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Abstract
The monogenic free inverse semigroup FI1 is not finitely presented as a semigroup due to the classic result by
Schein (1975). We extend this result and prove that a finitely generated subsemigroup of FI1 is finitely presented if
and only if it contains only finitely many idempotents. As a consequence, we derive that an inverse subsemigroup
of FI1 is finitely presented as a semigroup if and only if it is a finite semilattice.

1. Introduction

A semigroup S is finitely presented if it can be defined by a presentation 〈A | R〉 with both A and R
finite. Examples of finitely presented semigroups include all finite semigroups, finitely generated free
semigroups, finitely generated commutative semigroups [17], all groups that are finitely presented as
groups, including all finitely generated free groups, and the bicyclic monoid [3, Section 1.12]. By way of
contrast, Schein [21] proved that free inverse semigroups are not finitely presented. The most surprising
aspect of this, which is also the main step in the proof of the general result and the starting point for the
present paper, is that this is true even for the monogenic free inverse semigroup:

Theorem 1 (B.M. Schein [21, Lemma 3]). The monogenic free inverse semigroup is not finitely
presented as a semigroup.

Motivated by Theorem 1, we investigate finite presentability of subsemigroups (not necessarily
inverse) of the monogenic free inverse semigroup and prove the following complete characterisation:

Main Theorem. A finitely generated subsemigroup of the monogenic free inverse semigroup is finitely
presented as a semigroup if and only if it contains only finitely many idempotents.

As an immediate consequence we also prove:

Corollary. Let S be a finitely generated inverse subsemigroup of the monogenic free inverse semigroup.
Then S is finitely presented as a semigroup if and only if S is a finite semilattice.

The two results are in a somewhat stark contrast with the behaviour of one-generator free objects
in some other varieties. For example, the non-trivial subgroups of the cyclic free group Z are all iso-
morphic to Z, while subsemigroups of the monogenic free semigroup N are all finitely generated [22]
and hence finitely presented ([17], [4, Chapter 9]). This behaviour is also very different from finite pre-
sentability of inverse subsemigroups as inverse semigroups: Oliveira and Silva proved in [15] that every
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finitely generated inverse subsemigroup of the monogenic free inverse semigroup is finitely presented
as an inverse semigroup. Finally, and this time not surprisingly, the behaviour of subsemigroups of
the monogenic free inverse semigroup is different from those of a free inverse semigroup of rank > 1.
In [15, Example 6.1], the authors exhibit an example of a finitely generated subsemigroup in the free
inverse semigroup of rank 3 which has no finite inverse semigroup presentation. Also in this direction,
Reilly [18, 19] established a necessary and sufficient condition for an inverse subsemigroup of a free
inverse semigroup given by a set of generators to be free over that set of generators.

There are further examples in literature of finiteness properties with respect to which (monogenic)
free inverse semigroups show a radically different behaviour from their group- and ‘plain’ semigroup
counterparts. For example, Cutting and Solomon [5] proved that the a free inverse semigroup does not
admit a regular set of normal forms with respect to any generating set. Gray and Steinberg [8] showed
that free inverse semigroups do not satisfy the finiteness condition FP2. In both cases, the brunt of the
work is to deal with the monogenic case.

From a broader perspective, all the above results, as well as the result that is proved here, can be
viewed as confirming that the presentation theory of inverse semigroups is substantively different in
nature from the corresponding theories for groups and semigroups. We refer the reader to the survey
articles [12, 13] by Meakin for a nice treatment of the similarities, differences and resulting relationships.
Perhaps the starkest expression of the difference is the recent result of Gray [6] exhibiting an example
of a one-relation inverse semigroup with an undecidable word problem; and this can be contrasted to
some extent with the more positive results such as [2, 7, 10].

Our paper is structured as follows. In Section 2, we give definitions and basic results about semigroup
presentations and the monogenic free inverse semigroup. Sections 3 and 4 are devoted to proving each
of the two implications in the Main Theorem. The Corollary is quickly proved at the end of the paper.

2. Preliminaries
2.1. General notation

The set of natural numbers {1, 2, . . . } will be denoted by N, the set of non-negative integers by N0 :=
N∪ {0}, and the set of integers by Z. We will use the standard interval notations for subsets of Z:
[m, n] := {m, m + 1, . . . , n}, [n] := [1, n].

