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A GENERALIZED CANTOR THEOREM IN ZF

YINHE PENG AND GUOZHEN SHEN

Abstract. It is proved in ZF (without the axiom of choice) that, for all infinite sets M, there are no
surjections from � ×M onto P (M ).

§1. Introduction. Throughout this paper, we shall work in ZF (i.e., the
Zermelo–Fraenkel set theory without the axiom of choice).

In [1], Cantor proves that, for all sets M, there are no bijections between M and
P (M ), and since there is an injection from M into P (M ), it follows that there are no
injections from P (M ) into M. In [12], Specker proves a generalization of Cantor’s
theorem, which states that, for all infinite sets M, there are no injections from P (M )
intoM 2. In [2], Forster proves another generalization of Cantor’s theorem, which
states that, for all infinite sets M, there are no finite-to-one functions from P (M )
to M. In [8–10], several further generalizations of these results are proved, among
which are the following:

(i) For all infinite sets M and all n ∈ �, there are no finite-to-one functions from
P (M ) toMn or to [M ]n.

(ii) For all infinite sets M, there are no finite-to-one functions from P (M ) to
� ×M .

(iii) For all infinite sets M and all sets N, if there is a finite-to-one function from
N to M, then there are no surjections from N onto P (M ).

For a set M, let fin(M ) denote the set of all finite subsets of M. Although it can
be proved in ZF that, for all infinite sets M, there are no injections from P (M ) into
fin(M ) (cf. [5, Theorem 3]), the existence of an infinite set A such that there is a
finite-to-one function from P (A) to fin(A) and such that there is a surjection from
fin(A) onto P (A) is consistent with ZF (cf. [8, Remark 3.10] and [5, Theorem 1]).
Now it is natural to ask whether the existence of an infinite set A such that there is
a surjection from A2 onto P (A) or from [A]2 onto P (A) is consistent with ZF, and
these questions are originally asked in [13] and in [4] respectively. In [11, Question
5.6], it is asked whether the existence of an infinite set A such that there is a surjection
from� × A onto P (A) is consistent with ZF, and it is noted there that an affirmative
answer to this question would yield affirmative answers to the above two questions.
In this paper, we give a negative answer to this question; that is, we prove in ZF that,
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for all infinite sets M, there are no surjections from � ×M onto P (M ). We also
obtain some related results.

§2. Preliminaries. In this section, we indicate briefly our use of some terminology
and notation. For a function f, we use dom(f) for the domain of f, ran(f) for the
range of f,f[A] for the image of A under f,f–1[A] for the inverse image of A under f,
and f�A for the restriction of f to A. For functions f and g, we use g ◦ f for the
composition of g and f. We write f : A→ B to express that f is a function from A
to B, and f : A� B to express that f is a function from A onto B.

Definition 2.1. Let A,B be arbitrary sets.

(1) A � B means that there exists an injection from A into B.
(2) A �∗ B means that there exists a surjection from a subset of B onto A.
(3) fin(A) denotes the set of all finite subsets of A.
(4) P∞(A) denotes the set of all infinite subsets of A.

Clearly, ifA � B thenA �∗ B , and ifA �∗ B then P (A) � P (B) and P∞(A) �
P∞(B).

Fact 2.2. �1 �∗ P (�).

Proof. Cf. [3, Theorem 5.11]. �

In the sequel, we shall frequently use expressions like “one can explicitly define”
in our formulations, which is illustrated by the following example.

Theorem 2.3 (Cantor–Bernstein). From injections f : A→ B and g : B → A,
one can explicitly define a bijection h : A→ B .

Proof. Cf. [7, III.2.8]. �

Formally, Theorem 2.3 states that in ZF one can define a class function H without
free variables such that, whenever f is an injection from A into B and g is an injection
from B into A,H (f, g) is defined and is a bijection between A and B.

We say that a set M is Dedekind infinite if there exists a bijection between M and
a proper subset of M; otherwise M is Dedekind finite. It is well-known that M is
Dedekind infinite if and only if there exists an injection from � into M. We say
that a set M is power Dedekind infinite if the power set of M is Dedekind infinite;
otherwise M is power Dedekind finite. Recall Kuratowski’s celebrated theorem:

Theorem 2.4 (Kuratowski). A set M is power Dedekind infinite if and only if there
exists a surjection from M onto �.

