

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

6.1 Breaking cryptosystems 101

length L contains many periods, that is, L ≫ r. It can be shown that L ≥ N2 is

sufficient. There are three steps. First, an equal superposition over the numbers

{0, . . . , L − 1} is formed and the function f is computed into an ancilla register

yielding the state L−1/2 ∑L−1
e=0 |e⟩| f (e)⟩. Second, a measurement is performed on

the ancilla register, which, due to the periodicity of the function f , yields a state

(⌈L/r⌉)−1/2 ∑⌊L/r⌋
j=0
|r j + y⟩ for 0 ≤ y < r a random and unknown integer.2 Third,

a quantum Fourier transform is performed. In the case that L is a multiple of r,

the result is
√

r

L

L/r∑

j=0

L−1∑

z=0

e2πiz(r j+y)/L|z⟩ = 1√
r

r−1∑

ℓ=0

e2πiℓy/r |ℓL/r⟩ , (6.1)

where the equality follows since coefficients of |z⟩ for which z is not equal to

ℓL/r for some integer ℓ vanish due to destructive interference. Measurement of

this state then produces an outcome ℓL/r for a randomly sampled ℓ. The value

of r can be classically computed by dividing the measurement outcome by L

and determining the value of the denominator of the rational number that re-

sults; repetition may be required since ℓ and r could have common divisors. If

L/r is not an integer, the measurement outcome is (with high probability) an in-

teger close to ℓL/r for some integer ℓ. One can deduce the rational number ℓ/r

(which allows for the determination of r) from the estimate of ℓL/r by writing

it as a continued fractions expansion, with classical complexity O(n3) [801].

This entire procedure can alternatively be viewed as quantum phase estima-

tion applied to the unitary U that sends |y⟩ 7→ |xy mod N⟩ for all y relatively

prime to N, performed with at least 2n bits of precision.

The number of qubits for order finding—and hence for Shor’s factoring

algorithm—is O(n), which stems from the number of bits specifying the prob-

lem: the first register has size 2n, and the ancilla register holding the result f (e)

has size n. Naively, the number of gate operations is O(n2) for the quantum

Fourier transform and O(n3) for implementing the coherent modular exponen-

tiation |e⟩|0⟩ 7→ |e⟩|xe mod N⟩. The O(n3) arises from decomposing modular

exponentiation into O(n) modular multiplications, one for each bit of e—using

schoolbook multiplication, the gate cost per multiplication is O(n2). Imple-

menting this modular arithmetic with reversible circuits represents the bottle-

neck in the complexity. These circuits are closely related to those in classical

computing that have been optimized. Still, improvements can lead to better

resource counts [592]. The best scaling in theory is achieved with algorithms

that have large prefactors in their complexity, making them impractical to im-

plement except when n is large: total gate complexity of O(n2 log(n)) is possi-

2 If r⌊L/r⌋ + y ≥ L, then the j = ⌊L/r⌋ term does not appear in the expression.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

102 6. Cryptanalysis

ble asymptotically, using integer multiplication with O(n log(n)) scaling [502],

although analyses optimized for n ≈ 2048 use methods for which the total

gate complexity scales as Õ(n3) [424]. Alternatively, optimization may be per-

formed to, for example, increase qubit count and decrease gate count or gate

depth. For example, an approximate version of the quantum Fourier transform

is implemented with O(n log(n)) gates and allows factoring with O(log(n))-

depth quantum circuits [298], at the cost of extra overhead in number of qubits

and gates; allowing for O(log2(n))-depth preserves the circuit size O(n3).

