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Expected Norms of Zero-One Polynomials

Peter Borwein, Kwok-Kwong Stephen Choi, and Idris Mercer

Abstract. Let A, = {ao +aiz+ - +ap_12" 1 aj € {0, 1}} , whose elements are called zero-
one polynomials and correspond naturally to the 2" subsets of [n] := {0,1,...,n — 1}. We also let
Apm = {a(z) € Ay : a(l) = m}, whose elements correspond to the (::,) subsets of [n] of size m,
and let B, = A1 \ An, whose elements are the zero-one polynomials of degree exactly n.

Many researchers have studied norms of polynomials with restricted coefficients. Using [|t]| , to
denote the usual L, norm of o on the unit circle, one easily sees that a(z) = ag+ajz+- - +anzV € R[z]
satisfies ||o]|3 = co and |||} = ¢ +2(E + - - - + &), where ¢ := le":gk ajaj for0 <k < N.

If a(z) € Aum,say a(z) = 2P+ -+ 2Pm where B1 < - -+ < [Bm, then ¢ is the number of times k
appears as a difference 3; — ;. The condition that & € A, satisfies ¢, € {0,1} for1 <k <n—1
is thus equivalent to the condition that {31, ..., 3} is a Sidon set (meaning all differences of pairs of
elements are distinct).

In this paper, we find the average of |||} over &« € Ay, @ € By, and @ € Aym. We further
show that our expression for the average of |||} over Ay yields a new proof of the known result: if
m = o(n'/4) and B(n, m) denotes the number of Sidon sets of size m in [n], then almost all subsets
of [n] of size m are Sidon, in the sense that lim,—, - B(n, m)/(:;) =1.

1 Introduction and Statement of Main Result

We let A, denote the set {ag + ajz+ -+ +a, 12" : aj € {0,1} forall j}, and we
call the elements of A, zero-one polynomials. There is a natural bijection between the
2" polynomials in A, and the 2" subsets of [n] := {0,1,...,n — 1}. Generally, if
a(z) € A,, we define

m = «(1) = the number of coefficients of «(z) that are 1,

and we write a(z) = 2% + 22 + -  + 2% where 8, < B, < -+ < B, SO
{B1, B, ..., Bm} is the subset of [n] that corresponds to a(z). We let A, ,, denote
the set {a(z) € Ay : (1) = m}, 50 [Apm| = () and Ay = Ao UAu1 U+ U Ay
We also define B, := A,+1 \ Ay, so B, consists of the 2" zero-one polynomials of
degree exactly n.

A recurring theme in the literature is the problem of finding a polynomial with
“small” norm subject to some restriction on its coefficients. (See [3, Problem 26],

[5, Problem 19], or [1, Ch. 4, 15].) In general, for

(1.1) alz) =ap+ajz+--- +ayz € Rlz],
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we define the usual L, norms of a(z) on the unit circle:

1 [ » 1/p
loyi= (57 | o] as) ™"

where p > 1is real. The main result of this paper, which appears as Theorem 4.1 in
Section 4, is that if n > 4 and m < n, we have

4n® + 42n* — 4n+ 3 — 3(—1)"

E =
Al = ,
2mt4 mBl(n—m)Q2n* —4n+1— (=1)")
4 o2
Eq,,( O‘H4) =2m m+ 3(n—3) 4] )
4 4n® +66n% +188n+ 87 +9(—1)"
E‘Bn( OLH4) = % )

where Eg(||a||i) denotes the average of Hoz||i over the polynomials in €, and the
notation x[¥ is shorthand for x(x — 1) - - (x — k + 1). This complements results of
Newman and Byrnes [7], who found the average of |||} over the 2" polynomials of
the form

(1.2) g+ aaz+ -+ ap_12"1, aj € {+1,—1} forall j,

and Borwein and Choi [2], who found (among other things) the average of ||/
and ||al|§ over the 2" polynomials of the form (1.2), and the average of |||, [|cv][5,
and Hoz||2 over the 3" polynomials of the form

ag+az+ -+ a_12" 1, aj € {+1,0,—1} forall j.

2 Autocorrelation

Notice that if v is of the form (1.1) and |z| = 1, we have

|0¢(z)|2 :a(z)%:(a0+a1z+---+aNzN)(a0+a1%+---+aNZLN)

1 1
:CNZ_N+"'+Clg+C°+Clz+"'+CNZN’

where the ¢ are the so-called (aperiodic) autocorrelations of o, defined for0 < k < N
by ¢ := Z?Zok ajaj.. Using the general fact that
1 [ 1 1 0
| (bbbt bz b ) dO = by, (2= ),
21 Jo z z

we see that for a of the form (1.1), we have

1 1

2

1 .

