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Abstract

In this paper, a novel approach for simultaneously correcting multiple degraded patterns under
the failure condition of time-modulated linear arrays is proposed. The approach is based on
the use of trapezoidal pulse with non-zero rise/fall time to control the switching status of the
radio frequency switches that enables ON-OFF keying modulation of the array elements. After
deriving a closed form expression of harmonic power loss and through the in-depth analysis,
it is explored that the proposed trapezoidal pulse, because of having non-zero rise/fall time,
provides less undesired harmonic power loss as compared to the conventionally used rectangu-
lar pulse with ideally zero rise/fall time. With the aim of reconstructing the degraded patterns
with improved directivity and suppressed higher sideband power, three pulse-switching strat-
egies based on rectangular and trapezoidal pulse have been employed, and their comparative
performances prove the superiority of the proposed approach.

Introduction

In the last two decades, time-modulated array (TMA) has received much attention to the
antenna community because of its attractive features of realizing low/ultra-low sidelobe pat-
terns with a cost-effective, simplified feed network [1, 2]. However, as an outcome of the peri-
odic ON-OFF keying modulation of the excitation amplitude, the harmonic signals, also
known as sideband radiations (SBR), appear in multiples of the modulation frequency [3,
4]. Initially, the harmonic radiation from TMA was considered as the undesired effect that
leads to wastage of a part of the input power and reduces the directivity and overall radiation
efficiency of the array [5]; thus successfully minimized [1, 6–8]. Toward this, a pulse-shaping
strategy by considering non-ideal switch is also proposed in [9–12]. In the last decade, it is
envisaged that the harmonics in TMA can be beneficially exploited to achieve multiple pat-
terns simply by controlling the switching sequences [13–16]. The switching sequence define
the elementwise switching state represented by different switching parameters such as on-time
instant, on-time duration, rise time, fall time, off-time instant, and off-time duration. The
multi-pattern TMAs are found to be useful in different communication systems such as cog-
nitive radio [13], satellite communication [14], RADAR [15], and other telecommunication
applications [16]. In the said applications, large antenna arrays are used, and the possibility
of one or more element failure is quite a common phenomenon. Since multiple patterns at
different harmonics are formed with the superposition of the signals from the individual
array elements, the failure of an array element degrades significant amount of transmit
power from the system. This deforms all the patterns produced by the array at both the center
carrier frequency as well as at the harmonic frequencies. As a preventive measure, early iden-
tification of the failed or damaged elements and their replacement is essential. In this regard,
the neural network [17], genetic algorithm (GA) [18], and differential evolution (DE) [19]
based failure detection strategy are notable. However, the replacement of failed or damaged
elements is not possible for the arrays used in satellites or in space applications. In such
cases, instead of replacing the faulty elements, the deformed array pattern is reconfigured
close to the original pattern by appropriately re-synthesizing the feeding distributions of the
working array elements from the ground station [20, 21]. Toward the aim of reconfiguring
the far-field pattern in conventional phase arrays (CPAs) by re-estimating the amplitude
and phase distributions of the remaining active elements, several methods based on numerical
techniques such as a conjugate gradient [22], sparse recovery [23], and stochastic optimization
approaches using GA [24] and firefly algorithm [25] have been reported. Also, the potentiality
of time-modulation (TM) to reconfigure the center frequency pattern in the presence of elem-
ent failure is presented in [26, 27].

However, all failure correction methods reported so far have been proposed to reconfigure a
single pattern and their performances to reconfigure multiple harmonic patterns need to be
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explored. Usually, lower-order few harmonics are selected to syn-
thesize the desired multiple patterns as the power at higher order
harmonics are gradually diminished and become insignificant. In
this regard, the Fourier spectrum of the pulse sequence used to
modulate the static excitation plays an important role. The radi-
ation performance by applying non-ideal rectangular pulse has
been reported in [28, 29]. The ideal rectangular pulse with
sharp transition (ideally zero rise/fall time) results a significant
amount of power to be spread in the higher order harmonics [3].
Thus, failure correction of the harmonic power pattern using
rectangular pulse is not efficient when power accumulation is
an issue and the target is to minimize the undesired harmonic
power loss. Therefore, to reconfigure multiple patterns with
desired side lobe level (SLL), and directivity by simultaneously
suppressing undesired power losses in the presence of element
failure is a challenging task.

A close form expression of the total harmonic power by consid-
ering symmetric [3] and asymmetric [30] rectangular pulse has been
reported. Also, the calculation of SBR for different TMA geometry
and shaped pulses has been proposed in [31, 32]. To deal with mul-
tiple harmonic patterns by efficiently minimizing the loss through
undesired harmonics, the SBR calculation has not being studied
for asymmetrically positioned pulse with non-zero on-time instant,
which is indispensable.

In this paper, a novel TM strategy using the trapezoidal pulse
is proposed for the first time in the failure correction of multi-
pattern TMA. The detailed analytical studies on the behavior of
harmonic characteristics of rectangular and trapezoidal pulse
have been presented. It is examined that the trapezoidal pulse
shape with a gradual slope in the rise/fall time has better spectral
characteristics, which distribute relatively lower power at higher
order harmonics and higher power at lower order harmonics.
Based on the rectangular and trapezoidal pulses, three pulse-
shaping strategies as detailed in section “Numerical results and
analysis” have been used for controlling the ON-OFF status of
the switches. Through the comparative analysis of the reconfi-
gured patterns, it is verified that the proposed trapezoidal pulse-
based TM strategies exhibit better failure correction ability with
improved directivity than the conventionally used rectangular
switching scheme. The rest of the paper is organized as follows.
The theory and problem formulation with χ set of element failure
and its reconfiguration technique are described in section “Theory
and problem formulation”. Section “Numerical results and ana-
lysis” deals with detail numerical results and analysis showcasing
the effectiveness of the proposed pattern reconfiguration method
in dual beam time-modulated linear array (TMLA). Finally, con-
clusions are drawn in section “Conclusion”.