Proof. Cf. [3, Proposition 5.4]. �

§3. The main theorem. In this section, we prove our main theorem, which states
that, for all infinite sets M, there are no surjections from � ×M onto P (M ). We
first recall some well-known results.

Theorem 3.1 (Cantor). From a functionf :M → P (M ), one can explicitly define
an A ∈ P (M ) \ ran(f).
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Proof. It suffices to take A = {x ∈ dom(f) | x /∈ f(x)}. �

Lemma 3.2. For any infinite ordinal α, one can explicitly define an injection
f : α × α → α.

Proof. Cf. [12, 2.1] or [7, IV.2.24]. �

Lemma 3.3. For any infinite ordinal α, one can explicitly define an injection
f : fin(α) → α.

Proof. Cf. [3, Theorem 5.19]. �

Lemma 3.4. For any infinite ordinal α, one can explicitly define a bijection
f : �α → α.

Proof. Let α be an infinite ordinal. Let

exp(�,α) =
{
t : α → �

∣∣ {� < α | t(�) �= 0} is finite
}
,

and let r be the right lexicographic ordering of exp(�,α). It is easy to verify that
r well-orders exp(�,α) and the order type of 〈exp(�,α), r〉 is �α (cf. [7, IV.2.10]).
Let g be the unique isomorphism of 〈�α,∈〉onto 〈exp(�,α), r〉. Let h be the function
on exp(�,α) defined by

h(t) = t�{� < α | t(�) �= 0}.

Then h is an injection from exp(�,α) into fin(α × �). By Lemmas 3.2 and 3.3,
we can explicitly define an injection p : fin(α × �) → α. Therefore, p ◦ h ◦ g is an
injection from �α into α. Now, since the function that maps each � < α to �� is an
injection from α into �α , it follows from Theorem 2.3 that we can explicitly define
a bijection f : �α → α. �

Fact 3.5. If A = B ∪ C is a set of ordinals which is of order type �� , then B or C
has order type �� .

Proof. Cf. [7, IV.2.22(vii)]. �

The key step of our proof is the following lemma.

Lemma 3.6. From a surjectionf : � ×M � α, whereα is an uncountable ordinal,
one can explicitly define a surjection from M onto α.

Proof. Let α be an uncountable ordinal and let f be a surjection from � ×M
onto α. For each n ∈ �, let An = f[{n} ×M ], let �n be the order type of An, and
let gn be the unique isomorphism of �n onto An. Let � =

⋃
n∈� �n and let g be the

function on � × � defined by

g(n, �) =

{
gn(�), if � < �n,
0, otherwise.

Then g is a surjection from� × � ontoα, which implies that � is also an uncountable
ordinal. Hence, it follows from Lemma 3.2 that we can explicitly define a surjection
from � onto α. So it suffices to explicitly define a surjection from M onto �. We
consider the following two cases:
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Case 1. There exists an n ∈ � such that �n = �. Let n0 be the least natural number
such that �n0 = �. Then the function that maps each x ∈M to g–1

n0
(f(n0, x)) is a

surjection of M onto �.
Case 2. If we are not in Case 1, then, since � =

⋃
n∈� �n, � is a limit ordinal.

Since � > �, without loss of generality, assume that �n is infinite for all n ∈ �. For
each n ∈ �, let �n = ��n . By Lemma 3.4, for each n ∈ �, we can explicitly define
a bijection pn : �n → �n. For each n ∈ �, let hn be the function on M defined by
hn(x) = p–1

n (g–1
n (f(n, x))). Then, for any n ∈ �, hn is a surjection from M onto �n.

Let � = �� . Clearly, � =
⋃
n∈� �n. By Lemma 3.4, it suffices to explicitly define a

surjection h :M � � .
We first define by recursion two sequences 〈Bn〉n∈� and 〈qn〉n∈� as follows. Let

B0 =M . Let n ∈ � and assume that Bn ⊆M has been defined so that

� =
⋃{
�

∣∣ � = �k for some k ∈ � such that hk[Bn] has order type �k
}
. (1)

We define a subset Bn+1 of Bn and a surjection qn : Bn \ Bn+1 � �n as follows. Since
�n < � , by (1), there is a least k ∈ � such that �n < �k and hk[Bn] has order type
�k . Let t be the unique isomorphism of hk[Bn] onto �k , and let

D = {x ∈ Bn | t(hk(x)) < �n}.