2.2. Semigroup presentations

Let A be a set of letters and let A+ be the free semigroup on A. A semigroup presentation is an ordered
pair 〈A | R〉; we call A the generators and R ⊆ A+ × A+ the defining relations of 〈A | R〉. We write R� for
the congruence on A+ generated by R. A semigroup S is defined by 〈A | R〉 with respect to a mapping
θ : A → S if the unique extension of θ to a homomorphism θ : A+ → S is onto and ker θ = R�. We say
that S is finitely presented if both A and R can be chosen to be finite. Throughout this paper, we will use
the same symbol for a map A → S and for its unique homomorphism extension A+ → S.

Suppose a semigroup S is defined by 〈A | R〉 via θ : A → S. Let u, v ∈ A+. We say that v is obtained
from u by applying a relation in R if u = prq and v = psq where p, q ∈ A∗ and (r, s) or (s, r) is in R. An
elementary sequence (with respect to R, from u to v) is a sequence w1, . . . , wn such that w1 = u, wn = v
and each wi+1 is obtained from wi by applying a relation in R. Then uθ = vθ if and only if there exists
an elementary sequence from u to v.

Now let T be another semigroup, and φ : A → T a mapping such that its extension φ : A+ → T is
onto. We say that T satisfies the defining relations R if for each (r, s) ∈ R we have rφ = sφ, that is if
R ⊆ ker φ. Then, there is a unique onto homomorphism ψ : S → T satisfying φ = θψ . In particular, T
is a homomorphic image of S. For a more systematic introduction to semigroup presentations, see [3,
Section 1.12] and [4, Section 9.2].
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2.3. Monogenic free inverse semigroups

For background on inverse semigroups, we refer the reader to any standard textbook such as [3, 9, 11,
16]. It is well known that free objects exist for inverse semigroups; for an account, see [11, Chapter 6].
In this paper, we focus solely on the monogenic free inverse semigroup, which will be denoted by FI1.
It can be represented as follows. The elements of FI1 are certain triples:

FI1 := {
(−a, p, b) ∈Z

3 : a, b ≥ 0, a + b> 0, −a ≤ p ≤ b
}
,

and the multiplication and inversion are as follows:

(−a1, p1, b1)(−a2, p2, b2) = (− max (a1, a2 − p1), p1 + p2, max (b1, b2 + p1)),

(−a, p, b)−1 = (−(a + p), −p, b − p).

An element (−a, p, b) ∈ FI1 is an idempotent if and only if p = 0.
Some readers may be more used to viewing the elements in a free inverse semigroup as Munn trees;

see [14] and [11, Chapter 6]. For FI1 the Munn trees are simply directed paths with inital and terminal
vertices, and the translation between the two representations is straightforward. The triple (−a, p, b)
corresponds to the following Munn tree:

. . . . . . . . .
a |p|

b

In the figure, the initial and terminal vertices are indicated by the ‘loose’ in- and out-arrows, respectively.
The sign of p is positive if and only if the terminal vertex lies on the right-hand side of the initial vertex.
The numbers of edges between the initial and leftmost vertices, the initial and rightmost vertices, and
the initial and terminal vertices correspond to a, b and |p|, respectively.

We now give a semigroup presentation for FI1.

Proposition 2.1 ([21, Lemma 1]). The monogenic free inverse semigroup FI1 is defined by:

〈x, x−1 |R〉
via φ : x �→ (0, 1, 1), x−1 �→ (−1, −1, 0), with

R := {
(xx−1x, x), (x−1xx−1, x−1)

} ∪ {
(x−ixixjx−j, xjx−jx−ixi) : i, j ∈N0, i + j> 0)

}
.

Note that, with the notation as above, we have (x−axaxbx−bxp)φ = (−a, p, b).
We partition FI1 into its D-classes:

Dn := {
(−a, p, b) ∈ FI1 : a + b = n

}
(n ∈N).

These arise from the standard Green theory (see [9, Chapter 2]), but this will not be needed here, nor
will any of the other Green’s equivalences L, R, H, J. For every n ∈N, the union

⋃
i≥n Di is an ideal

of FI1.
We say that an element (−a, p, b) is positive, negative or of sign 0 if p> 0, p< 0 or p = 0, respectively.