Theory and problem formulation

The configuration of an N element symmetrically spaced TMLA is
shown in Fig. 1. The array elements are assumed to be isotropic
and uniformly spaced along X-axis with inter-element spacing
d. The ON-OFF status of each array element is controlled by
the respective RF switch, Sn: (∀n [ 1, N) connected with it. If
the ON-OFF status of the nth switch is controlled by using a peri-
odic pulse sequence UY

n (t), the array factor of such TMLA is
expressed as [3],

AF(u, f, t) = e j2pf0t
∑N
n=1

Ane
janUY

n (t)e
j(n−1)bd sin u cosf, (1)

where f0 is the operating carrier frequency of the antenna array;
An and αn are static excitation amplitude and phase of nth

element; β is the wave number; θ and fare the elevation and azi-
muthal angle measured from the broadside direction and X-axis
respectively. Also, Zn = (n–1)d represents the coordinate of the
nth array element. The periodic switching function UY

n (t) with
time period TP has the common periodic property of
UY
n (t) = UY

n (t)(t + GTp), where Γ is a natural number. It should
be mentioned here that, the superscript “Y” is used here to denote
any of the switching function while in the following sections “Y”
is replaced by the superscript “R” and “T ” that represent rect-
angular and trapezoidal pulse-based modulation. Because of the
periodicity of UY

n (t) in time domain, different harmonic signals
are generated at multiples of the modulation frequency, fp = 1/
TP surrounding the center carrier frequency as f0 ± kfp. For the
array with uniform static excitation, without loss of any generality,
let us consider, An = 1: (∀n [ 1, N) and αn = 0: (∀n [ 1, N).
Now, using Fourier series expansion in (1), the array factor
expression at kth harmonic in XZ plane (f = 00) is obtained as,

AFk(u, t) = e j2p(f0+kfp)t
∑N
n=1

anke
jcn(u), (2)

where ank is the complex Fourier coefficient for nth element at kth

harmonic; and ψn is the progressive phase shift given by ψn = zn-
βsinθ. Let the array contains a number of faulty elements and χ
represents the set of “s” faulty elements as χ = {q1, q2. . qj. . .qs};
wheres∈ [1, N ] and qs is the location of the faulty element as
indicated in Fig. 1. Therefore, the time-independent array factor
expression of the TMLA with χ set of faulty elements (AFx

k )
can be represented as,

AFx
k (u, t) = AFk(u, t)− e j2p(f0+qfp)t

∑
q[x

aqke
jcq(u). (3)

From (3), it can be seen that due to the presence of the faulty
elements, the failure-free array factor differs from the failed
array factor(AFx

k ), i.e. AFk = AFx
k . As a result, a non-negligible

difference at different sample positions of θ is obtained between
the reference (AFk) and failed (AFx

k ) harmonic patterns.

Fig. 1. N element time-modulated linear array in the presence of element failure, χ =
{q1, q2, …., qs}.
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For the TMLA with d = λ/2, the directivity of the pattern at f0
(D0) and fk (Dk) can be obtained as [5, 26],

D0 =
4p|AF0(u, t)max|2

PT
= 4p

∑N
n=1 tn

∣∣ ∣∣2
PT

, (4)

Dk =
4p|AFk(u, t)max|2

PT
= 4p

∑N
n=1 tn sin c(kptn)

∣∣ ∣∣2
PT

, (5)

where PT = Pf0 + PSRk + PSRH is the total radiated power while Pf0,
PSRk, and PSRH are the power at center frequency, power at desired
harmonic frequency, and total sideband power including all
undesired harmonics, respectively. Therefore, the sideband
power PSR ( = PSRk + PSRH) radiated at both desired and undesired
harmonics can be defined as below [3],

PSR =
∑N
n=1

|An|2
∑1
k=−1

a2nk

{ }

+ 2
∑N
m,n=1
m=n

Re AmA
∗
n

〈 〉
sin c[b(zm − zn)]

∑1
k=−1

amka
∗
nk

{ }
,

(6)
where m, n represent the index of all non-repeated set of the array
elements present in the TMLA. In this regard, the overall system
efficiency of TMLA (ηO) with SPST switches is the product of har-
monic efficiency (ηH) and switching efficiency (ηS) [33, 34] as
defined below,

hH = Power radiated at desired harmoincs (PD)
Total power radiated in all harmonics (PT )

=
∑

k[Z Pk∑1
k=−1 Pk

; Z is the desired set, (7)

hs =
Total output power from TMA (PT )
Input power fed to the array (Pin)

=
∑1

k=−1 Pk
N

. (8)

It is observed from (4) and (5) that, PSR radiated at both
desired and undesired harmonics appeared in the denominator
of the directivity expressions. In addition to that the χ set of
faulty elements reduce the maximum obtainable power of the
respective radiation patterns. Thus, both the undesired har-
monic power and number of faulty elements reduce the overall
system efficiency (ηO) and the directivity of the reconfigured
patterns.

Under failure condition of the array, to correct or reconfigure
the degraded array patterns simultaneously at k = 0 and k≠ 0, the
conventionally used rectangular pulse, UR

n (t) for which rise/fall
time is zero and trapezoidal pulse UT

n (t) for which rise/fall time
is non-zero are used to modulate the array elements. For failure
correction application, the suitability of using the switching pulses
with various rise/fall times has been analyzed and investigated in
the following sections.

Conventional rectangular pulse

The shifted rectangular switching pulse UR
n (t) over a modulation

period as pictorially represented in Fig. 2(a) is mathematically
defined as,

UR
n (t) =

1 ton ≤ t ≤ ton + tn ≤ Tp
0 else

{
. (9)

In (9), ton and τn are the two parameters of the pulse used to
control the ON-time instant (OTI) and ON-time duration (OTD)
of the switch. Representing their normalized values as ξn = τn/Tp

and qn = ton/Tp, the spectral component of the rectangular
pulse can be obtained from Fourier coefficient, aRnk and is

Fig. 2. The behavior of the rectangular switching function. (a) Time domain switching waveform. (b) Spectral bound and envelop. (c) Harmonics for ξn = 0.1. (d)
Harmonics for ξn = 0.5.
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expressed as [16],

aRnk(jn, qn) = jn
sin (kpjn)

kpjn
e−jkp(jn+2qn). (10)

It can be seen from (2) and (10) that, depending on the value
of ξn, the harmonic coefficient of the nth time-modulated element
will contribute to produce the resultant kth order sideband
pattern.