Since �k = ��k is closed under ordinal addition, it follows that �n · 2 < �k . Now, if
(1) holds with Bn replaced by D, we define Bn+1 = D and let qn be the function on
Bn \D defined by

qn(x) =

{
the unique � < �n such that t(hk(x)) = �n + �, if t(hk(x)) < �n · 2,
0, otherwise.

Otherwise, it follows from (1) and Fact 3.5 that (1) holds with Bn replaced by
Bn \D, and then we define Bn+1 = Bn \D and let qn be the function on D defined
by qn(x) = t(hk(x)). Clearly, in either case, Bn+1 ⊆ Bn, (1) holds with Bn replaced
by Bn+1, and qn is a surjection from Bn \ Bn+1 onto �n. Now, it suffices to define
h =

⋃
n∈� qn ∪ (

⋂
n∈� Bn × {0}). �

Lemma 3.7. For all infinite sets M and all sets N, if there is a finite-to-one function
from N to M, then there are no surjections from N onto P (M ).

Proof. Cf. [8, Theorem 5.3]. �
Now we are ready to prove our main theorem.

Theorem 3.8. For all infinite sets M, there are no surjections from � ×M onto
P (M ).

Proof. Assume towards a contradiction that there exist an infinite set M and
a surjection Φ : � ×M � P (M ). We first prove that M is power Dedekind
infinite. Let Ψ be the restriction of Φ to the set {(n, x) ∈ � ×M | Φ(n, x) =
Φ(k, x) for no k < n}. Clearly, Ψ is a surjection from a subset of � ×M onto
P (M ) such that, for all x ∈M , Ψ�(� × {x}) is injective. If M is power Dedekind
finite, then dom(Ψ) ∩ (� × {x}) is finite for all x ∈M , and thus there exists a finite-
to-one function from dom(Ψ) to M, contradicting Lemma 3.7. Hence, M is power
Dedekind infinite.
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Now, it follows from Theorem 2.4 that � �∗ M , and thus, by Fact 2.2, �1 �∗

P (�) � P (M ) �∗ � ×M , which implies that �1 �∗ M by Lemma 3.6 and hence
�1 � P (M ). Let h be an injection from �1 into P (M ). In what follows, we get a
contradiction by constructing by recursion an injection H from Ord (the class of all
ordinals) into P (M ).

For � < �1, we take H (�) = h(�). Now, we assume that α is an uncountable
ordinal and that H �α is an injection from α into P (M ). Then (H �α)–1 ◦ Φ is a
surjection from a subset of � ×M onto α and hence can be extended by zero
to a surjection f : � ×M � α. By Lemma 3.6, f explicitly provides a surjection
g :M � α. Since (H �α) ◦ g is a surjection from M onto H [α], it follows from
Theorem 3.1 that we can explicitly define an H (α) ∈ P (M ) \H [α] from H �α
(and Φ). �

§4. A further generalization. In [6], Kirmayer proves that, for all infinite sets M,
there are no surjections from M onto P∞(M ). In this section, we generalize this
result by showing that, for all infinite sets M, there are no surjections from � ×M
onto P∞(M ), which is also a generalization of Theorem 3.8. The proof is similar to
that of Theorem 3.8, but first we have to prove that Lemma 3.7 holds with P (M )
replaced by P∞(M ).

Lemma 4.1. For any infinite ordinal α, one can explicitly define an injection
f : P (α) → P∞(α).

Proof. By Lemma 3.2, we can explicitly define an injection p : α × α → α. Let
f be the function on P (α) defined by

f(A) =

{
p[A× {0}], if A is infinite,
p[(α \ A) × {1}], otherwise.

Then it is easy to see that f is an injection from P (α) into P∞(α). �

Lemma 4.2. From a set M, a finite-to-one function f : N →M , and a surjection
g : N � α, where α is an infinite ordinal, one can explicitly define a surjection h :
M � α.

Proof. Cf. [8, Lemma 5.2]. �

Lemma 4.3. For all infinite sets M and all sets N, if there is a finite-to-one function
from N to M, then there are no surjections from N onto P∞(M ).