Ha||§=Z/ (CNZ—N+---+q;+co+clz+---+chN)d9:co, (z=é"),
0
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and
(2.1)
2
1 1 1 2
lall; = — (CN—N+-~-+c1—+co+clz+~-~+chN) de
21 Jo z z
=+t E+Gtdt g =g +2d+ -+ cy), (z=€Y).
We further observe that
N—k ,  N—k N—k N—kN—k
j=0 i=0 j=0 i=0 j=0

Noting that f(i, j) := a;a;ja;xa ;. satisfies f(i, j) = f(j, 1), we have

N—kN—k N—k
(2.2) d=>fl.p=> fa+2 > fGj)
i=0 j=0 i=0 0<i<j<N—k
N—k
= a; aiz+k +2 Z AiAjAirkAjik-
i=0 0<i<j<N—k

Ifa(z) =ap+--+a, 12" ' =25 +.. .+ 2% € A, ,, then we have ¢, = m and ¢ is

the number of j such that a; and a;, are both 1 and is equal to the number of times
k appears as a difference 3; — 3;. Thusc; +--- + ¢,—1 = m(m — 1)/2, and since the
cx are nonnegative integers, we have

(2.3) G+t

n—1

>a+- 4o =mm—1)/2

with equality if and only if ¢, € {0, 1} for 1 < k < n—1, or in other words, if and only

if all differences of pairs of elements of {3, . .., B,,} are distinct. If all differences of

pairs of elements of {31, . .., (5, } are distinct, we call {3y, . .., B, } a Sidon set.
Using (2.1), we see that (2.3) and ¢y = m prove the following.

Proposition 2.1 Forany a(z) = 2% + --- + 2% € A, ,, we have ||a||} > 2m* — m,
with equality if and only if {31, . . ., B} is a Sidon set.

We observe also that (2.3) implies that ¢} +- - -+¢2_, —m(m—1)/2is a nonnegative
integer, and is zero if and only if {31, . . ., B, } is Sidon.

3 Some Facts and Notation

If © denotes A, B, or A, then we turn €2 into a probability space by giving each
polynomial o € €2 equal weight p(cv).
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Generally, we will denote a typical element of A, or A, ,, by

1
)

alz) =ay+az+---+a,_12"
and denote a typical element of B, by a(z) = ag + ayz+ -+ a,_1z"" ' + z". Asin
Section 1, if € A, 1, we also write

az) =25 +2% + - 4 0

where 5) < B2 < -+ < B

If  is one of the three spaces A, B, or A, ,, and X is a random variable on (2,
we of course have Eq(X) = Zaesz X(a)p(a), and we will sometimes omit the sub-
script £ if it is clear from the context what probability space we are considering.

Two facts we will use that are each immediate from first principles are Markov’s
inequality, Pr[X > a] < E(X)/a, where X is a nonnegative real random variable, and
linearity of expectation, E(X; +- - -+ Xi) = E(X;) +- - - + E(Xx), which holds regardless
of dependence or independence of the X;.

4 Calculation of E(||[;)

Let 1, j2, j3, ja denote distinct integers. We begin this section by finding some aver-
ages of products of a;, that we will need later. First, suppose our probability space {2
is A,,. We then have

1 2= ]
(4.1) E(ajaj,) = ?(number ofa € Ay suchthata; =aj;, =1) = =

and by similar reasoning, we have
(4.2) E(ajlajzaja) = 1/8, E(ajlajzajsajq) = 1/16.

Now suppose our probability space 2 is A, ,,. We then have

1
(4.3) E(ajaj,) = (T)(number ofa € Ayymsuchthata; =aj, =1)

(h3)  mm—1)  m?

(”) T oan—1) a7

m

and by similar reasoning, we have
(4.4) E(ajaja;,) = m®/nP E(ajaj,a;a;,) = m* /.