For a given value of ξn, the envelope of the harmonic spectrum
with the harmonic indices is depicted in Fig. 2(b). As expressed in
(10), the harmonic coefficient is in the form of sinc(x) = sin(x)/x,
where x = kπξn. Therefore, the approximated upper bound of the
|aRnk| can be obtained from the bode plot of two linear asymptotes
with slope of 0 and −20 dB/decade as shown with the dotted line
in Fig. 2(b) [35]. It is to be noted that, the corner frequency fc1 =
(1/πτn) = (1/πTp)(Tp/τn) = (1/πξn)fp is inversely related to the duty
cycle of the pulse. This provides the useful information that the
radiated harmonic signal power starts to decrease at the rate
−20 dB/decade after the harmonic order k > (1/πξn). The har-
monic spectrums (∀k [ (1, 30)) of a rectangular pulse with nor-
malized on-time durations, i.e. duty cycles, ξn = 0.1 and 0.5 are
shown in Figs 2(c) and 2(d). It can be seen from (10) that |aRnk|
is equal to zero at k = m/jn, ∀m [ Z^ = 0. As a result, with
the value of ξn = 0.1, the magnitude of the harmonic coefficient
becomes zero at harmonic order k = ±10 m, i.e. at harmonic fre-
quencies ± f10 (=f0 ± 10fp), ± f20, ± f30 as in Fig. 2(c). Similarly,
for ξn = 0.5, no radiation occurs at frequencies ± fk = f0 ± kfp;
where k = ±2m (Fig. 2(d)). Thus, the spectrum characteristics
indicate that, by proper selection of the set of on-time sequence
ξn, the overall higher order harmonic power, PR

SR generated by
the shifted rectangular pulse (Fig. 2(a)) as defined in (11) and
(12) [36] can be reduced to improve the directivity while at the
same time, the same set of on-time sequence can generate the
desired power pattern at the lower order harmonics.

PR
SR = 2p

∑N
n=1

|An|2jRn(1− jRn)

+ 2p
∑N
m,n=1
m=n

< AmA
∗
n

〈 〉
[jRmn − jRmj

R
n]sinc[b(zm − zn)],

(11)

where jRmnis the intersected on-time duration of the rectangular
pulse [36]. Whereas for d = λ/2 uniformly exited TMLA

havingjRm = jRn the expression of PR
SRbecomes,

PR
SR = 2p

∑N
n=1

jRn(1− jRn). (12)

Trapezoidal pulse

A trapezoidal switching function, UT
n (t) as shown in Fig. 3(a) is

mathematically represented as

UT
n (t) =

t/Dn t0n ≤ t ≤ t0n + Dn

1 t0n + Dn ≤ t ≤ t0n + Dn + tn
−t/Dn t0n + Dn + tn ≤ t ≤ t0n + 2Dn + tn ≤ Tp

0 else.

⎧⎪⎪⎨
⎪⎪⎩ .

(13)

The pulse is defined with three parameters – OTI → t0n, and
OTD → τn as defined for rectangular pulse and one additional
parameter, namely, rise/fall time → Δn. In terms of the normal-
ized values of OTI → qn = (ton/Tp) t/Dn, OTD →ξn = τn/Tp,
and rise/fall time → δn = Δn/Tp; the complex Fourier coefficient
(aTnk) of U

T
n (t) can be obtained as in [35, 37],

aTnk(jn, qn, dn) = jn
sin (kpjn)

kpjn

sin (kpdn)
kpdn

e−jkp(jn+2qn+dn). (14)

The envelop behavior of the spectrum characteristics (aTnk) of a
trapezoidal pulse is shown in Fig. 3(b). It shows the dependency
of higher order harmonics on Δn along with τn. As compared to
the rectangular pulse, the non-zero rise/fall time in trapezoidal
pulse leads to include another sinc function and hence the expres-
sion of the harmonic coefficient in (14) consists of the product of
two sinc functions. As a result, an additional asymptote appears
at the higher order harmonics after the second corner frequency
fc2 = 1/πΔn with a slope of −40 dB/decade. Thus, the magnitude of
the harmonic coefficient for the trapezoidal pulse will be less than
that of the rectangular pulse, specifically at higher order harmo-
nics. With ξn = 0.5 and normalized rise/fall time, δn( = Δn/Tp) =
0.2, the harmonic spectrum of the pulse is shown in Fig. 3(c).
It can be seen from (16) that in addition to the harmonic order
k = (m/ξn) as in rectangular pulse, the coefficient of the trapez-
oidal pulse (|aTnk|) also becomes zero at k =m/δn. Thus, when
ξn = 0.5 and δn = 0.2, the harmonic coefficients are zero not only
at k = ±2m but also for k = ± 5m. As a result, in addition to the
harmonic frequencies ± f2, ± f4, ± f6,… as for the case of rectangular

Fig. 3. Behavior of the trapezoidal switching function. (a) Time domain switching waveform. (b) Spectral bound and envelop. (c) Harmonics for ξn = 0.5, δn = 0.2.

International Journal of Microwave and Wireless Technologies 1191

https://doi.org/10.1017/S1759078722001179 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078722001179


pulse with ξn = 0.5, for the trapezoidal pulse with δn = 0.2 har-
monic radiations become zero at ± f5, ± f10, ± f15 … as appeared
in Fig. 3(c). A closed form expression of the overall harmonic
power of the proposed antenna array controlled by shifted
trapezoidal pulse can be derived by using (6) and (14) as given
below [9, 30] (Appendix I),

PT
SR = 2p

∑N
n=1

|An|2 jTn (1− jTn )−
dTn
3

[ ]

+ 2p
∑N
m,n=1
m=n

< AmA
∗
n

〈 〉
jTmn − jTmj

T
n − dTmn

3

[ ]
Sinc[b(zm − zn)],

(15)

where jRmn and d
T
mn are the intersected on-time duration and rise/fall

time duration of two consecutive trapezoidal pulses, respectively.
For the similar condition, An = 1, d = l/2, jTm = jTn , and
dTm = dTn , (15) can be reduced to as given below,

PT
SR = 2p

∑N
n=1

jTn (1− jTn )−
dTn
3

[ ]
. (16)

Therefore, the higher order harmonics generated using trapez-
oidal pulse is expected to be less as compared to the rectangular
pulse.