A related approach proposed by Regev [869] for quantum factoring has

quantum circuit size of only Õ(n3/2) gates (assuming fast integer multiplica-

tion at cost Õ(n)), but the circuit has to be run O(n1/2) times. Thus, it achieves

the same overall asymptotic gate complexity as Shor’s algorithm. The idea of

the algorithm is to extend period finding to higher dimensions and optimize

resource counts. Unlike Shor’s algorithm, which is proven to succeed, Regev’s

approach relies on a number-theoretic assumption, albeit a plausible one. The

reduction in quantum circuit depth and natural parallelism of the approach

may lead to more favorable resource counts in practice. In particular, a con-

stant fraction of the runs can fail [849], which may allow it to be implemented

fault tolerantly with less overhead. Initial work on optimizing the algorithm

has established a tradeoff between the number of qubits and the number of

gates. Linear qubit cost of O(n) is possible (although the constant prefactor is

larger than that of Shor’s algorithm) while still maintaining Õ(n2) total gate

complexity [849, 848].

Essentially the same quantum algorithm of Shor is readily applied to el-

liptic curves, as well as the discrete logarithm problem (i.e., find r such that

ar = b for a, b ∈ G where G is a group), which is also used as a computa-

tionally hard problem for cryptography. These applications are all instances of

the hidden subgroup problem: Find the generators for subgroup K of a finite

group G, given a quantum oracle performing U |g⟩|h⟩ = |g⟩|h ⊕ f (g)⟩, where

f : G → X (X is a finite set) is a function that is promised to be constant

on the cosets of K and take unique values on each coset. In the case of pe-

riod finding, G is the group Z/LZ under addition, and the hidden subgroup

is K = {0, r, 2r, . . . , L − r} (technically a subgroup only if r divides L); one

can verify that f (g) = xg mod N is constant on each coset of K. The proce-

dure outlined above for period finding can be applied to other groups, where it

is called “the standard method” [277], which requires generalizing the quan-

tum Fourier transform to arbitrary groups. A simple example is Simon’s prob-

lem [940]—indeed, historically speaking Simon’s algorithm inspired Shor’s

[938]—where G is the abelian group (Z/2Z)n of bit strings of length n under

addition, K = {0, c} for some hidden bit string c, and the generalized Fourier

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

6.1 Breaking cryptosystems 103

transform is simply the Hadamard transform H⊗n. For abelian groups, the hid-

den subgroup K can be determined with polylog(|G|) queries to f , but the

method does not work for nonabelian groups, such as the symmetric group

and the dihedral group.

Existing resource estimates

The minimum recommended key size for RSA is 2048 bits [96]. Optimizations

in the circuits [109, 493] and incorporation of hardware constraints [398] have

led to decreasing but also more realistic resource estimates. For key size n =

2048, an optimized resource estimate was performed in [424], geared toward

implementation on a device with nearest-neighbor connectivity in 2D, where

logical qubits are encoded with the surface code. Their implementation used

roughly 3n ≈ 6000 logical qubits and roughly 0.3n3 ≈ 3 × 109 non-Clifford

gates (a mixture of Toffoli and T gates). Accounting for magic state distillation

and routing in 2D, it was shown how the computation could be laid out on a

2D grid of 14,000 logical qubits.

For ECC, the minimum recommended key size to ensure 128-bit security

(quantifying the number of attacks needed to learn the encrypted information;

see Section 6.2 on weakening cryptosystems for details), is n = 256 bits [96]

(achieving the same level of security with RSA requires a key size of 3072

bits [175, 876]). For breaking 256-bit ECC, an early resource esimate con-

cluded that around three times fewer logical qubits, and 100 times fewer Toffoli

gates are required (compared to 3072-bit RSA) [876]. Similar to factoring, im-

provements have been made in logical circuit compilation [495] and how this

translates into hardware implementations [1030, 450, 695]. In [695], a method

was given requiring 1.1 × 108 Toffoli gates and 6000 logical qubits. Addition-

ally, by offloading some of the work to a brute-force classical computation and

exploiting a simplification that arises when computing multiple ECC keys in

parallel, the total Toffoli count per key was shown to approach 4.4× 107 [695].

As a conclusion, breaking elliptic curve cryptography is easier than factoring

for quantum computers in practice [846], relative to their practical difficulty on

classical computers.