The elements of sign 0 are precisely the idempotents of FI1. The set of all idempotents of FI1 is partially
ordered by:

(−a, 0, b) ≤ (−c, 0, d) ⇔ a ≥ c and b ≥ d.

This actually coincides with the natural partial order arising from general theory (see [9, Chapter 5] or
[11, Chapter 1]). The resulting partially ordered set is isomorphic to N0 ×N0 \ {(0, 0)} and is depicted
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(0, 0, 1)(−1, 0, 0)
(0, 0, 2)(−2, 0, 0)

(0, 0, 3)(−3, 0, 0)

(−i, 0, 0)
(0, 0, j)

(−i, 0, j)

Figure 1. Semilattice of idempotents of FI1.

in Figure 1. In the diagram, the idempotents are in the same D-class if and only if they are on
the same horizontal level. Two idempotents (−a, 0, b) and (−c, 0, d) are incomparable if and only if
(a − c)(b − d)< 0.

3. Infinitely many idempotents

The aim of this section is to prove the following proposition which is the forward direction of the Main
Theorem.

Proposition 3.1. Let S be a finitely generated subsemigroup of FI1. If S contains infinitely many
idempotents, then S is not finitely presented.

The proof is somewhat technical, but the underlying idea is as follows. It can be viewed as a variation
of Schein’s original proof of Theorem 1. There, he exhibits two specific partial transformations, namely
αn and βn on [0, n]. The key strategy of Schein’s proof is to assume, aiming for contradiction, that FI1

is finitely presented as a semigroup. Schein then fixes an arbitrary finite presentation wih respect to the
generators {a, a−1} and shows that, for a sufficiently large n, the semigroup 〈αn, βn〉 satisfies all these
finitely many relations and yet fails to preserve commutativity of infinitely many pairs of idempotents.
The essence of our adaptation is to find a map from a finitely generated subsemigroup of FI1 containing
infinitely many idempotents to the semigroup 〈αn, βn〉. We will show that this map respects multiplication
in finitely many D-classes of FI1, but yet again fails to preserve commutativity of infinitely many pairs
of idempotents.

We start our proof by characterising when a finitely generated subsemigroup of FI1 has infinitely
many idempotents:

Lemma 3.2. For a subsemigroup S of FI1 generated by a finite set A ⊆ FI1, the following are equivalent:

(i) S contains infinitely many idempotents;
(ii) S contains both positive and negative elements;
(iii) A contains both positive and negative elements.

Proof. The equivalence of (ii) and (iii) is clear.
(iii) ⇒ (i). Assume there are elements u1 = (−a1, p1, b1) and u2 = (−a2, −p2, b2) in A where

p1, p2 > 0. Let m be a common multiple of p1 and p2 so that m = n1p1 = n2p2 for some n1, n2 ∈N.

https://doi.org/10.1017/S0017089524000314 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000314


Glasgow Mathematical Journal 5

(0, 0, max(b1 − p1, b2))

(0, 0, max(n1p1 + (b1 − p1), n1p1 + b2))

(−max(a2 − p2, a1), 0, 0)

(−max(n2p2 + a2 − p2, n2p2 + a1), 0, 0)

Figure 2. The red dots are idempotents of the form un1x
1 un2x

2 un2y
2 un1y

1 where x, y ∈N0 with x + y> 0. The
rightmost and leftmost idempotents are un1x

1 un2x
2 and un2y

2 un1y
1 , where x, y ∈N, respectively.

A straightforward calculation shows that

un1x
1 un2x

2 = (− max (a1, a2 − p2), 0, max (n1xp1 + (b1 − p1), n1xp1 + b2))

gives distinct idempotents for each x ∈N.
(i) ⇒ (iii). Suppose A consists entirely of non-positive or non-negative elements. Without loss of

generality, we assume the latter. Hence, the product of elements of A is an idempotent if and only if each
factor in the product is an idempotent. There are only finitely many idempotents (sign 0 elements) in A,
which gives finitely many idempotents in 〈A〉 = S.

Remark 3.3.

(1) A finitely generated subsemigroup of FI1 which contains infinitely many idempotents has two
elements of the form (−a, p, b) and (−c, −p, d) where p> 0.