Conventional rectangular versus trapezoidal pulse

From the above analysis, a comparative performance in term of
power spectral characteristics of the two pulses at higher order har-
monics can be realized. It is to be noted that a rectangular pulse
becomes trapezoidal with the non-zero value of rise/fall time. To
get a clear picture about the spectral characteristics, for the pulse
of fixed values of ξn = 0.5, 0.3, and 0.2; the Fourier coefficients for
different values of δn = 0.1, 0.2, 0.3 are plotted in Figs 4(a)–4(c).
By comparing the spectral characteristics, it can be observed that
for different δn, the Fourier coefficients at k = 0 remain same.
This is because, the coefficient at k = 0 depends on the area of
the pulse while the area of the trapezoidal pulse doesn’t change
with δn due to its symmetric shape. Further, it is evident from
the spectrum that compared to the higher harmonics, the effect
of increasing δn on lower harmonic coefficients is less. Since the
coefficient of the trapezoidal pulse at higher harmonic order is
drastically decreased, pattern synthesis at lower harmonic using

trapezoidal pulse as the time-modulating signal not only provides
less higher harmonic power loss, it also offers an additional control
parameter or flexibility in terms of rise/fall time of the pulse to syn-
thesize the desired patterns at lower harmonics. It is to be noted
that the modern function generator features to provide various
pulse shapes with independently controllable rise and fall time
(https://www.valuetronics.com/pub/media/vti/datasheets/Wavetek%
20166.pdf). However, the modulating trapezoidal pulsed waveforms
with desired rise/fall time can be controlled by programming the
FPGA board as indicated in Fig. 1.

Failure correction

Already it is mentioned that under the failure condition, the new
set of pulse sequences is used to reproduce the degraded har-
monic patterns at the desired lower order harmonics while the
higher order harmonic power is suppressed significantly. If, for
the case of rectangular pulse-based TM, the set of switching para-
meters required to correct the degraded harmonic patterns is
jc = {jcn|∀n [ (1, N) ^ n � x} and qc = {qc

n|∀n [ (1, N) ^ n
� x}; the corresponding array factor, AFRc

k (u, t) of the corrected
pattern at kth order harmonic is expressed as

AFRc
k (u, t) = e j2p(f0+kfp)t

∑N
n=1,n=x

jcn
sin (kpjcn)

kpjcn
e−jkp(jcn+2qc

n)e jcn .

(17)

Similarly, for the trapezoidal pulse switching, if the set of the
switching parameters of the corrected patterns is
(jc = {jcn|∀n [ (1, N) ^ n � x}; qc = {qc

n|∀n [ (1, N) ^ n
� x};and dc = {dcn|∀n [ (1, N) ^ n � x}); the corresponding
corrected array factor expression, AFTc

k (u) is given as,

AFTc
k (u, t) = e j2p(f0+kfp)t

∑N
n=1,n=x

jcn
sin(kpjcn)
kpjcn

sin(kpdcn)
kpdcn

e−jkp(jcn+dcn+2qc
n)e jcn

.

(18)

Under the failure condition, the set switching parameters cor-
responding to the utilized switching pulse are properly tuned to
correct the distorted patterns. To determine the optimum
switching parameters for the corrected array patterns
(AFYc

k (u, t); Y = R, T ) at k = 0 and closed to the desired reference

Fig. 4. Comparison of harmonic coefficients under different values of the pulse-shaping parameters. (a) ξn = 0.5, (b) ξn = 0.3, (c) ξn = 0.2.
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pattern (AFRef
k (u, t)), the global search evolutionary optimization

algorithm namely, DE [38, 39] with DE/rand/1/bin strategy is
used. To realize the patterns, the cost function is defined as

f g(mY)Y=R,T =
∑
k=Z

∑
z={zZ}

wzZ · H{VzZ (m
Y)}.|VzZ (m

Y)|
{ }

. (19)

Here, g represents the iteration index of the iterative evolutionary
algorithm; mY represents the optimization parameter vector. For
rectangular pulse-switching modulation, it is given as μR =
{jc, qc}, while for trapezoidal pulse-switching modulation, it is
μT = {jc, qc, dc}. In (19), Z is the set of harmonic number at
which multiple patterns are realized and ζZ is the set of para-
meters associated with the synthesized pattern at a particular har-
monic. For example, if a sum pattern is synthesized only at
fundamental (center) frequency (k = 0) then Z→{0} and ζ0 =
{SLL0, FNBW0, D0}. However, if multiple patterns are synthesized
at fundamental (k = 0) and at first harmonic (k = 1), then Z→{0, 1}
and ζZrepresents the corresponding radiation parameters of
the patterns to be optimized. As per example, suppose two
narrow beam sum patterns are generated both at k = 0 and 1
then the associated radiation parameters of the corresponding
harmonic patterns to be optimized (ζZ) are respectively given as
ζ0 = {SLL0, FNBW0, D0}sum, ζ1 = {SLL1, FNBW1, D1, SBL1,
SBLmax}sum; where SBL1 and SBLmax represent sideband level at
first harmonic and the value of maximum sideband level
among the higher harmonics respectively. H (.) is the Heaviside
step function.

If, in addition to the sum pattern at fundamental, a wide beam
flat top pattern is generated at k = 1; then the corresponding
radiation parameters related to the first harmonic are written as
ζ1 = {SLL1, FTBW1, ripple, SBL1, SBLmax}flat−top. VzZ = (zZ−zZd),
where ζZdrepresents the desired values of the radiation parameters.
wzZ is the corresponding weighting factor. This is a minimization
problem where minimization of the cost function leads to reconfig-
ure the pattern toward the desired one in terms of the required
radiation characteristics.

Fig. 5. DE-optimized element-wise pulse-switching sequence to synthesize the sum-
sum pattern for a TMLA of N = 16 (Example 1). Ta
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Numerical results and analysis

To verify the concept of the analysis made in the previous sec-
tions, regarding the superiority of using trapezoidal pulse over
rectangular pulse, the comparative results of two examples are
presented. In the first example, a dual-beam TMLA (N = 16,
d = 0.5λ) of sum-sum patterns at the center carrier frequency
( f0) and first harmonic ( f1) is considered. In the second example,
to show the versatility of correcting the diverse shape of patterns,
another dual-beam TMLA (N = 32, d = 0.5λ), producing sum pat-
tern at f0 and flat-top pattern at f1 is taken. In both examples, the
number elements are selected the same as considered in the two
examples in [24] wherein rectangular pulse-based switching is
used to correct the failure of a single pattern at f0. To synthesize
the said reference patterns as well as to reconfigure the failure
patterns, the tuning parameters of the MATLABTM coded DE
optimization algorithm are set as population size (NP) = 50,
mutation constant (η) = 0.4, and crossover probability (F) = 0.8.
In the first example, for both of the dual patterns, the desired
values of the radiation parameters are set in the cost function
in (19) as SLLd =−20 dB, FNBWd = 150, Dd = 15 dBi, SBL1−d =
−3 dB, and SBLmax−d = −20 dB. In the second example, the
desired criterion for the sum pattern is kept the same as in the
first example. However, for the flat-top pattern, the desired values