We note that we need n > 4 in order for all expressions in (4.3) and (4.4) to be
defined. For 2 = A, ,,,, the case n < 3 will be treated separately.
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Now if {2 is either of the probability spaces A, or A, ,,, then equation (2.2) gives
n—k—1
(4.5) = Z aiaiyp +2 Z a;a;11A;aj k-
i=0 0<i<j<n—k—1

We define )\ := n — k and also define

A1
(4.6) S:= Zaiai+k7
i=0
(4.7) T:= Z a;0;ai4k0+k,
0<i<i<A—1

which of course implies ¢ = S+ 2T. If k = 0, then ¢ = m*. Soif Q = A, we
have simply E(c3) = m?, whereas if Q = A, we have

~ ()
(4.8) E(q) =) Z—"Lmz.
m=0
Itis an exercise to see that the right side of (4.8) evaluates to (n® +n) /4. Alternatively,
we may observe that ¢y has a binomial distribution with parameters # and 1/2, which

implies
11 1IN2 n+n
2y 2 _ . 2. C - =
(4.9) B(c}) = Var(co) + E(co)® =1+ 5+ 5 + (n 2) .
Having found E(¢}) for @ = A,,, and for Q = A,, we now shift our attention

to E(¢}) for k # 0.
Assume k # 0, and observe that (4.5), (4.6), and (4.7) (and linearity of expecta-
tion) give us

A—1
(4.10)  E(q) =E(S)+2E(T) = > E(qai)+2 Y Elaajaiaj).
i=0 0<i<j<A—1

Since k # 0, each of the ) terms in the sum E(S) is of the form E(a; a;,) where j, #
72. We thus have

A4 ifQ = A,,
4.11 E(S) =
(4-11) ) {/\mm/nm ifQ = Apm,

by (4.1) and (4.2). As for the (;\) terms in the sum E(T), each term is of the form
E(a;aja; raji). Since k # 0 and i < j, the four subscripts i, j, i + k, j + k constitute
either three distinct integers (if j = i + k) or four distinct integers (if j # i + k). If
{i, j,i+k, j+k} consists of three distinct integers i, j,, j3 where j3 is the one that is
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“repeated”, then, since a; € {0, 1} for all j, we have E(a;jajairajix) = E(ajlajzai) =
E(ajaj,a;,), whereas, of course, if {i, j,i +k, j + k} consists of four distinct integers,
then E(a;a;a; ra;x) is of the form E(aj aj,aj,a;,). Therefore, we now ask the ques-
tion: For which of the (}) terms in the sum E(T) does the set {i, j,i+k, j+k} consist
of only three distinct integers?

Forsomei € {0,1,...,\—1}, there is exactly one j satisfying bothi < j < A—1
and j = i + k, and for other values of 7, there is no such j. We will say that 7 is of
“type I’ if the former criterion holds, and is of “type II” if the latter criterion holds.
Aninteger i is of typelif and onlyif i + k < A, or equivalently,i < A\ —k = n—2k. If
n—2k <0 (i.e, ifk > [n/2]), theni < n—2knever happens, i.e., no i is of type I and
so all of the (;\) terms in the sum E(T) are of the form E(a; aj,a;,a;,). On the other
hand, if n — 2k > 0 (i.e., if k < [n/2]), theni < n— 2k = X\ — k sometimes happens;
namely, it happens if and only if i is one of the A — k integers 0,1,...,A — k — 1.
In that case, each of those A — k values of i is of type I, which implies that precisely
A—kof the (}) terms in the sum E(T) are of the form E(aj,aj,a;,) and the remaining
terms are of the form E(a; aj,a;,a;,).

This implies that we have

@) E(aflajzajaaj4) ifk > |—n/2],
E(T) = @) E(aflajzajsah)
+(\ — k) [E(aj,aj,a;,) — E(aj,aja;,a;,)] ifk < [n/2].

Thus, if Q2 = A,, then

E(T) = {(;\)/16 itk > [n/2],
(3)/16+ (A —K)/16 ifk < [n/2],

and hence by (4.10) and (4.11),

by = A= D/16 itk > [n/2],
P TANa MO = D/164+ 20— B)/16 ifk < [n/2].

On the other hand, if Q@ = A, ,,, then

by [ k= /2],
()mt 4 /nl 4 (N — k) [mB /a3 — ml /nl4]if k < [n/2],

and hence
> A’;‘[z + AN - 1),1[4 ifk > [n/2],
E(cp) = 4] .
AL+ A = DI+ 20— k) [ 25— 2] ifk < [n/2].
It then follows that if Q = A,,, we have
n—1 n—1 [n/2]—1
AA=1) 2(A—k)
2 “e 2 —
(4.12) E(@+--+c ) ;( ) +;( ) ’;‘ ( . )
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whereas if Q = A, ,,, we have

n—1 n—1

(4.13) E(C%+"'+Cﬁl)—;( )+;()\(/\ m[4]])
[n/2]—-
3 (a0 [Ty,

Recalling that A is simply shorthand for n — k, it is straightforward to verify that

) nn—1)(n-2)
Z(A =,

2
[
>/

T
L

and that

[ng_lz()\_k) n(n—2)/2 ifniseven,
—1 B (n—1)?/2 ifnisodd.