(2) Figure 2 shows a set of idempotents of the form un1x
1 un2x

2 un2y
2 un1y

1 where x, y ∈N0 with x + y> 0.
Note that this set is isomorphic again to N0 ×N0 \ {(0, 0)} as a partially ordered set. Also, there
are infinitely many n ∈N such that Dn ∩ 〈u1, u2〉 �= ∅.

(3) Let e ∈ Dn ∩ 〈u1, u2〉 be an idempotent of the form un1x
1 un2x

2 un2y
2 un1y

1 . It can be easily seen from
Figure 2 that there exists an idempotent f ∈ Dm ∩ 〈u1, u2〉 such that m> n and f is incomparable
with e. More specifically, if x = 0, then f can be chosen to be un1z

1 un2z
2 with z> y. If x �= 0, then

we may choose f to be un1z
1 un2z

2 un2t
2 un1 t

1 where z = x − 1 and t ≥ y + 2.

The following lemma introduces two partial transformations αn and βn. It was the key technical
observation in [21] towards proving the main result there (Theorem 1).

Lemma 3.4 ([21, Lemma 2]). For n ∈N define two partial transformations on {0, . . . , n}:

αn =
(

0 1 2 · · · n − 2 n − 1 n

1 2 3 · · · n − 1 n −
)

,

βn =
(

0 1 2 · · · n − 2 n − 1 n

0 0 1 · · · n − 3 n − 2 n − 1

)
.

Then, the following hold.

(i) αnβnαn = αn;
(ii) βnαnβn = βn;
(iii) β i

nα
i
nα

j
nβ

j
n = αj

nβ
j
nβ

i
nα

i
n when i> n or j> n or i + j ≤ n;

(iv) β i
nα

i
nα

j
nβ

j
n �= αj

nβ
j
nβ

i
nα

i
n when i + j> n and i, j ≤ n.
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We will also make use of the following technical lemma concerning presentations and ideals.

Lemma 3.5. Let S be a semigroup defined by 〈A | R〉 via θ : A → S. Let I be an ideal of S, let C := S \ I,
and let

AC := {a ∈ A : aθ ∈ C}, RC := {
(r, s) ∈ R : rθ = sθ ∈ C

}
.

Let T be a semigroup defined by 〈AC | RC〉 via π : AC → T . Suppose u, v ∈ A+ are such that uθ = vθ ∈ C.
Then, u, v ∈ A+

C and uπ = vπ .

Proof. Consider an elementary sequence from u to v with respect to R; let n be its length. That all the
words in the sequence are in A+

C follows from I being an ideal. We claim that only relations from RC are
used in the sequence. Inductively, it is sufficient to prove this in the case of sequences of length 1. So,
suppose u = prq, v = psq, where p, q ∈ A∗

C and (r, s) or (s, r) is in R. Again, since I is an ideal, we must
in fact have rθ = sθ ∈ C, and it follows that uπ = vπ , as required.

Recall from Proposition 2.1 that FI1 is defined by 〈x, x−1 |R〉 via φ : x �→ (0, 1, 1), x−1 �→
(−1, −1, 0). For n ∈N, define a map

ψn : {x, x−1} → 〈αn, βn〉, x �→ αn, x−1 �→ βn.

Note that, of course, ψn extends to a homomorphism {x, x−1}+ → 〈αn, βn〉. However, this homomor-
phism does not factor through FI1, since αn and βn do not satisfy all the relations from R according
to Lemma 3.4. Let Cn := ⋃n

i=1 Di and In := ⋃∞
i=n+1 Di. Clearly, these two sets partition FI1, and, as

observed earlier, In is an ideal. The following is a special case of Lemma 3.5.

Lemma 3.6. Let the notation be as above, and let u, v ∈ {x, x−1}+. If uφ = vφ ∈ Cn, then uψn = vψn.

Proof. Using the notation from Lemma 3.5, we have

ACn = {x, x−1},
RCn = {

(r, s) ∈R : rφ = sφ ∈ Cn

}
= {

(xx−1x, x), (x−1xx−1, x−1)
} ∪ {

(x−ixixjx−j, xjx−jx−ixi) : 0< i + j ≤ n
}
.