of the radiation parameters are selected as SLLd = −20 dB, max-
imum ripple factor, Rd = 0.5 dB, and flat-top beam-width
(FTBW) = 45°. To reconfigure the failure patterns, three different
switching strategies have been imposed as (i) rectangular pulse
with zero rise/fall time (dcn = 0); (ii) trapezoidal pulse of uniform
rise/fall time, i.e. same dcn( = dc0 = 0) for all time-modulating ele-
ments; and (iii) trapezoidal pulse of non-uniform rise/fall time,
i.e. differentdcn for the individual time-modulating elements.
The performances of the different switching schemes to reconfig-
ure the degraded patterns are tested under two cases of failure
conditions – case 1: single-element failure and case 2:
two-element failure. For the switching scheme in (i), jcnand
qc
nare perturbed in the search range of [0.01, 1]. For the switching

scheme in (ii) and (iii), the search range of jcnand qc
nare kept as

[0.01, 1]; however, dcn is varied in the range of [0.01, 0.2] such
that the condition (jcn + qc

n + dcn) ≤1 is maintained to avoid the
pulse duration longer than modulation period.

Example 1: failure correction of dual beam TMLA with
sum-sum pattern

The DE-optimized switching sequence for the synthesized failure-
free reference pattern is shown in Fig. 5. The different radiation

Fig. 6. DE-optimized corrected pulse-switching sequence and synthesized sum-sum patterns for a TMLA of N = 16 (Example 1) using rectangular pulse with zero
rise/fall time (dcn = 0). (a) Element-wise switching sequences with a set of faulty elements, χ = {5} and (b) χ = {2, 13}, (c) normalized radiation patterns at f0, and (d)
normalized radiation patterns at f1.
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parameters for the synthesized failure-free patterns at f0 and f1
and the distorted patterns under the two cases of failure condi-
tions of χ = {5} and χ = {2, 13} are listed in Table 1. It can be
observed that a single element failure in case 1 seriously distorts
both the carrier frequency and first harmonic frequency patterns.
The reference SLLs (SLL0 and SLL1) and FNBWs (FNBW0 and
FNBW1) corresponding to the patterns at f0 and f1 are respectively
increased by (5.63 and 5.41 dB) and (1.48 and 5.02°) respectively.
Similarly, under case 2, the SLLs and FNBWs of the reference pat-
terns are degraded respectively by (4.52 and 6.54 dB) and (10.77
and 7.07°). Table 1 also shows that under failure conditions,
due to the reduction of active elements, as compared to case 1,
the directivity and overall system efficiency of both the patterns
are decreased more in case 2.

Failure correction using rectangular pulse
To correct the deformed dual patterns under case 1 and case 2, at
first, the conventional rectangular pulse-switching-based TM is
used to the remaining active elements of the array. The
DE-optimized switching parameters, mR = {jcn, q

c
n}; n ∉ {5} for

case 1 and n ∉ {2, 13} for case 2; of the corrected patterns are
depicted in Figs 6(a) and 6(b) while the corresponding recon-
structed patterns are shown in Figs 6(c) and 6(d) respectively.

The radiation parameters of the corrected patterns under both
cases are given in Table 1. The table shows that, for case 1, the
SLLs of the reconfigured patterns are obtained as SLL0 =−19.63 dB
and SLL1 =−18.51 dB, which are 0.13 and 0.80 dB higher than
that for the reference SLLs of −19.76 and −19.31 dB, respectively.
The FNBWs of the patterns at f0 and f1 are respectively increased
by 1.18 and 1.32° and the directivities are decreased by 0.77 and
0.51 dBi. For the corrected pattern, the maximum value of the
undesired higher order SBR, SBLmax is 2.19 dB higher than that
of the reference pattern. With respect to the total power radiated
by the array, the percentage of power radiated at f0 → Pf0; f1 →
PSR1 (= {

∑N
n=1 j

R
nSinc(pj

R
n)}

2) and in the remaining higher har-
monics → PSRH (PSRH = PSR–PSR1) is also calculated, and their
values are mentioned in Table 1. It can be seen that Pf0 is reduced
by 2.01%, while PSRH is increased by 1.77%, and these lead to
reduce the directivity of the patterns.

For case 2, the achieved SLLs (SLL0 =−19.62 dB and SLL1 =
−19.18 dB) of the reconfigured patterns are closed to the failure-
free reference patterns. However, FNBWs are increased by 6.01
and 4.54°, and the directivities are decreased by 1.07 and 0.95
dBi, respectively. Also, the reconfigured array pattern provides
relatively higher values of SBLmax −19.11 dB. Further, the reduc-
tion of Pf0 from 44.48 to 43.70% reduces the directivity D0 by

Fig. 7. DE-optimized corrected pulse-switching sequence and synthesized sum-sum patterns for a TMLA of N = 16 (Example 1) using trapezoidal pulse with uniform
rise/fall time (dcn = dc0). (a) Element-wise switching sequences with χ = {5} and (b) χ = {2, 13}, (c) normalized radiation patterns at f0, and (d) normalized radiation
patterns at f1.
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1.07 dBi. With respect to the failure condition, the efficiency only
improved by 0.66%. This theoretical aspect is also mentioned in
section “Conventional rectangular pulse”, and the same is
reflected in the result in Table 1 under both cases of the array fail-
ure. Thus, using conventional rectangular pulse-based modula-
tion, it is much difficult to achieve the directivities of the
patterns with the same values as that in reference patterns by sim-
ultaneously maintaining the low SLLs.

Failure correction using trapezoidal pulse with uniform rise/fall
time
Now, to correct the degraded dual-beam patterns of the array
under consideration, trapezoidal pulse-switching-based TM is
employed. In this case, all modulating pulses are assumed to
have uniform rise/fall time, such that dcn = dc0; ∀n [ (1, N);
where dc0 is the optimum value of the rise/fall time of the pulse.
Thus, along with jcn and qc

n, d
c
0 considered as the optimization

parameters and the corresponding unknown parameter vector
becomes mT = {jcn, q

c
n, d

c
0}. The obtained DE-optimized new set

of switching parameters of the corrected patterns is depicted in
Figs 7(a) and 7(b), and the corresponding reconstructed dual-
beam patterns are shown in Figs 7(c) and 7(d), respectively.