The physical resources required to implement these logical circuits fault tol-

erantly depends on many details of the hardware, including the error rate, the

physical gate speed, and the available connectivity. In both cases (2048-bit

RSA [424, 476] and 256-bit ECC [1030, 450, 695]), given current hardware

schemes restricted to nearest-neighbor 2D connectivity with logical qubits en-

coded into surface codes, the number of physical qubits is estimated to be on

the order of 10 million and the computation runs for at least 3–10 hours (sig-

nificantly longer than this for platforms with relatively slower physical gate

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

104 6. Cryptanalysis

speeds). For a discussion on how to convert between logical and physical

resources, see Part III on fault-tolerant quantum computation. Optimization

based on the particular architecture can give improvements to these estimates.

For example, if one assumes a logarithmic number of nonlocal links, as could

be envisaged in photonic implementations, the estimated runtime can be re-

duced to less than one minute per 256-bit ECC key [695]. The algorithms con-

sidered in the resource estimates above do not achieve the best known asymp-

totic scaling, which comes at the cost of large constant prefactors.

Caveats

While the popular cryptosystems based on number-theoretic problems are ren-

dered insecure for public-key cryptography, there exist alternatives that are

believed to be secure against quantum computers: for example, based on error

correcting codes or lattices [126]. These alternative computational problems

are believed to be hard for both classical and quantum computers. The National

Institute of Standards and Technology (NIST) of the United States has pro-

vided standards and encouraged implementation [15]. The class of symmetric-

key cryptography (see a standard text [605] for details) involves computations

that do not have much structure, and also is not broken by quantum comput-

ers.3 Instead, the number of bits of security is reduced.

Prior experimental demonstrations of Shor’s algorithm have used knowledge

of the answer in order to optimize the circuit and thus lead to sizes that are

experimentally feasible on non-error-corrected devices. Meaningful demon-

stration should avoid such shortcuts [943], which are not available in realistic

cryptographic scenarios.

Comparable classical complexity and challenging instance sizes

The best known classical algorithm for factoring is the number field sieve,

which has time complexity superpolynomial in number of bits n: namely, it

scales as O(exp(p · n1/3 log2/3(n))), where p > 1.9. With a hybrid quantum-

classical algorithm applying amplitude amplification on the number field

sieve, p = 1.387 can be achieved using a number of qubits scaling only as

O(n2/3) [128]. Classically, problems of size 795 bits have been factored, taking

76 computer core-years, which distributed in parallel over a cluster took 12

days; the same team then extended the record to 829 bits [175].

Several algorithms attacking elliptic curve cryptography have complexity

O(2n/2) [1026], leading to the recommended doubling of key size compared to

3 If the adversary can query the cryptosystem’s algorithms in superposition, some
symmetric-key cryptography can be broken using period finding to extract the key [599].
However, this capability of the adversary is not considered realistic.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

6.1 Breaking cryptosystems 105

bits of security. In practice, a problem of size 117 bits was solved [127]. The

corresponding security is estimated [676] to be about 60 bits, compared to 70

bits for the RSA record above.

Speedup

The number of gates to implement Shor’s algorithm is Õ(n2) asymptotically

using fast multiplication on large numbers [111]. More practically, without in-

curring the time overhead and additional storage space of fast multiplication,

the scaling is O(n3). Assuming classical and quantum gates are polynomially

related in time complexity, the speedup for solving the factoring problem is su-

perpolynomial, and the speedup for solving the ECDLP is exponential. How-

ever, there are no tight lower bounds on the classical complexity of factoring

or ECDLP; it remains possible that more efficient classical algorithms could

be discovered.

NISQ implementations

The large circuit depth, complicated operations, and high number of qubits

needed to implement Shor’s algorithm make faithful NISQ implementation

challenging. However, there have been several attempts to ease implementation

at the expense of losing the guarantees of Shor’s algorithm, in the hope that the

output is still correct with some nonzero probability, which could be vanishing.

One approach [885] is to simplify several operations and make them approx-

imate. The outcome is that the circuit depth is O(n2), saving a factor of n [493].