Let Tn be the semigroup defined by 〈ACn |RCn〉 via πn : ACn → Tn. By Lemma 3.5, we have uπn = vπn.
By Lemma 3.4 (i)–(iii), 〈αn, βn〉 satisfies the relations in RCn . Hence, 〈αn, βn〉 is a homomorphic image
of Tn with R�

Cn
⊆ kerψn, and so uψn = vψn.

We will now define a map σn : Cn → 〈αn, βn〉 for each n ∈N as follows. For every s ∈ FI1, we choose
an arbitrary ws ∈ {x, x−1}+ representing s, that is, such that wsφ = s. We then let sσn := wsψn. The next
lemma plays a significant role in the proof of Proposition 3.1. It presents two situations: one in which σn

behaves like a homomorphism by preserving multiplication in finitely many D-classes of FI1, and the
other where it does not.

Lemma 3.7. Let m, n ∈N be such that m ≥ 3n. With the above notation, we have:

(i) If s1, s2 ∈ Cn, then s1s2 ∈ Cm and (s1s2)σm = (s1σm)(s2σm).
(ii) If e ∈ Cn and f ∈ Dm are incomparable idempotents, then (eσm)(fσm) �= (fσm)(eσm).

Proof. For brevity, we write α, β,ψ , σ for αm, βm,ψm, σm, respectively.
(i) Write s1 = (−a1, p1, b1) and s2 = (−a2, p2, b2) where a1 + b1, a2 + b2 ≤ n. By definition,

s1s2 = (− max (a1, a2 − p1), p1 + p2, max (b1, b2 + p1)).
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Since

max (a1, a2 − p1) + max (b1, b2 + p1) ≤ 3n ≤ m,

it follows that s1s2 ∈ Cm.
We now show that (s1s2)σ = (s1σ )(s2σ ). By the definition of σ , we have

(s1s2)σ = (ws1s2 )ψ and (s1σ )(s2σ ) = (ws1ψ)(ws2ψ) = (ws1 ws2 )ψ .

Note that ws1s2φ = s1s2 = (ws1 ws2 )φ. Since s1s2 ∈ Cm, Lemma 3.6 gives ws1s2ψ = (ws1 ws2 )ψ , and the result
follows.

(ii) Let e = (−a, 0, b) and f = (−c, 0, d). The assumptions e ∈ Cn, f ∈ Dm and incomparability of e and
f imply a + b ≤ n, c + d = m and (a − c)(b − d)< 0. Without loss of generality, we assume that a> c
and b< d. Note that weφ = e = (x−axaxbx−b)φ, wfφ = f = (x−cxcxdx−d)φ. Using e, f ∈ Cm and Lemma 3.6
again, we deduce that

eσ = weψ = (x−axaxbx−b)ψ = βaαaαbβb and similarly fσ = βcαcαdβd.

Now we consider the mappings (eσ )(fσ ) and (fσ )(eσ ). We compute the following:

(eσ )(fσ ) = βaαaαbβbβcαcαdβd

= βaαaβcαcαbβbαdβd by Lemma 3.4 (iii) since b + c ≤ m

= βaαaαdβd since αcβcαc = αc and αbβbαb = αb,

(fσ )(eσ ) = βcαcαdβdβaαaαbβb

= αdβdαbβbβcαcβaαa by Lemma 3.4 (iii) since c + d, a + b, b + c ≤ m

= αdβdβaαa since βbαbβb = βb and βcαcβc = βc.

Since a + d> c + d = m, (eσ )(fσ ) �= (fσ )(eσ ) by Lemma 3.4 (iv).

We are now ready to prove Proposition 3.1. A key idea is that if a finitely generated subsemigroup
of FI1 has infinitely many idempotents, then we can find large enough natural numbers n and m as in
Lemma 3.7.

Proof of Proposition 3.1. Let S be a finitely generated subsemigroup of FI1 which contains infinitely
many idempotents. Aiming for a contradiction, suppose that S is defined by a finite presentation 〈A | R〉
via θ : A → S. Let η : A+ → {x, x−1}+ be the homomorphism defined by aη= waθ for a ∈ A. Note that
aηφ = waθφ = aθ , which shows ηφ = θ .