The figures show that the trapezoidal pulse with uniform non-
zero rise/fall time successfully rebuilds the degraded patterns
closed to the original one. The calculated radiation parameters
of the reconfigured patterns are mentioned in Table 1. These
results show that under two failure conditions, the trapezoidal
pulse approach significantly reduces PSRH from 15.47 and
14.85% to only 3.07 and 6.81%, respectively. These are less by
13.62 and 7.89% to the conventional rectangular pulse switching.
These reduced PSRH lead to an increase of Pf0 to 55.55
and 48.34%, respectively, while PSR1 = {

∑N
n=1 j

T
n Sinc(pj

T
n )

Sinc(pdTn )}
2 almost remains the same. As a result, the directivity

(D0) at f0 is improved for both the cases of failure correction.
The directivities of the corrected dual-beam patterns are calcu-
lated and are obtained as 19.26 and 15.34 dB for case 1; and
19.45 and 14.89 dB for case 2, respectively. These values indicate
that the directivity of the trapezoidal pulse-based reconfigured
patterns is higher than the respective reconfigured patterns as
obtained using conventional rectangular pulse-based TM. Even,
the directivity of the corrected patterns is higher than the failure-
free patterns as synthesized by using the traditional rectangular
pulse-based TM. Hence, with the inclusion of an additional
degree of freedom dcn along with jcn and qc

n, the deformed patterns

Fig. 8. DE-optimized corrected pulse-switching sequence and synthesized sum-sum patterns for a TMLA of N = 16 (Example 1) using trapezoidal pulse of variable
rise/fall time dcn . (a) Element-wise switching sequences with χ = {5}, and (b) χ = {2, 13}, (c) normalized radiation patterns at f0, and (d) normalized radiation patterns
at f1.
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can be reconciled with improved radiation characteristics in terms
of improved directivity and reduced undesired sideband power
loss.

Failure correction using trapezoidal pulse with non-uniform rise/
fall time
Finally, the trapezoidal pulse-based switching with different
values of dcn for the individual pulse is applied to reconfigure
the array patterns of the said failure array. Therefore, the opti-
mization parameter vector for DE becomes mT = {jcn, q

c
n, d

c
n}.

The optimized switching parameters under case 1 and case 2
are shown in Figs 8(a) and 8(b), while the reconciled patterns
are depicted in Figs 8(c) and 8(d), respectively. The radiation
parameters of the corrected patterns are detailed in Table 1.
Numerically, the achieved radiation parameters are as follows:
SLLs at f0 and f1 are −19.27 and −19.47 dB for case 1 and that
for case 2 are −19.46 and −19.27 dB; FNBWs are 20.30 and
18.66° for case 1 and 22.12 and 21.01° for case 2, respectively.
The directivities of the patterns are 19 and 15.50 dBi for case 1
and 18.69 and 14.14 dBi for case 2. The overall efficiency of the
TMA has been improved as compared to the rectangular pulse.
It can be seen that only for the corrected pattern case 1, SLL0
and D0 are slightly less than that obtained with uniform pulse
switching. However, as compared to the other cases, all other radi-
ation parameters are improved. Further, the realized reconfigured
patterns using this switching strategy are more closed to that of
the original reference patterns with an enhanced directivity.

Element-wise statistical performances to correct the faulty
pattern
Occurrence of element failure in antenna array is a random event
and the amount of pattern degradation due to array failure
depends on the position of the faulty elements on the array aper-
ture. To observe the element-wise impact on array failure, the dif-
ferent radiation parameters of the pattern with array failure and
that corresponding to the corrected pattern are presented in
Table 2. As evidence from the reported literatures [20–27], it
can be observed that the element failure toward the array edge
has less influence on the pattern and the degraded pattern
under such cases can be reconfigured closed to that of the originalTa

b
le

3.
(C
on

tin
ue
d.
)

Ca
se
s

Ar
ra
y
st
at
us

f 0
f 1

P f
0%

P S
R
%

η H
%

η S
%

η T
%

SL
L 0

(d
B
)

FN
B
W

0
(d
eg
)

D
0
(d
B
i)

SB
L 1

(d
B
)

SL
L 1

(d
B
)

FN
B
W

1
(d
eg
)

D
1
(d
B
i)

SB
L m

a
x
(d
B
)

P S
R
1

P S
R
H

χ
=
{7
}

W
or
st

−
18

.0
8

20
.5
3

18
.4
4

−
3.
30

−
16
.9
7

18
.1
5

15
.3
4

−
16
.2
6

47
.3
4

41
.6
1

11
.0
5

89
.0
9

25
.9
1

23
.0
8

B
es
t

−
18

.3
2

21
.2
2

18
.6
5

−
3.
16

−
17
.4
7

18
.0
1

15
.4
9

−
17
.2
5

49
.0
0

42
.8
4

8.
17

92
.1
3

27
.6
5

25
.4
7

M
ea

n
−
18

.2
6

20
.7
4

18
.5
8

−
3.
23

−
17
.4
2

18
.0
8

15
.4
4

−
16
.7
4

48
.2
8

42
.3
7

9.
35

91
.4
2

26
.0
3

23
.7
9

Va
ri
an

ce
0.
01

0.
07

0.
01

0.
00

0.
04

0.
00

0.
00

0.
15

0.
54

0.
25

1.
15

1.
79

0.
48

0.
19

χ
=
{8
}

W
or
st

−
16

.9
1

20
.0
2

17
.7
9

−
3.
78

−
15
.0
3

18
.1
5

15
.3
0

−
8.
62

38
.8
8

40
.1
1

7.
33

85
.9
3

19
.6
7

16
.9
0

B
es
t

−
17

.9
2

17
.9
2

19
.0
7

−
1.
96

−
17
.2
3

17
.2
1

15
.8
9

−
22
.9
4

50
.0
4

46
.8
5

15
.4
3

93
.2
2

30
.8
1

28
.7
2

M
ea

n
−
17

.3
7

18
.9
9

18
.4
2

−
3.
00

−
16
.2
5

17
.6
9

15
.6
1

−
15
.6
5

45
.1
3

43
.5
4

11
.3
2

88
.5
5

25
.6
1

22
.6
8

Va
ri
an

ce
0.
25

0.
63

0.
34

0.
73

0.
77

0.
12

0.
05

37
.2
6

36
.7
8

6.
93

14
.2
8

11
.3
5

20
.9
9

23
.7
1

Fig. 9. DE-optimized pulse-switching sequence to synthesized reference sum flat-top
patterns for a TMLA of N = 32 (Example 2).
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failure free pattern. On the other hand, the element failure near
the center elements strongly effects the pattern and the proposed
method can be used to correct the same with little compromisa-
tion of SLL. It also shows that, compared to the rectangular pulse,
the trapezoidal pulse is more effective for multi-pattern failure
correction, as it reduces the discrepancy between failure-free pat-
tern and reconfigured pattern more than rectangular one.
Nonetheless, the trapezoidal pulse of uniform rise/fall time is
found to be efficient in suppression of undesired harmonic
power than the trapezoidal pulse of variable rise/fall time (dcn).