The depth is then about 108 to factor a 1024-bit instance of RSA, so for rele-

vant sizes, error correction is still required. Implementation of the approximate

algorithm, including experimentally, allowed for the successful factorization of

larger problem instances than had been possible before. This approximate ver-

sion is not NISQ in the usual sense of involving noisy circuits, but rather intro-

duces some uncontrolled approximation error in return for reducing the depth,

for the possibility of a useful result. Another approach is to encode the fac-

toring problem in a variational optimization circuit. Again, performance is not

guaranteed; moreover, variational optimization applied to generic problems is

expected to have, at best, a quadratic improvement compared to classical meth-

ods, leaving no hope for breaking cryptography. Classical simulation on small

problem sizes shows that the algorithm can succeed [39], as does experimental

implementation on a superconducting quantum processor [600]. We empha-

size that, generally, these NISQ approaches have no evidence or arguments for

scaling to cryptographically relevant system sizes.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

106 6. Cryptanalysis

Outlook

The existence of Shor’s algorithm implies common RSA and elliptic curve

schemes are theoretically not secure, and resource estimates have made clear

what scale of quantum hardware would break them. While such hardware does

not exist currently, progress toward such a device can be used to inform the

speed of transitioning to quantum-resistant encryption [263]. Currently, from a

hardware perspective, the field of quantum computing is far from implement-

ing algorithms that would break encryption schemes used in practice. The esti-

mates above suggest that the resources required would be millions of physical

qubits performing billions of Toffoli gates running on the timescale of hours

or days. In contrast, the current state of the art is on the order of one hundred

noisy physical qubits, with progress toward demonstration of a single logical

qubit. Running fault-tolerant quantum computation requires extra overhead,

such as magic state factories (see Chapter 26 on quantum error correction and

Chapter 27 on lattice surgery). Thus, the gap between state-of-the-art hardware

and the requirements for breaking cryptosystems is formidable. Moreover, a

linear increase in key size will increase, for example, the number of Toffoli

gates by a power of three, which can be substantial. Therefore, considering

the experimental challenges, likely only the most sensitive data will be at risk

first, rather than common transactions. Consequently, these highly confidential

communications will likely adopt post-quantum cryptography first to avoid be-

ing broken. However, insecure protocols often linger in practice, so quantum

computers can exploit any vulnerabilities in deployed systems that have not

been addressed. For example, RSA keys of size 768 bits have been found in

commercial devices (note that such key sizes can already be broken classi-

cally [175]). In addition, intercepted messages, encrypted with RSA or elliptic

curves, can be stored now and decrypted later, once large-scale quantum com-

puters become available.

The resilience of candidates for post-quantum cryptography is under ac-

tive investigation. In particular, specialized quantum attacks [274, 831] can

reduce the number of bits of security, weakening the cryptosystem. Relax-

ing to toy variants of relevant cryptosystems in order to find new attacks,

quantum algorithms can provide polynomial-time solutions [318]. Classical

algorithms have even broken certain candidate cryptosystems [145, 239]. Note

that these attacks affect the feasibility of particular proposals, but there ex-

ist other post-quantum candidates that have no known weaknesses. With the

completion of NIST’s standardization process, approved post-quantum cryp-

tography is being rapidly deployed. For example, several popular messaging

platforms [645, 378] recently adopted post-quantum key derivation hybridized

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

6.2 Weakening cryptosystems 107

with ECC, so that the scheme is secure as long as at least one of the underlying

cryptosystems is secure.

A sensitive area that warrants additional discussion is cryptocurrency,

since much of it relies on the compromised public-key cryptography based

on abelian groups. Moreover, changing the cryptographic protocol of the

currency requires that most of the users reach a consensus to do so, which

can be challenging to coordinate, even if the technical hurdles of adopting

post-quantum encryption are overcome. Cryptocurrency wallets that have

revealed their public key (e.g., via a transaction reusing a public key assigned

to that wallet previously) can be broken using Shor’s algorithm. An attack

is also possible during the short time window in which the key is revealed

during a single transaction [8]. Different cryptocurrencies have different levels

of susceptibility to these types of attacks [97, 98]. Nevertheless, the mining of

cryptocurrency is not broken, but only weakened by quantum computers.