So,if @ = A, then from (4.12) we get

Lo =1 , 1 nm=1®=2) , 1 nn=2)
B4+ )=44 2 * 16 3 +t1 5 if n is even,
1 ULty L) 1 D s odd
4 2 16 3 16 2 ’

(2n + 9n* — 14n) /96 if n is even,
(2n° +9n* — 14n +3)/96 if nis odd,

which, using (2.1) and (4.9), implies

2 3.0,2_ 3 2_ . .
E(H H4) n;rn + 2n +9i18 14n 2n +2ié1 2n ifnis even,
« 2 3 2 3 2 . .
n;—n + 2n +9n48 14n+3 2n +21Zg 2n+3 ifnis odd

or equivalently

4n® + 42n* — 4n + 3 — 3(—1)"

4.14 E
(4.14) A, %6

(llely) =

On the other hand, if Q = A, ,,, then from (4.13) we get

E(ci+ -+ )

2] 4] 3] 4]
m n(n—1) m n(n—1)(n—2) m m n(n—2) - .
_ e 2 + ai e 3 + FERECE ) i ifnis even,
= 2] 14] 53] 14] 2
m= onm=1) o m~ an=1)(n=2) m>* _ omty | (=1 e
nl2l 7 T o 3 + ( e o ) > if n is odd,

_ (n;) +m*/(3(n = 3)) + mP(n — m)(n* — 2n) /(2n) if n is even,
L) +m G —3) + mPl (= m)(n? — 2n+1)/(2n¥) if nis odd,
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which, using (2.1), implies

- Bl () (2 .
Bty — {27 st A s even,
Y Y om? — o 2y mPemmeR—antl) e o 0 dd
3(n—3) nl4] >

or equivalently

2m Bl —m)2n? — 4n+1— (=1)")

N
(4.15) Eg,,(ally) = 2m m+3(n_3) 2nl4l

Notice that if m is fixed and n approaches infinity, then E4, ,([|a||;) approaches
2m? — m, i.e., for fixed m and large n, we expect a random o € A, ,, to correspond
to a Sidon set, as is consistent with intuition.

If Q = B, since B, := Ay \ Ay, we get

4 1 4 4 4
Eg,([|ely) = o Z lally = 2Ea,, (lely) — Ea, ()
aEB,
_ 4m’ + 66n” + 188n + 87 + 9(—1)"

96
by (4.14). Therefore we have proved

Theorem 4.1 Ifm < n, we have

4n® + 42n* — 4n+ 3 — 3(—1)"

E Y=
a,(lall) = :
2ml4] mBl(n — m)Q2n* —an+1— (=1)")

E Y —2mr—m+

Anm(HaHél) 3(71— 3) 271[4]

(ifn>4),
4 4n® +66n% +188n+87 +9(—1)"
Eg,(lely) = :

96

For completeness, we also determine EAM(HaHi) when n < 3. If n < 3, we have
a(z) = ag + a1z + a,z* and then

laflt = &+ 26 +28
= (ag + af + a%)2 + 2(apa; + a1a2)2 + 2(a0a2)2
=ay+al + a5+ 4(ajal + alal + alal) + 4apaia,
=ap+a; +a; +4(apa; + apay + ayay) + 4apa, gz,
since a; € {0, 1} from which it readily follows that
En(llaly) = Ba(laly) =0,
Ea,, (lely) = Ea,, (lafy) =1,
En.(llaly) = Ea(lal) =6,

Ea,,(lally) = 19.
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We remark that substituting m € {0, 1, 2, 3} into the second equation in Theorem 4.1
and then formally cancelling common factors as appropriate, we get

32m2 —4n+1— (—1)")

4 J—
E\AnJ(HOéHAL)_ 15+ 1’[(1’[—1)(1’1—2) ’

Eq,,(|ally) =6,
Eq,, (o) =1,
Ea,,(|ally) = o0,

yielding results consistent with the explicit averages just obtained for n < 3.

5 Ubiquity of Sidon Sets

We show that our expression for E 4, ( ||04Hi) yields a new proof of a result that ap-
pears in articles by Godbole et al. [4] and Nathanson [6].
Suppose 2 = A, ,,, and as before, denote a typical element of A, ,, by

az) = P AL U

Recall from Section 2 that X := ¢} +- - - +c_; — () is a nonnegative-integer-valued
random variable on { that attains the value 0 if and only if {3, ..., 8} is a Sidon
set.