By taking some random faulty elements, the statistical perfor-
mances for correcting the pattern with different modulating pulse
waves are presented in Table 3. For each case, after running the
algorithm 20 times; the best, worst, mean, and variance of differ-
ent radiation parameters are calculated. The presented results
indicate that the proposed failure correction method with less
variance is efficient to steadily reconfigure the pattern at each
trial run.

Example 2: failure correction of dual-beam TMLA with
sum-flattop pattern

The optimized switching sequence to synthesize the desired dual
patterns as mentioned previously is shown in Fig. 9. Let, the array
is disrupted with failure of two elements as χ = {2, 13} as consid-
ered in [24]. The radiation parameters of both the failure-free and
failure patterns are listed in Table 4. The results show that, due to
failure, both the patterns at f0 and f1 are distorted. For the sum
pattern, SLL and FNBW are increased and directivity is decreased.
For the flat-top pattern, SLL, FNBW as well as ripple factor are
increased.

The optimized pulse sequences of the corrected patterns under
the three strategies are shown in Figs 10(a)–10(c). The corre-
sponding corrected patterns along with the failure-free and the
failure patterns at f0 and f1 are presented in Figs 11(a) and 11
(b) respectively. The obtained radiation parameters of the three
strategies are mentioned in Table 4. Though by using rectangular
pulse-switching strategy, the both SLLs of the corrected dual pat-
terns are matched with the failure-free pattern, a significant
amount of power (PSRH = 18.48%) is wasted at higher order har-
monic radiation, while the power at the desired frequencies, f0
and f1 are Pf0 = 45.43% and PSR1 = 36.07% respectively.

On the other hand, with respect to the rectangular pulse, the
use of trapezoidal pulse switching with uniform dcn improves
SLL and directivity of the reconfigured pattern at f0 by 0.31 and
1.22 dBi. Moreover, with respect to the rectangular pulse switch-
ing, PSRH is reduced by 9.8% while Pf0 and overall efficiency are
increased by 10.36 and 4.13% respectively.

Finally, it is worth to note that by using the pulse switching
with non-uniform dcn, the SBLmax is reduced to −20.88 dB with
the significant suppression of PSRH to 8.40%. Consequently, the
power at the desired harmonics is improved with the values of
Pf0 = 58.80% and PSR1 = 32.80%. Thus, most of the radiated
power is concentrated to reconstruct the desired patterns. The
use of 32 number of SPST switches reduces the switching effi-
ciency largely as compared to the 16-element TMA of Example 1.
The results presented in Tables 1 and 2 show that, though with
the application of the trapezoidal pulse the used harmonic
power efficiency is improved by reducing power losses in the
unused harmonics, the overall efficiency is some-what degraded
because of the relatively smaller values of the switching efficiency
in synthesizing the desired patterns. This efficiency can beTa
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improved by reducing the number of switches by applying SPDT
switch or sub-arraying method.

For completeness, a comparative convergence characteristic
curve of DE to reconfigure the failure patterns under the three

different switching strategies is depicted in Fig. 12. Also, the
power radiation at different sidebands is calculated and their var-
iations at different harmonics are depicted in Fig. 13. The figures
clearly show that as compared to rectangular pulse, the cost

Fig. 10. DE-optimized corrected pulse-switching sequence for a TMLA of N = 32 (Example 2) considering (χ = {2, 29}). (a) Rectangular with zero rise/fall time (dcn = 0).
(b) Trapezoidal with uniform zero rise/fall time (dcn = dc0). (c) Trapezoidal with variable rise/fall time (dcn).

Fig. 11. DE-optimized reconstructed synthesized sum flat-top patterns for a TMLA of N = 32 (Example 2) considering (χ = {2, 29}) (a) at f0 and (b) at f1.
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function value as well as the higher order sideband power for both
the trapezoidal pulses are lower. The lower cost function values in
the convergence curve indicate that the reconstructed patterns are
more closed to satisfy the desired requirements. However, the
reduction of higher order sideband power leads to provide more
power to produce the desired patterns. Hence, the performance
of the trapezoidal pulse-switching strategy to correct the degraded
patterns under failure condition is better than the conventional
rectangular pulse-switching strategy. While two trapezoidal
pulse-switching strategies are compared, it is to be noted that
the pulse switching with non-uniform rise/fall time increases
the number of optimizing variables, particularly because of non-
uniform values of dcnfor the individual elements; however, it pro-
vides more diversity in the search space of the stochastic opti-
mization algorithm. As a result, with non-uniform rise/fall time,
both cost function value and higher sideband power are less as
compared to that with uniform rise/fall time. This clearly depicts
that the trapezoidal pulse with non-uniform rise/fall time is best
suited to correct the degraded patterns in the presence of element
failure.