6.2 Weakening cryptosystems

Overview

The discovery of Shor’s algorithm (see Section 6.1 on breaking cryptosys-

tems) prompted interest in post-quantum cryptography, the study of cryptosys-

tems assuming the presence of large-scale, working quantum computers [126].

While some existing systems retained confidence in their security, others that

were broken by quantum algorithms were superseded by those that accomplish

the same task, but are believed to maintain a high level of security against quan-

tum attacks.

Even if a cryptosystem is not broken altogether, its degree of security can be

weakened by quantum algorithms. The strength of a cryptosystem is typically

quantified by the number of bits of security (also called the security parameter),

that is, n bits corresponds to guessing the desired information with probability

1/2n and accessing what is being protected. When considering computational

assumptions, a simplified definition of the security parameter n is that crypt-

analysis requires a computational cost of 2n operations, captured by the best

known attack. Breaking a cryptosystem means only an efficient number of op-

erations (i.e., poly(n)) are needed, while an attack that weakens a cryptosystem

still takes 2m > poly(n) operations, for some m < n.

In contrast to public-key cryptosystems, symmetric-key cryptography was

discovered earlier and has fewer capabilities. However, it relies less on the

presumed hardness of underlying mathematical problems, and correspondingly

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

108 6. Cryptanalysis

has only been weakened by quantum cryptanalysis, as discussed in more detail

below.

Actual end-to-end problem(s) solved

In symmetric-key cryptography, two communicating parties share the same

key K, which is used both in encryption EncK and decryption DecK . As usual,

the cryptographic algorithm (EncK ,DecK) is known to everyone, including ad-

versaries. The most significant break of a symmetric-key algorithm is an ad-

versary learning the key, given r pairs of plaintext (the message m) and cor-

responding ciphertext c (its encryption).4 Such a pair can be accessed by, for

example, forcing a certain test message to be transmitted. Precisely, an input

K is sought for which the following function outputs 1:

f (K) = ((EncK(m1) = c1) ∧ · · · ∧ (EncK(mr) = cr)) ,

that is, find a key such that all the messages encrypt correctly. A straightfor-

ward attack is to use brute force and test every key; in practice, sophisticated

classical attacks do not perform better than this approach in asymptotic scaling.

Dominant resource cost/complexity

The main, generic quantum attack is to use amplitude amplification: given a

classical algorithm with success probability O(2−n) of finding a solution, the

probability is increased quadratically to O(2−n/2). Thus, applying amplitude

amplification to the task of solving for the key, the security of cryptosystems

goes from n bits to n/2.

The function queried in superposition must be efficient to evaluate with a

quantum circuit, which is often the case in cryptography [126]. However, the

operations are typically long sequences of Boolean arithmetic. As such, a uni-

versal gate set and fault-tolerant quantum computation are still required. To

store the key, O(n) register qubits are needed, and many more ancilla qubits

are used for the reversible arithmetic.

Existing resource estimates

Consider the Advanced Encryption Standard (AES) [559], a symmetric en-

cryption algorithm that is widely used in cryptosystems, for example, for en-

crypting web traffic. At a high level, it mixes the plaintext and adds it to the

key to obtain the ciphertext. An attack based on amplitude amplification needs

4 There are more sophisticated attack models: for example, many communicating adversaries
may have the goal of compromising one of multiple keys [89]. Correspondingly, there are
other definitions of security, but this simple and powerful one generally is considered for
quantum attacks.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

6.2 Weakening cryptosystems 109

around 3000–7000 logical qubits [453] for AES-k, where k denotes key size in

bits, and k ∈ {128, 192, 256}. For these sizes, the number of necessary problem

instances r is three to five. While the number of logical qubits roughly doubles

going from AES-128 to AES-256, the number of T gates goes from 286 ≈ 1025

to 2151 ≈ 1045. More recent work [566] allows for higher qubit counts (by

about 70%) in exchange for much lower Toffoli depth, such that their product

is reduced. Such optimization resulted in about 99% reduction in this metric.