Proof. Assume towards a contradiction that there exist an infinite set M and
a set N such that there exist a finite-to-one function f : N →M and a surjection
Φ : N � P∞(M ). Clearly, the function that maps each cofinite subset A of M to
the cardinality of M \ A is a surjection from a subset of P∞(M ) onto �, and
hence � �∗ P∞(M ) �∗ N , which implies that � �∗ M by Lemma 4.2. Thus � �
P∞(�) � P∞(M ). Let h be an injection from � into P∞(M ). In what follows,
we get a contradiction by constructing by recursion an injection H from Ord into
P∞(M ).

For n ∈ �, we takeH (n) = h(n). Now, we assume thatα is an infinite ordinal and
thatH �α is an injection fromα into P∞(M ). Then (H �α)–1 ◦ Φ is a surjection from

https://doi.org/10.1017/jsl.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.22


A GENERALIZED CANTOR THEOREM 209

a subset of N onto α and hence can be extended by zero to a surjection g : N � α.
By Lemma 4.2, from M, f, and g, we can explicitly define a surjection p :M � α.
Then the function q on P∞(α) defined by q(A) = p–1[A] is an injection from P∞(α)
into P∞(M ), and thus it follows from Lemma 4.1 that we can explicitly define an
injection t : P (α) → P∞(M ). Then t–1 ◦ (H �α) is a bijection between a subset of
α and t–1[H [α]], and thus can be extended by zero to a function u : α → P (α).
By Theorem 3.1, we can explicitly define a B ∈ P (α) \ ran(u). Since t–1[H [α]] ⊆
ran(u), it follows that B /∈ t–1[H [α]], which implies that t(B) /∈ H [α]. Now, it
suffices to defineH (α) = t(B). �

We are now in a position to prove the result mentioned at the beginning of this
section.

Theorem 4.4. For all infinite sets M, there are no surjections from � ×M onto
P∞(M ).

Proof. We proceed along the lines of the proof of Theorem 3.8. Assume towards
a contradiction that there exist an infinite set M and a surjection Φ : � ×M �
P∞(M ). We first prove that M is power Dedekind infinite. Let Ψ be the restriction
of Φ to the set {(n, x) ∈ � ×M | Φ(n, x) = Φ(k, x) for no k < n}. Clearly, Ψ is
a surjection from a subset of � ×M onto P∞(M ) such that, for all x ∈M ,
Ψ�(� × {x}) is injective. If M is power Dedekind finite, then dom(Ψ) ∩ (� × {x})
is finite for all x ∈M , and thus there exists a finite-to-one function from dom(Ψ)
to M, contradicting Lemma 4.3. Hence, M is power Dedekind infinite.

Now, it follows from Theorem 2.4 that � �∗ M , and thus, by Fact 2.2
and Lemma 4.1, �1 �∗ P (�) � P∞(�) � P∞(M ) �∗ � ×M , which implies that
�1 �∗ M by Lemma 3.6 and hence �1 � P∞(�1) � P∞(M ). Let h be an injection
from �1 into P∞(M ). In what follows, we get a contradiction by constructing by
recursion an injection H from Ord into P∞(M ).

For � < �1, we take H (�) = h(�). Now, we assume that α is an uncountable
ordinal and that H �α is an injection from α into P∞(M ). Then (H �α)–1 ◦ Φ is
a surjection from a subset of � ×M onto α and hence can be extended by zero
to a surjection f : � ×M � α. By Lemma 3.6, f explicitly provides a surjection
g :M � α. Then the function q on P∞(α) defined by q(A) = g–1[A] is an injection
from P∞(α) into P∞(M ), and thus it follows from Lemma 4.1 that we can explicitly
define an injection t : P (α) → P∞(M ). Then t–1 ◦ (H �α) is a bijection between a
subset of α and t–1[H [α]], and thus can be extended by zero to a function u :
α → P (α). By Theorem 3.1, we can explicitly define a B ∈ P (α) \ ran(u). Since
t–1[H [α]] ⊆ ran(u), it follows that B /∈ t–1[H [α]], which implies that t(B) /∈ H [α].
Now, it suffices to defineH (α) = t(B). �

Using the method presented here, we can also show that the statements (i)–(iii)
in Section 1 hold with P (M ) replaced by P∞(M ) (Lemma 4.3 is just the statement
(iii) for P∞(M )). We shall omit the details.

The questions whether the existence of an infinite set A such that there is a
surjection fromA2 onto P (A) or from [A]2 onto P (A) is consistent with ZF are still
open.
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