By Lemma 3.2, S contains both positive and negative elements. Recall that S particularly contains
some u1 = (−a1, p, b1) and u2 = (−a2, −p, b2) with p> 0 (Remark 3.3 (1)). Let n ∈N be such that Cn

contains all of the following elements:

• an idempotent of the form ux
1ux

2u
y
2uy

1 where x, y ∈N0 with x + y> 0;
• aθ for each a ∈ A;
• rθ ( = sθ ) for each (r, s) ∈ R.

Let m ∈N be such that m ≥ 3n and Dm contains an idempotent of the form ux
1ux

2uy
2u

y
1. Recall the

map σm : Cm → 〈αm, βm〉 and the natural homomorphism ψm : {x, x−1}+ → 〈αm, βm〉. Figure 3 shows the
diagram of maps and homomorphisms we have defined.

From now on, we take m and n to be fixed and we write α, β,ψ and σ for αm, βm,ψm and σm,
respectively. We claim that

ker θ ⊆ ker ηψ . (1)

Suppose (r, s) ∈ R. Note that rηφ = (wrθ )φ = rθ = sθ = (wsθ )φ = sηφ. Moreover, rθ ( = sθ ) ∈ Cn ⊆ Cm.
Hence, rηψ = sηψ by Lemma 3.6 and so indeed we have (1).

By our construction, there are idempotents of the form ux
1ux

2uy
2uy

1 in Cn ∩ S and Dm ∩ S. Pick two
idempotents e and f of this form such that e ∈ Cn ∩ S, f ∈ Dm ∩ S and e and f are incomparable (see
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S A+

FI1 {x, x−1}+

〈αm, βm〉

ι

θ

η

σm

φ

ψm

Figure 3. Homomorphisms and maps in the proof of Proposition 3.1. Here, ι denotes the inclusion
mapping. The upper part of the diagram is commutative, that is, θι= ηφ. Note that the domain of σm is
Cm ⊆ FI1.

Remark 3.3 (3)). Now, let ve, vf ∈ A+ be such that veθ = e and vf θ = f . Since ef = fe in S, we have

(vevf )θ = (veθ )(vf θ ) = ef = fe = (vf θ )(veθ ) = (vf ve)θ ,

i.e. (vevf , vf ve) ∈ ker θ . Therefore, (vevf )ηψ = (vf ve)ηψ by (1).
Note that we have veηφ = veθ = e = weφ and e ∈ Cm. By Lemma 3.6, veηψ = weψ . Similarly, vfηψ =

wfψ . Then,

(vevf )ηψ = (veηψ)(vfηψ) = (weψ)(wfψ) = (eσ )(fσ ),

and, analogously, (vf ve)ηψ = (fσ )(eσ ). However, (eσ )(fσ ) �= (fσ )(eσ ) by Lemma 3.7 (ii). We have
obtained a contradiction from the assumption that S is finitely presented, and hence the proposition
follows.

4. Finitely many idempotents

In this section, we prove the following proposition and thus complete the proof of the Main Theorem.

Proposition 4.1. Let S be a finitely generated subsemigroup of FI1. If S contains finitely many
idempotents, then S is finitely presented.

In our proof, we will make use of the following three results:

Proposition 4.2 ([20, Theorems 1.1, 1.3]). Let T be a subsemigroup of a semigroup S such that S \ T is
finite. Then S is finitely generated (resp. presented) if and only if T is finitely generated (resp. presented).

An equivalence relation ρ on a semigroup S is called a congruence if it is compatible with the multi-
plication, that is if (x/ρ)(y/ρ) ⊆ (xy)/ρ for all x, y ∈ S; see [9, Section 1.5]. The index of an equivalence
relation is the number of its equivalence classes.

Proposition 4.3 ([1, Theorem 4.1, Corollary 4.5]). Let S be a semigroup and let ρ be a congruence
relation on S of finite index such that every equivalence class is a subsemigroup of S. If each congruence
class is finitely presented, then so is S.

The following proposition has already been discussed in the Introduction.

Proposition 4.4. Any subsemigroup of N is finitely generated and finitely presented.
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To prove Proposition 4.1, we first consider a finitely generated subsemigroup S of FI1 wholly
consisting of positive elements, that is,

S ≤ P := {
(−a, p, b) ∈ FI1 : p> 0

}
( ≤ FI1).