Caveats

Since the quantum attack only halves the exponent in the complexity, a simple

fix is to double the key length, for example, by adopting AES-256 instead of

AES-128. This modification results in increased, but usually tolerable, cost in

implementation (i.e., complexity of encryption and communication resources).

In addition, there exist cryptosystems with an information-theoretic security

guarantee, assuming adversaries with unlimited computational power, which

covers against quantum attacks [126].

Furthermore, it is important to note that to realize the full quadratic benefit

of amplitude amplification, the O(2n/2) function queries must be performed

in series. In contrast, classical brute-force attacks can exploit the parallelism

available in high-performance classical computers, potentially increasing the

value of n for which a quantum approach would be advantageous over classical

methods.

Comparable classical complexity and challenging instance sizes

Classical algorithmic attacks on AES have reduced the security by only a few

bits [160]. More practical are side-channel attacks, which make use of phys-

ical byproducts, such as energy consumption. For example, when comparing

bits between a key and another string, a flipped value can result in logic that

increases energy consumption, compared to the same value where nothing

happens. The two cases are distinguished and information about the key is

learned. Currently, 128 bits of security is roughly the minimum recommended

amount [95]. The use of parallelization forces the adoption of relatively large

key sizes, compared to what is necessary for a single processor (∼ 60 bits).

Speedup

The basic speedup is quadratic:O(
√

N) function evaluations compared toO(N)

classically, where N denotes the number of possibilities for the key; that is,

n = ⌈log2(N)⌉. However, the function queries in amplitude amplification can-

not be parallelized. Then, the evaluation time of the function sets a bottle-

neck [126]. That is, the problem size is limited by the number of function

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

110 6. Cryptanalysis

evaluations T that can be run in an acceptable period of time. For
√

N > T ,

employing p parallel quantum processors, each executes T =
√

N/p evalua-

tions. Then, p = O(N/T 2) and the total number of evaluations is pT = O(N/T),

whereas classically, the number of processors is O(N/T) and total evaluations

is O(N). The advantage is a factor of T , which is the bottleneck, rather than the

larger
√

N. However, the advantage can be overshadowed by faster or cheaper

classical processing. That is, if classical computers evaluate the function T

times faster than quantum processors, there is no advantage in runtime with

using the quantum device. Furthermore, this argument assumes the same cost

of parallelization for classical and quantum, which is optimistic for quantum

devices. An example of this effect is in mining cryptocurrency [8]: while a

quantum computer needs quadratically fewer attempts to succeed, the devel-

opment of fast, specialized, classical hardware negates the advantage. Essen-

tially, for brute-force attacks, parallelization has the most significant impact in

cryptanalysis.

NISQ implementations

The key can be encoded as the ground state of a Hamiltonian, and then vari-

ational methods can be applied to solve for it. The scaling is expected to be

the same as amplitude amplification. However, since the variational algorithm

does not have a set time complexity, the solution may be found much slower

or faster [1023]. If the fluctuations are large enough, they can potentially pose

a challenge to cryptography, which makes worst-case guarantees. However,

there is no reason to expect that the success probability will scale favorably

with key size and compromise security in practice. Another approach is to use

amplitude amplification, but adapt it to near-term devices, so that the NISQ-

optimized versions perform better in real experiments [1083].

Outlook

Here, we focused on the example of symmetric-key encryption. Nonetheless,

the effect of amplitude amplification to halve the effective bits of security is

generic for computational problems, assuming efficient construction of the or-

acle. From the cryptographic standpoint, this attack is mild and can be coun-

teracted by doubling the number of bits of security in the scheme. In practice,

the increase in key size can be unwieldy in certain applications, such as cryp-

tocurrencies, but fundamental security is not threatened.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.008
Downloaded from https://www.cambridge.org/core. IP address: 3.137.159.3, on 12 May 2025 at 13:24:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.008
https://www.cambridge.org/core