Conclusion

The trapezoidal pulse-shaping strategy by using rise/fall time as
an additional degree of freedom is adopted for simultaneous pat-
tern reconfiguration at fundamental and harmonic frequency in
the presence of element failure in TMLA. In this regard a closed
form expression of the harmonic power radiated by the proposed
half wavelength TMLA fed by shifted trapezoidal pulse is derived.
It is found from the numerical study that the rectangular pulse of
zero rise/fall time is not well motivated for pattern reconfiguration
as it does not provide the optimum directivity by simultaneously
maintaining the SLL and SBL. The trapezoidal pulse provides
additional flexibility to reconfigure the degraded patterns closed
to the failure-free reference patterns by significantly suppressing
the higher order harmonic power. The trapezoidal pulse-
switching strategy is found to be efficient for pattern correction
in the presence of element failure by improving the directivity
and reducing the undesired higher order harmonic power losses.
Further, practically it is difficult to realize rectangular pulse with
exactly zero rise/fall time. Whereas the trapezoidal pulse of finite
rise/fall time has the flexibility in controlling the time-slope of the
ON-OFF switching states. In this aspect, the trapezoidal
pulse-switching scheme also has the advantage of practical real-
ization with desired parameters of the required pulse.
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Appendix

Since the Fourier coefficient aTnk is a complex quantity, the product of∑1
k=−1
k=0

aTmka
T∗
nk for m = n can be written as [30],

∑1
k=−1
k=0

aTnka
T∗
nk = 2

∑1
k=1

|aTnk|
2 = 1

2
1

p4dT
2

n
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(1− cos 2pkjTn )(1− cos 2pkdTn )
k4

= 1
2
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−
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−
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+ 1
2
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cos 2pk(jTn + dTn )
k4

+ 1
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cos 2pk(jTn − dTn )
k4

[ ]
.

(A1)
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Now cosidering the identity of fourth-order Riemann’s Zeta function as
given below [9],∑1

k=1 ( cos kx/k
4) = (p4/90)− (p2x2/12)+ (px3/12)− (x4/48) with0≤

x≤ 2π, the final step of (A1) is obtained as,

jTn (1− jTn )−
dTn
3
. (A2)

Similarly, for m≠ n,

= jTmn − jTmj
T
n − dTmn

3

[ ]
. (A4)

Ananya Mukherjee (Student Member IEEE)
received B.Tech. from West Bengal University
of Technology (WBUT) in the year 2011. She
completed her M.Tech. in Telecommunication
Engineering from National Institute of
Technology Durgapur in 2014 and received
Ph.D. degree from the same institute in
September 2022. Her research interest lies in
the application area of antenna array synthesis

and design through time-modulation using evolutionary algorithms.

Sujoy Mandal (Student Member IEEE AP-S,
MTT Society) received the B.Tech. degree in
Electronics and Communication Engineering
from West Bengal University of Technology
(WBUT), Kolkata, India in 2013, and M.Tech.
degree in Microwave Engineering from The
University of Burdwan, Burdwan, West Bengal,
India in 2016. Presently, he is pursuing the
Ph.D. degree from the National Institute of

Technology (NIT) Durgapur, Durgapur, India. His research interest includes
the analysis and synthesis of the radiation characteristics of time-modulated
antenna arrays, prototype development of time-modulated arrays, algorithm
development to obtain the precise position solution in multiple global naviga-
tion satellite systems (multi-GNSS) constellations, and the development of
GNSS based cost-effective applications.

Sujit Kumar Mandal (Member IEEE) received
the B.Sc. degree in Physics Honours from the
University of Calcutta in 2001. He completed
B.Tech. and M.Tech. in Radio Physics and
Electronics from the Institute of Radio Physics
and Electronics, C. U. in the years 2004 and
2006 respectively. He received the Ph.D. degree
in January 2014 from the National Institute of
Technology (NIT), Durgapur where he is an

Assistant Professor in the Department of Electronics and Communication

Engineering, since 2010. He has published more than 50 research papers in
various national and international peer-reviewed journals and conferences.
His present research area includes application of soft computing techniques
in antenna array optimization, time-modulated antenna arrays, microstrip
patch antenna, RF energy harvesting, and on-chip antenna design.

Rowdra Ghatak (Member IEEE) initiated his career
in microwave engineering as a trainee with the
CEERI Pilani, Pilani, India, in the domain of fabri-
cation and testing of S-band magnetrons.
Thereafter, he served at the National Institute of
Science and Technology, Berhampur, and The
University of Burdwan. He is currently a Professor
with the Electronics and Communication
Engineering Department, National Institute of

Technology Durgapur, Durgapur, India. He has more than 250 publications in vari-
ous national/international journals and conferences. His research interests include in
the areas of fractal antenna, metamaterials, and application of evolutionary algo-
rithms to electromagnetic optimization problems, RFID, and computational electro-
magnetic and microwave passive and active circuit design. Dr. Ghatak was a recipient
of the URSI Young Scientist Award in 2005. He also received support under the DST
Young Scientist scheme for the development of UWB radiating systems for imaging
RADAR. He has served in various selection as well as project review committees in
the state as well as in the national domain. He has also served as a reviewer for a
NPTEL course on antennas. He is a member of the board of studies at UG and
PG level at various state and central universities. He is also serving as a Research
Advisor to the TCS Research in the domain of mmWave radio design and radiating
systems.

∑1
k=−1
k=0

aTmka
T∗
nk = 2

∑1
k=1

aTmka
T∗
nk = 1

4
1

p4dTmd
T
n

∑1
k=1

(cospk{(jTm − jTn )+ (dTm − dTn )})
k4

+ ∑1
k=1

(cospk{(jTm − jTn )− (dTm − dTn )})
k4

− ∑1
k=1

(cospk{(jTm − jTn )+ (dTm + dTn )})
k4

− ∑1
k=1

(cospk{(jTm − jTn )− (dTm + dTn )})
k4

− ∑1
k=1

(cospk{(jTm + jTn )+ (dTm − dTn )})
k4

− ∑1
k=1

(cospk{(jTm + jTn )− (dTm − dTn )})
k4

+ ∑1
k=1

(cospk{(jTm + jTn )+ (dTm + dTn )})
k4

+ ∑1
k=1

(cospk{(jTm + jTn )− (dTm + dTn )})
k4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3)

Ananya Mukherjee et al.1204

https://doi.org/10.1017/S1759078722001179 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078722001179

	Trapezoidal pulse-switching strategy for failure correction of multi-pattern time-modulated linear array
	Introduction
	Theory and problem formulation
	Conventional rectangular pulse
	Trapezoidal pulse
	Conventional rectangular versus trapezoidal pulse
	Failure correction

	Numerical results and analysis
	Example 1: failure correction of dual beam TMLA with sum-sum pattern
	Failure correction using rectangular pulse
	Failure correction using trapezoidal pulse with uniform rise/fall time
	Failure correction using trapezoidal pulse with non-uniform rise/fall time
	Element-wise statistical performances to correct the faulty pattern

	Example 2: failure correction of dual-beam TMLA with sum-flattop pattern

	Conclusion
	Acknowledgement
	References
	Appendix