For such an S, we will establish a decomposition into a disjoint union of subsemigroups of N, in such a
way that Propositions 4.3 and 4.4 can be applied. Finally, an appeal to Proposition 4.2 and Lemma 3.2
will enable us to extend to an arbitrary S.

We begin to implement this programme. The first two lemmas discuss a decomposition of P into
infinitely many copies of N.

Lemma 4.5. For x ∈N0 and y ∈N define

Nx,y := {
(−x, p, p + (y − 1)) : p ∈N

}
.

(i) Each Nx,y is a subsemigroup of P isomorphic to N.
(ii) The subsemigroups Nx,y are pairwise disjoint.
(iii) P = ⋃{

Nx,y : x ∈N0, y ∈N
}
.

Proof. (i) follows by observing that Nx,y is generated by (−x, 1, y), while (ii) and (iii) are obvious.

Note that the last component of an element of Nx,y is the sum of the middle component and y − 1. To
emphasise this, we will sometimes write (−x, p, p + (y − p)) for (−x, p, y) in what follows.

Lemma 4.6. For n ∈N0 define

Tn :=
⋃{

Nx,y : 0 ≤ x ≤ n, 1 ≤ y ≤ n + 1
}
.

(i) Each Tn is a subsemigroup of P.
(ii) T0 ≤ T1 ≤ T2 ≤ . . . .
(iii) P = ⋃

n∈N0
Tn.

Proof. (i) Note that

(−a, p, b) ∈ Tn ⇔ p> 0 and a, b − p ∈ [0, n].

Suppose (−a, p, b), (−c, q, d) ∈ Tn. Then

(−a, p, b)(−c, q, d) = (− max (a, c − p), p + q, max (b, d + p)).

Since a, c ∈ [0, n] it follows that max (a, c − p) ∈ [0, n] as well. Next, from b − p, d − q ∈ [0, n] it follows
that b − (p + q) ≤ n and (d + p) − (p + q) = d − q ∈ [0, n]. Hence, max (b, d + p) − (p + q) ∈ [0, n].
Since p + q> 0, it follows that (−a, p, b)(−c, q, d) ∈ Tn, and therefore Tn ≤ P.

(ii) is obvious, and (iii) follows from Lemma 4.5 (iii).

We now turn to investigate a finitely generated subsemigroup of P. The first result follows easily from
the previous lemma:

Lemma 4.7. A finitely generated subsemigroup S of P intersects only finitely many Nx,y.
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Proof. As S is finitely generated, there must exist n ∈N0 such that S ⊆ Tn because of Lemma 4.6 (ii),
(iii). But Tn in turn is a union of finitely many Nx,y by definition, and the result follows.

As a key technical step, we will now show that a finitely generated subsemigroup S of P with an
additional technical condition is finitely presented.

Lemma 4.8. Let S ≤ P be generated by A = {
(−a1, p1, b1), . . . , (−an, pn, bn)

}
. Suppose that for all i, j ∈

[n] we have

ai ≥ aj − pi and bi ≤ bj + pi. (2)

For each (x, y) ∈ I := {a1, . . . , an} × {b1 − p1, . . . , bn − pn}, define

Sx,y := Nx,y+1 ∩ S.

Then the following hold.

(i) The sets Sx,y, (x, y) ∈ I, partition S.
(ii) The equivalence relation with the equivalence classes Sx,y, (x, y) ∈ I, is a congruence on S.
(iii) S is finitely presented.

Proof. We first prove the following:

Claim. We have

(−c1, q1, d1) . . . (−cm, qm, dm) = (−c1, q1 + · · · + qm, q1 + · · · + qm + (dm − qm)
) ∈ Sc1,dm−qm ,

where each (−ci, qi, di) ∈ A.

Proof. We prove the claim by induction on m. The case m = 1 is trivial. Consider m> 1, and
inductively assume the claim is valid for m − 1. Then

(−c1, q1, d1) . . . (−cm, qm, dm)

=(
(−c1, q1 + · · · + qm−1, q1 + · · · + qm−1 + (dm−1 − qm−1)

)
(−cm, qm, dm) = (−c, q, d),

where

c = max
(
c1, cm − (q1 + · · · + qm−1)

)
,

q = q1 + · · · + qm,

d = max
(
q1 + · · · + qm−1 + (dm−1 − qm−1), q1 + · · · + qm−1 + dm

)
.