We have

m
a0 =B (&G4 - (1)

) Bl () (1 — e
B {3(’:”3) + mm(” 2’%”2 2n) if n is even,
- 4 — —2n+l e
3(’:73) y ”;ifj]’ D ifnis odd
m!4! mB(n —m)(n — 1)
~3(n-23) 2nl4]
~_ m(m—1)(m—2)(2mn — 3n — m)
B 6n(n —2)
i
< —
~ 3n

if n > 4. On the other hand, if we let B(n, m) be the number of Sidon sets in [#n] with
m elements, then we have

E(X):% Zx:% > Xz%#{aeAn,m:X(abo}
(m) aEA,m (m) a€Aym,X>0 (m)
>1-— (%)B(n7 m).

Hence we have proved (by essentially using Markov’s inequality) the following.
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Corollary 5.1 For4 < m < n, we have

s (1) - )

and

m4

Pr({f1,...,0m} is Sidon] > 1 — 3
Hence if m = o(n'/*), then as n approaches infinity, the probability that a randomly
chosen m-subset of [n] is Sidon approaches 1.

Although when m = o(n'/*), the probability that a randomly chosen m-subset
of [n] is Sidon approaches 1 (i.e., |||} is 2m* — m for almost all a« € A,,,,), there
are some other cases in which a positive proportion of polynomials in A,, ,, have very
large Ly norm.

Fora € A, sincefor0 <k <n—1,¢ = Z?;f_l a;jaj.r, we have cg = m, and
forl1 <k<n-—1,|¢| <min{m — 1,n — k}. Therefore, we have

n—1 n—m+l n—1
||04Hﬁ:c§+226£§m2+2 Z(m—1)2+2 Z (n—k)?
k=1 k=1 k=n—m+2

), 4 5 2 5
=2nm° — —m’ +4m —4nm+2n—§m
) 2
=2(1+o0(1))m (n—gm)

if n = o(m?) as m, n — oo and on the other hand, from (4.15) we have

2(1 + o(1))m* 1
#smmmani):m > ol

m/ oa€Anm
1 4 4
‘W{ S falt+ |a|4}
m llevlly <x lleell3>x
1 4
§x+(7) Z ]l
" lal|3>x

§x+(% Z 2(1+0(1))m2(n—§m).
M |al|y>x

It then follows that for any x < 2(1 + o(1))m*/(3n), we have

#Ha € Apm o} > x} < 2(1+ o(1))m*/(3n) — x
(") = 2(1+o(1))m*(n—2m/3)’

m
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In particular, for any € > 0, if m = ¢nand x = ¢;m*nfor 0 < ¢; < 1 and
0 < < 2(1—e€)c?/3, we have

#HlaeAum: ||oe|\i > cym*n} 20 —e)ct/3—a
) T 2(1+€)(1 —2¢1/3)

m

>0

for sufficiently large n and m, i.e., there is a positive proportion of polynomials in
Ay m having large Ly norm (note that the Ly norm in A, ,, is at most as large as
2(1 + o(1))m?n).

References

[1]  P.B. Borwein, Computational Excursions in Analysis and Number Theory. CMS Books in
Mathematics/Ouvrages de Mathmatiques de la SMC 10. Springer-Verlag, New York, 2002.

[2]  P.B. Borwein and K.-K. S. Choi, The average norm of polynomials of fixed height. Trans. Amer.
Math. Soc. 359(2007), no. 2, 923-936.
P. Erdés, Some unsolved problems. Michigan Math. J. 4(1957), 291-300.

[4]  A.P. Godbole, S. Janson, N. W. Locantore, Jr., and R. Rapoport, Random Sidon sequences.
J. Number Theory 75(1999), no. 1, 7-22.

[5] J.E.Littlewood, Some Problems in Real and Complex Analysis. D.C. Heath, Lexington, MA, 1968.

[6] M. B. Nathanson. On the ubiquity of Sidon sets. In: Number Theory. Springer, New York, 2004,
pp. 263-272.

[7]  D.J.Newman and J. S. Byrnes, The L* norm of a polynomial with coefficients +=1. Amer. Math.
Monthly 97(1990), 42-45.

Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 156
e-mail: pborwein@cecm.sfu.ca
kkchoi@cecm.sfu.ca

Department of Mathematics, Atkinson Faculty, York University, Toronto, ON, M3] 1P3
e-mail: idmercer@yorku.ca

https://doi.org/10.4153/CMB-2008-050-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2008-050-2