Using (2), we have

c1 ≥ cm − q1 ≥ cm − (q1 + · · · + qm),

and so c = c1. Similarly,

q1 + · · · + qm−1 + (dm−1 − qm−1) ≤ q1 + · · · + qm−1 + dm = q1 + · · · + qm + (dm − qm),

implying d = q1 + · · · + qm + (dm − qm). This completes the inductive step and proof of the claim.

(i) First note that S = ⋃
(x,y)∈I Sx,y: indeed, (⊆) follows from Claim, whereas (⊇) holds by the definition

of the Sx,y. That each Sx,y is non-empty also follows from Claim: indeed, products of elements of A of
length 2 already yield members in each Sx,y. Finally, that the Sx,y are mutually disjoint follows from
Lemma 4.5 (ii).

(ii) Claim gives that Sx,ySz,t ⊆ Sx,t for all (x, y), (z, t) ∈ I, which readily implies this part.
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(iii) Each Sx,y is a subsemigroup of Nx,y+1, and Nx,y+1
∼=N by Lemma 4.5 (i). Hence, each Sx,y is

finitely presented by Proposition 4.4. It now follows that S is finitely presented by combining (i), (ii)
and Proposition 4.3.

Next, we extend to an arbitrary finitely generated subsemigroup of P.

Lemma 4.9. Any finitely generated subsemigroup S of P is finitely presented.

Proof. By Lemma 4.7, there are only finitely many Nx,y which have non-empty intersection with S;
suppose they are Nx1,y1 , . . . , Nxm ,ym . For each i = 1, . . . , m, let

qi := max (xi, yi − 1), Q := max
1≤i≤m

qi, Ui := {
(−a, p, b) ∈ Nxi ,yi : p>Q

} ∩ S.

Since the multiplication in P always increases the middle component, it follows that Ui ≤ S ∩ Nxi ,yi

and that U := ⋃m
i=1 Ui ≤ S. Since Ui ≤ Nxi ,yi

∼=N, it follows that each Ui is finitely generated by
Proposition 4.4. Hence, U is also finitely generated and we let A = {(−a1, p1, b1), . . . , (−an, pn, bn)} ⊆ P
be its generating set.

We claim that arbitrary (−ai, pi, bi), (−aj, pj, bj) ∈ A satisfy the condition (2) in Lemma 4.8. We have
pi, pj >Q, ai, aj ∈ {x1, . . . , xm} and bi − pi, bj − pj ∈ {y1 − 1, . . . , ym − 1}. By our choice of Q, we have
aj ≤ Q< pi which implies aj − pi < 0 ≤ ai. Also, bi − pi ≤ Q< pj ≤ bj which implies bi ≤ bj + pi, and
(2) indeed holds.

Lemma 4.8 (iii) now implies that U is finitely presented. Since S \ U is finite, S is also finitely
presented by Proposition 4.2.

Finally, we can prove the main result of this section.

Proof of Proposition 4.1. Let S be a finitely generated subsemigroup of FI1 with only finitely many
idempotents. By Lemma 3.2, S consists entirely of non-negative or non-positive elements. Without loss
of generality suppose the former is the case. Notice that S ∩ P is an ideal of S, and that S \ P is the set
of idempotents of S. Hence, S \ (S ∩ P) is finite. By Proposition 4.2, S ∩ P is finitely generated. Then
it follows that it is finitely presented by Lemma 4.9. And finally another application of Proposition 4.2
gives that S itself is finitely presented, completing the proof.

The Corollary can be quickly derived from the Main Theorem:
Proof of the Corollary. If S contains a non-idempotent element a, it also contains infinitely many

idempotents a−nan, n ∈N, so S cannot be finitely presented by our Main Theorem.
We conclude the paper by recalling the results from [5] and [8], and ask whether they extend to

subsemigroups of the monogenic free inverse semigroup, in the sense that our Main Theorem extends
the original theorem by Schein (Theorem 1). Specifically, we ask whether it is true that each of the
following two properties concerning a finitely generated subsemigroup S of FI1 is equivalent to S having
only finitely many idempotents: (a) having a regular language of normal forms and (b) the property FP2?
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